线性代数典型例题
最全线性代数习题及参考答案

第一章:一、填空题:1、若a a D ij n ==||,则=-=||ij a D ;解:a a a a a D aa a a a D n nnn nnnn nn )1(11111111-=----=∴==2、设321,,x x x 是方程03=++q px x 的三个根,则行列式132213321x x x x x x x x x = ; 解:方程023=+++d cx bx ax 的三个根与系数之间的关系为:a d x x x a c x x x x x x ab x x x ///321133221321-==++-=++所以方程03=++q px x 的三个根与系数之间的关系为:q x x x p x x x x x x x x x -==++=++3211332213210033)(3321221321333231132213321=--++-=-++=x x x q x x x p x x x x x x x x x x x x x x x3、行列式1000000019980001997002001000= ;解:原式按第1999行展开:原式=!19981998199721)1(0001998001997002001000219981999-=⨯⨯⨯-=+++4、四阶行列式4433221100000a b a b b a b a = ; 解:原式按第一行展开:原式=))(()()(000004141323243243214324321433221433221b b a a b b a a b b b b a a b a b b a a a a b a b b a b a a b b a a --=---=-5、设四阶行列式cdb a a cbda dbcd c ba D =4,则44342414A A A A +++= ;解:44342414A A A A +++是D 4第4列的代数余子式,44342414A A A A +++=0111111111111==d a c d d c c a bd b a c bdd b c c ba6、在五阶行列式中3524415312a a a a a 的符号为 ;解:n 阶行列式可写成∑-=n np p p ta a aD 2211)1(,其中t 为p 1p 2…p n 的逆序数所以五阶行列式中3524415312a a a a a 的符号为5341352412a a a a a 的符号,为1)1()1(5)3,1,5,4,2(-=-=-t7、在函数xx x xxx f 21112)(---=中3x 的系数是 ; 解:根据行列式结构,可知3x 须由a 11=2x ,a 33=x 和第二行的一个元素构成,但此时第三个元素只能取a 22(行、列数均不可重复),所以此式为3332211)3,2,1(2)1(x a a a t -=-,系数为-2。
线性代数行列式经典例题

线性代数行列式经典例题例1计算元素为a= | i-j|得n阶行列式、ij解方法1 由题设知,=0,,,故其中第一步用得就是从最后一行起,逐行减前一行.第二步用得每列加第列.方法2=例2、设a, b, c就是互异得实数, 证明:得充要条件就是a + b + c =0、证明: 考察范德蒙行列式:=行列式即为y2前得系数、于就是=所以得充要条件就是a + b + c = 0、例3计算D=解: 方法1 递推法按第1列展开,有D= x D+(-1)a = x D+ a由于D= x + a,,于就是D= x D+ a=x(x D+a)+ a=xD+ ax + a== xD+ ax++ ax + a= 方法2 第2列得x倍,第3列得x倍,,第n列得x倍分别加到第1列上===方法3 利用性质,将行列式化为上三角行列式.Dx k= x( + +++a+x)=方法4 ++++=(-1)(-1)a+(-1)(-1) ax++(-1)(-1)ax +(-1)( a+x) x=例4.计算n阶行列式:()解采用升阶(或加边)法.该行列式得各行含有共同得元素,可在保持原行列式值不变得情况下,增加一行一列,适当选择所增行(或列)得元素,使得下一步化简后出现大量得零元素.=这个题得特殊情形就是=可作为公式记下来.例5.计算n阶“三对角”行列式D=解方法1 递推法.DD—D-D即有递推关系式D=D-D (n3)故=递推得到====而,==,代入得(2、1)由递推公式得==αD +==+++=方法2 把D按第1列拆成2个n阶行列式D=+上式右端第一个行列式等于αD,而第二个行列式=β于就是得递推公式,已与(2、1)式相同.方法3 在方法1中得递推公式D=D-D又因为当时D=====D= =-2= =于就是猜想,下面用数学归纳法证明.当n=1时,等式成立,假设当nk 时成立.当n=k+1就是,由递推公式得D=D-D=—=所以对于nN,等式都成立例6.计算阶行列式:其中.解这道题有多种解法.方法1 化为上三角行列式其中,于就是.方法2 升阶(或加边)法方法3 递推法.将改写为+由于因此=为递推公式,而,于就是======。
(完整word版)线性代数经典试题4套及答案

线性代数经典试题4套及答案试卷1一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λs βs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。
大一线性代数知识点例题

大一线性代数知识点例题1. 矩阵运算给定矩阵 A = [2 1; 3 4], B = [5 6; 7 8],计算以下运算:a) 2A + 5Bb) ABc) BA2. 矩阵消元给定矩阵 C = [1 2 3; 4 5 6; 7 8 9],通过列消元将其转化为矩阵 RREF。
3. 线性方程组求解给定线性方程组:2x + 3y - z = 14x + 2y + z = -2x - y + 2z = 3求解上述线性方程组的解集。
4. 向量空间以下向量组是否为向量空间?如果是,证明其为向量空间;如果不是,解释原因。
a) V = {(x, y) | x + y = 1},其中 x 和 y 是实数。
b) V = {(x, y) | x^2 + y^2 = 1},其中 x 和 y 是实数。
5. 线性变换给定线性变换 T:R^2 → R^3,使得 T((1, 0)) = (2, 1, 3) 和T((0, 1)) = (-1, 2, 0)。
a) 计算 T((3, 2))。
b) 判断 T 是否为一一映射。
6. 特征值和特征向量给定矩阵 D = [4 1; 2 3],求其特征值和特征向量。
7. 内积和正交性给定向量 A = (3, -1, 2) 和向量 B = (-2, 5, 1)。
a) 计算 A 和 B 的内积。
b) 判断 A 和 B 是否正交。
c) 如果 A 和 B 是正交的,计算它们的夹角。
8. 最小二乘法给定数据点 (1, 2), (2, 3), (3, 4),求使拟合的直线 y = ax + b 与这些数据点的距离最小化的最佳拟合直线。
以上是大一线性代数的一些知识点例题,通过这些例题的练习,可以加深对线性代数的理解,提升解题技巧。
希望能够为你的学习提供一些帮助。
线性代数试题(完整试题与详细答案)

线性代数试题(完整试题与详细答案)一、单项选择题(本大题共10小题,每小题2分,共20分)1.行列式111101111011110------第二行第一列元素的代数余子式21A =( )A .-2B .-1C .1D .22.设A 为2阶矩阵,若A 3=3,则=A 2( ) A .21 B .1 C .34 D .23.设n 阶矩阵A 、B 、C 满足E ABC =,则=-1C ( ) A .AB B .BA C .11--B AD .11--A B4.已知2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 的行列式1-=A ,则=-1*)(A ( ) A .⎪⎪⎭⎫⎝⎛----d c b aB .⎪⎪⎭⎫⎝⎛--a c b dC .⎪⎪⎭⎫ ⎝⎛--a cb d D .⎪⎪⎭⎫ ⎝⎛d c b a5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( ) A .s ααα,,,21 中没有线性相关的部分组 B .s ααα,,,21 中至少有一个非零向量 C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设A 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 有非零解的充分必要条件是( )A .n r =)(AB .m r =)(AC .n r <)(AD .m r <)(A 7.已知3阶矩阵A 的特征值为-1,0,1,则下列矩阵中可逆的是( ) A .A B .AE - C .A E -- D .A E -2 8.下列矩阵中不是..初等矩阵的为( )A .⎪⎪⎪⎭⎫ ⎝⎛101010001B .⎪⎪⎪⎭⎫⎝⎛-101010001C .⎪⎪⎪⎭⎫⎝⎛100020001D .⎪⎪⎪⎭⎫⎝⎛1010110019.4元二次型4332412143212222),,,(x x x x x x x x x x x x f +++=的秩为( ) A .1B .2C .3D .410.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=001010100A ,则二次型Ax x T 的规范形为( )A .232221z z z ++ B .232221z z z ---C .232221z z z --D .232221z z z -+二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
线性代数习题及解答完整版

线性代数习题及解答 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】线性代数习题一说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,||α||表示向量α的长度,αT表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式. 一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设行列式111213212223313233a a a a a a a a a =2,则111213313233213122322333333a a a a a a a a a a a a ------=( ) A .-6 B .-3 C .3D .62.设矩阵A ,X 为同阶方阵,且A 可逆,若A (X -E )=E ,则矩阵X =( ) A .E +A -1B .E -AC .E +AD .E -A -13.设矩阵A ,B 均为可逆方阵,则以下结论正确的是( )A .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫⎪⎝⎭A B B .⎛⎫⎪⎝⎭A B 不可逆 C .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫ ⎪⎝⎭B AD .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫⎪⎝⎭A B 4.设α1,α2,…,αk 是n 维列向量,则α1,α2,…,αk 线性无关的充分必要条件是( )A .向量组α1,α2,…,αk 中任意两个向量线性无关B .存在一组不全为0的数l 1,l 2,…,l k ,使得l 1α1+l 2α2+…+l k αk ≠0C .向量组α1,α2,…,αk 中存在一个向量不能由其余向量线性表示D .向量组α1,α2,…,αk 中任意一个向量都不能由其余向量线性表示5.已知向量2(1,2,2,1),32(1,4,3,0),T T+=---+=--αβαβ则+αβ=( ) A .(0,-2,-1,1)TB .(-2,0,-1,1)TC .(1,-1,-2,0)TD .(2,-6,-5,-1)T6.实数向量空间V ={(x , y , z )|3x +2y +5z =0}的维数是( ) A .1B .2C .3D .47.设α是非齐次线性方程组Ax =b 的解,β是其导出组Ax =0的解,则以下结论正确的是( )A .α+β是Ax =0的解B .α+β是Ax =b 的解C .β-α是Ax =b 的解D .α-β是Ax =0的解8.设三阶方阵A 的特征值分别为11,,324,则A -1的特征值为( ) A .12,4,3 B .111,,243C .11,,324D .2,4,39.设矩阵A =121-,则与矩阵A 相似的矩阵是( )A .11123--B .01102C .211- D .121-10.以下关于正定矩阵叙述正确的是( ) A .正定矩阵的乘积一定是正定矩阵 B .正定矩阵的行列式一定小于零 C .正定矩阵的行列式一定大于零D .正定矩阵的差一定是正定矩阵二、填空题(本大题共10小题,每空2分,共20分)请在每小题的空格中填上正确答案,错填、不填均无分。
线性代数典型例题

线性代数第一章 行列式典型例题一、利用行列式性质计算行列式二、按行(列)展开公式求代数余子式已知行列式412343344615671122D ==-,试求4142A A +与4344A A +. 三、利用多项式分解因式计算行列式1.计算221123122313151319x D x -=-.2.设()x b c d bxc d f x b cx d b c dx=,则方程()0f x =有根_______.x =四、抽象行列式的计算或证明1.设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B +2.设A 为三阶方阵,*A 为A 的伴随矩阵,且1||2A =,试计算行列式1*(3)22.A A O O A -⎡⎤-⎢⎥⎣⎦3.设A 是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式||.A4.设矩阵210120001A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,矩阵B 满足**2ABA BA E =+,则||_____.B = 5.设123,,ααα均为3维列向量,记矩阵123123123123(,,),(,24,39)A B αααααααααααα==+++++如果||1A =,那么||_____.B = 五、n 阶行列式的计算六、利用特征值计算行列式1.若四阶矩阵A 与B 相似,矩阵A 的特征值为1111,,,2345,则行列式1||________.B E --=2.设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E +第二章 矩阵典型例题一、求逆矩阵1.设,,A B A B +都是可逆矩阵,求:111().A B ---+2.设0002100053123004580034600A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,求1.A -二、讨论抽象矩阵的可逆性1.设n 阶矩阵A 满足关系式320A A A E +--=,证明A 可逆,并求1.A -2.已知322,22A E B A A E ==-+,证明B 可逆,并求出逆矩阵。
线性代数经典例题

(22)(本题满分11分)已知111ξ⎛⎫ ⎪= ⎪ ⎪-⎝⎭是1253102a A b -⎛⎫⎪= ⎪ ⎪--⎝⎭的特征向量,求,a b 的值,并证明A 的任一特征向量均能由ξ线性表出. 解设ξ是λ所对应的特征向量,则A ξλξ=,即1211531110211a b λ-⎛⎫⎛⎫⎛⎫⎪⎪ ⎪= ⎪⎪ ⎪⎪⎪ ⎪----⎝⎭⎝⎭⎝⎭即12,53,1,2,312,a b a b λλλλ--=⎧⎪+-=⇒=-==-⎨⎪-+=⎩故211533102A -⎛⎫⎪=- ⎪⎪--⎝⎭由323(2(3)(2))(162)(1)(1)E A λλλλλ-=-+-+-+-+---=-, 知1λ=-是A 的三重特征根.又因312()5232101r E A r --⎛⎫⎪--=--= ⎪ ⎪⎝⎭,从而1λ=-对应的线性无关的特征向量只有一个.所以A 的特征向量均可由ξ线性表出.(23) (本题满分11分)已知二次型)0(2332),,(32232221321>+++=a x ax x x x x x x f ,通过正交变换化为标准型23222152y y y f ++=,求参数a 及所用正交变换矩阵.解 变换前后二次型的矩阵分别为⎪⎪⎪⎭⎫ ⎝⎛=3030002a a A ,⎪⎪⎪⎭⎫⎝⎛=500020001B ,由正交变换性质知,A 与B 相似,于是B E A E -=-λλ即)5)(2)(1()96)(2(22---=-+--λλλλλλa 将1=λ(或5=λ)代入上式,得2,042±==-a a因0>a ,故2=a ,这时⎪⎪⎪⎭⎫ ⎝⎛=320230002A 其特征值分别为5,2,1321===λλλ(与B 的特征值相同)当11=λ时,解方程0)(1=-x A E λ,得⎪⎪⎪⎭⎫⎝⎛-=1101ξ;当22=λ时,解方程0)(2=-x A E λ,得⎪⎪⎪⎭⎫ ⎝⎛=0012ξ当53=λ时,解方程0)(3=-x A E λ,得⎪⎪⎪⎭⎫ ⎝⎛=1103ξ将321,,ξξξ单位化,得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==21210111ξξη,⎪⎪⎪⎭⎫⎝⎛==001222ξξη,⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==21210333ξξη 故所用正交变换矩阵为⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=2102121021010Q . (22) (本题满分11分)设向量组1(,2,10)T a α=,2(2,1,5)T α-,3(1,1,4)T α=-,(1,,)T b c β=.试问:当,,a b c 满足什么条件时(1)β可由123,,ααα线性表出,且表示唯一?(2) β不能由123,,ααα线性表出?(3) β可由123,,ααα线性表出,但表示不唯一?并求出一般表达式.解 设有一组数123,,x x x ,使得 112233x x x αααβ++=对应方程组的增广矩阵作初等行变换,有2111211211021122210540015a a a ab A b c c b ⎛⎫--⎛⎫⎪⎪⎪=→----- ⎪ ⎪ ⎪ ⎪⎝⎭--⎝⎭线性表出,且表示唯一.(1)当202a --≠,即4a ≠-时,秩()A =秩()A =3,方程组有唯一解,β可由123,,ααα(2)当202a --=,即4a =-时,对A 作初等行变换,有21010011200013b A b b c --⎛⎫ ⎪=+ ⎪ ⎪-+⎝⎭当31b c -≠时,秩()A ≠秩()A ,方程组无解,β不能由123,,ααα线性表出. (3)当4a =-且31b c -=时,秩()A =秩()A =2<3,方程组有无穷多解,β可由123,,ααα线性表出,但表示不唯一.此时,解得123,21,21k t k t b k b ==---=+(t 为任意常数) 因此有123(21)(21)t t b b βααα=-++++(23)(本题满分11分)已知矩阵2000303A a a ⎛⎫⎪= ⎪⎪⎝⎭有特征值5λ=,求a 的值;并当0a >时,正交矩阵Q ,使1Q AQ -=Λ.解 因5λ=是矩阵A 的特征值,则由23005023(4)002E A a a a -=-=-=-.可得2a =±.当2a =时,则由矩阵A的特征多项式200032(2)(5)(1)0023E A λλλλλλλ--=--=---=--,知矩阵A 的特征值是1,2,5.由()0E A x -=得基础解系1(0,1,1)T α=- 由(2)0E A x -=得基础解系2(1,0,0)T α=由(5)0E A x -=得基础解系3(0,1,1)T α= 即矩阵A 属于特征值1,2,5的特征向量分别是123,,ααα.由于实对称矩阵特征值不同特征向量相互正交,故只需单位化,有101,1λ⎛⎫⎪=⎪⎪-⎭2100γ⎛⎫ ⎪= ⎪ ⎪⎝⎭,3011γ⎛⎫⎪=⎪⎪⎭那么,令123010()00Q γγγ⎛⎫⎪ ⎪ == ⎝,则有1125Q AQ -⎛⎫⎪= ⎪⎪⎝⎭. (22)设A 为三阶矩阵,123,,ααα为3维列向量.若向量组123,,ααα线性无关,且112322A αααα=-++,212322A αααα=--,312322A αααα=--. (1)求矩阵A 的特征向量;(2)设2B A E *=-,求B .解 123123123122(,,)(,,)(,,)212221A A A A ααααααααα-⎛⎫⎪==-- ⎪ ⎪--⎝⎭,因为123,,ααα线性无关,所以123(,,)ααα可逆,于是1123123122(,,)(,,)212221A αααααα--⎛⎫⎪=-- ⎪ ⎪--⎝⎭,即122212221AC -⎛⎫⎪--= ⎪ ⎪--⎝⎭,则A 与C 有相同的特征值,由1222120221E C λλλλ+---=-+=-+,得1235,1λλλ=-== 于是A 的特征值为1235,1λλλ=-==(2)1235A λλλ==-,A *的特征值为11Aλ=,25Aλ=-,35Aλ=-,于是2B A E *=-的特征值为1,11,11--,故121B =-.(23)设实二次型123(,,)T f x x x x Ax =经过正交变换后得到的标准型为2221232f y y y =--,A *是A 的伴随矩阵,且向量(1,1,1)T α=-满足A αα*=,求二次型123(,,)f x x x .解 由于A 的特征值为2,1,1--,所以2(1)(1)2A =⨯-⨯-=.对A αα*=两边左乘A ,并利用AA A E *=得2A αα=,这表明α是A 对应于特征值2的特征相量.取2(0,1,1)T α=,3(2,1,1)α=--,则123,,ααα两两正交,将它们分别规范化为1T q =,2T q =,3(Tq =,令123(,,)Q q q q =,则Q 为正交矩阵,且011101110T A Q Q -⎛⎫⎪=Λ=- ⎪ ⎪--⎝⎭所以二次型123121323(,,)222f x x x x x x x x x =--.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数第一章 行列式典型例题一、利用行列式性质计算行列式 二、按行(列)展开公式求代数余子式已知行列式412343344615671122D ==-,试求4142A A +与4344A A +. 三、利用多项式分解因式计算行列式1.计算221123122313151319x D x -=-.2.设()x b c d bxc d f x b cx d b c dx=,则方程()0f x =有根_______.x =四、抽象行列式的计算或证明1.设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B +2.设A 为三阶方阵,*A 为A 的伴随矩阵,且1||2A =,试计算行列式1*(3)22.A A O O A -⎡⎤-⎢⎥⎣⎦3.设A 是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式||.A4.设矩阵210120001A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,矩阵B 满足**2ABA BA E =+,则||_____.B = 5.设123,,ααα均为3维列向量,记矩阵123123123123(,,),(,24,39)A B αααααααααααα==+++++如果||1A =,那么||_____.B = 五、n 阶行列式的计算 六、利用特征值计算行列式1.若四阶矩阵A 与B 相似,矩阵A 的特征值为1111,,,2345,则行列式1||________.B E --=2.设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E +第二章 矩阵典型例题一、求逆矩阵1.设,,A B A B +都是可逆矩阵,求:111().A B ---+2.设0002100053123004580034600A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,求1.A -二、讨论抽象矩阵的可逆性1.设n 阶矩阵A 满足关系式320A A A E +--=,证明A 可逆,并求1.A -2.已知322,22A E B A A E ==-+,证明B 可逆,并求出逆矩阵。
3.设T A E xy =+,其中,x y 均为n 维列向量,且2T x y =,求A 的逆矩阵。
4.设,A B 为n 阶矩阵,且E AB -可逆,证明E BA -也可逆。
三、解矩阵方程1.设矩阵111111111A -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,矩阵X 满足*12A X A X -=+,求矩阵X . 2.已知矩阵100011110,101111110A B ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,且矩阵X 满足 AXA BXB AXB BXA E +=++,求X . 四、利用伴随矩阵进行计算或证明 1.证明下列等式(1)**()()T T A A =; (2)若||0A ≠,则1**1()()A A --=; (3)||0A ≠,则1**1[()][()]T T A A --=;(4) ||0A ≠,则*1*()(0,n kA k A k A n -=≠为阶矩阵); (5)若,A B 为同阶可逆矩阵,则***()AB B A =.2.设矩阵33()ij A a ⨯=满足*T A A =,若111213,,a a a 为三个相等正数,则11_______.a = 五、关于初等矩阵和矩阵的秩(看教材)第三章 矩阵典型例题一、判断向量组的线性相关性1.设12(,,,)(1,2,,;)T i i i in i r r n αααα==<L L 是n 维实向量,且12,,,r αααL 线性无关,已知12(,,,)T n b b b β=L 是线性方程组111122121122221122000n n n nr r rn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩L L L L L 的非零解向量,试判断向量组12,,,,r αααβL 的线性相关性。
2.设12,,,n αααL 是n 个n 维的线性无关向量,11122n n n k k k αααα+=+++L ,其中12,,,n k k k L 全不为零,证明121,,,n ααα+L 中任意n 个向量均无关。
3.设A 为43⨯矩阵,B 为33⨯矩阵,且0AB =,其中111121230012A -⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥--⎣⎦,证明B 的列向量组线性相关。
4.设121,,,n ααα-L 为1n -个线性无关的n 维列向量,1ξ和2ξ是与121,,,n ααα-L 均正交的n 维非零列向量,证明(1)1ξ、2ξ线性相关;(2)121,,,n ααα-L ,1ξ线性相关。
二、把一个向量用一组向量线性表示证明线性方程组111122121122221122000n n n nm m mn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩L L L L L 的解都是11220n n b x b x b x +++=L 的解的充要条件是β是12,,,m αααL 的线性组合,其中12(,,,)n b b b β=L ,12(,,,)(1,2,,)i i i in i m αααα==L L . 三、求向量组的秩1.给定一个向量组,求其一个极大线性无关组,并将其余向量用该极大无关组线性表示。
2.已知向量组(1)123,,ααα;(2)1234,,,αααα;(3)1235,,,αααα.如果各向量组的秩分别是3、3、4,证明:向量组12354,,,ααααα-的秩为4. 四、有关矩阵秩的命题1.设A 为m n ⨯实矩阵,证明:()().T R A R A A =2.设A 为n 阶方阵,且满足22A A E =+,证明:(2)()R A E R A E n -++=. 综合题1. 设A 为m n ⨯矩阵,B 为()n n m ⨯-矩阵,且已知0AB =,(),()R A m R B n m ==-,设α是满足0Ax =的一个n 维向量,证明:存在唯一的一个()n m -维列向量β,使B αβ=.2.已知随机变量01~0.250.75X ⎡⎤⎢⎥⎣⎦,{}0.51P Y =-=,又n 维向量123,,ααα线性无关,求向量122331,2,X Y αααααα+++线性相关的概率。
第四章 线性方程组典型例题一、基本概念题(解的判定、性质、结构) 二、含有参数的线性方程组的求解 三、抽象线性方程组求解1.已知线性方程组:1111221,222112222,221122,2200()0n n n nn n n n n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪I ⎨⎪⎪+++=⎩L L L L L的一个基础解系为11121,221222,212,2(,,,),(,,,),,(,,,).T T T n n n n n n b b b b b b b b b L L L L 试写出线性方程组:1111221,222112222,221122,2200()0n n n nn n n n n b y b y b y b y b y b y b y b x b y +++=⎧⎪+++=⎪II ⎨⎪⎪+++=⎩L L L L L 的通解,并说明理由。
2.已知4阶方阵12341234(,,,),,,,A αααααααα=均为4维列向量,其中234,,ααα线性无关,1232ααα=-,如果1234βαααα=+++,求线性方程组Ax β=的通解。
四、讨论两个方程组的公共解1.设线性方程组123123212302040x x x x x ax x x a x ++=⎧⎪++=⎨⎪++=⎩与方程12321x x x a ++=-有公共解,求a 的值及所有公共解。
2.已知下列非齐次线性方程组124123412326()4133x x x x x x x x x x +-=-⎧⎪I ---=⎨⎪--=⎩,1234234345()21121x mx x x nx x x x x t +--=-⎧⎪II --=-⎨⎪-=-+⎩(1)求解方程组()I ,用其导出组的基础解系表示通解;(2)当方程组()II 中的参数,,m n t 为何值时,方程组()I 与()II 同解。
3.设,A B 都是n 阶级矩阵,且()()r A r B n +<,证明齐次方程组0Ax =与0Bx =有非零公共解。
五、讨论两个方程组解之间的关系 1. 0Ax =与0T A Ax =的解的关系。
2.设有齐次线性方程组0Ax =与0Bx =,其中,A B 都是m n ⨯矩阵,现有4个命题:①若0Ax =的解均是0Bx =的解,则()()r A r B ≥; ②若()()r A r B ≥,则0Ax =的解均是0Bx =的解; ③若0Ax =与0Bx =同解,则()()r A r B =; ④若()()r A r B =,则0Ax =与0Bx =同解。
以上命题中正确的是:(A) ①② (B) ①③ (C) ②④ (D) ③④ 六、已知方程组的解,反求系数矩阵或系数矩阵中的参数1.设121201101A t t t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,且方程组0Ax =的基础解系含有2个线性无关的解向量,求0Ax =的通解。
2.设12112010131,1,11101A b a c η⎡⎤⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-⎣⎦,如果η是Ax b =的一个解,试求Ax b =的通解。
七、有关基础解系的讨论1.设12,,,s αααL 为线性方程组0Ax =的一个基础解系,1112221223121,,,s s t t t t t t βααβααβαα=+=+=+L其中12,t t 为实常数,试问12,t t 满足什么关系时,12,,,s βββL 也为0Ax =的一个基础解系?2.若矩阵A 的秩为r ,其r 个列向量为某一齐次线性方程组的一个基础解系,B 为r 阶非奇异矩阵,证明:AB 的r 个列向量也是该齐次线性方程组的一个基础解系。
3.设*ξ是非齐次线性方程组Ax b =的一个解,12,,,n r ηηη-L 是其导出组的一个基础解系,证明:(1)*12,,,,n r ξηηη-L 线性无关;(2)****12,,,,n r ξξηξηξη-+++L 是方程组Ax b =的1n r -+个线性无关的解; (3)方程组Ax b =的任一解x ,都可以表示为这1n r -+个解的线性组合,而且组合系数之和为1.八、有关0AB =的应用1.已知方阵12221311A λ-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,三阶方阵0B ≠满足0AB =,试求λ的值。