线性代数典型例题

合集下载

完整版)《线性代数》

完整版)《线性代数》

完整版)《线性代数》一、单项选择题1.设矩阵$A=\begin{bmatrix}1&2\\3&4\end{bmatrix}$,则$A^{-1}$等于(B)A。

$\begin{bmatrix}1&2\\3&4\end{bmatrix}$B。

$\begin{bmatrix}-2&1\\1.5&-0.5\end{bmatrix}$C。

$\begin{bmatrix}-2&1.5\\1&-0.5\end{bmatrix}$D。

$\begin{bmatrix}-2&1\\1&0\end{bmatrix}$2.设$A$是方阵,如有矩阵关系式$AB=AC$,则必有(D)A。

$A=0$B。

$BC$时$A=0$C。

$A$时$B=C$D。

$|A|$时$B=C$3.设$Ax=b$是一非齐次线性方程组,$\eta_1$,$\eta_2$是其任意两个解,则下列结论错误的是(A)A。

$\eta_1+\eta_2$是$Ax=0$的一个解B。

$\eta_1+\eta_2$是$Ax=b$的一个解C。

$\eta_1-\eta_2$是$Ax=0$的一个解D。

$2\eta_1-\eta_2$是$Ax=b$的一个解4.设$\lambda$是矩阵$A$的特征方程的3重根,$A$的属于$\lambda$的线性无关的特征向量的个数为$k$,则必有(A)A。

$k\leq3$B。

$k<3$XXXD。

$k>3$5.下列矩阵中是正定矩阵的为(C)A。

$\begin{bmatrix}1&-2\\-2&4\end{bmatrix}$B。

$\begin{bmatrix}1&2\\2&4\end{bmatrix}$C。

$\begin{bmatrix}2&-1\\-1&2\end{bmatrix}$D。

$\begin{bmatrix}-1&2\\2&4\end{bmatrix}$6.下列矩阵中,(B)不是初等矩阵。

线性代数练习题(有答案)

线性代数练习题(有答案)

《线性代数》 练习题一、选择题1、 设A ,B 是n 阶方阵,则必有 ……………………………………………( A )A 、|AB |=|BA | B 、2222)(B AB A B A ++=+C 、22))((B A B A B A -=-+D 、BA AB = 2、设A 是奇数阶反对称矩阵,则必有( B ) (A)、1=A (B)、0=A (C)、0≠A (D)、A 的值不确定3、向量组)0,1,1(,)9,0,3(-,)3,2,1(,)6,1,1(--的秩为____2 ________4、向量组)1,3,1,2(-,)4,5,2,4(-,)1,4,1,2(--的秩为______2__ ___.5、设A 是n m ⨯阶矩阵,r A r =)(,则齐次线性方程组O AX =的基础解系中包含解向量的个数为( C )(A)、r (B)、n (C)、r n - (D)、r m - 二、计算与证明题6、设⎪⎪⎪⎭⎫ ⎝⎛----=020212022A , ⎪⎪⎪⎭⎫⎝⎛---=221021132B 求(1)32AB A -,(2).T B A6、解(1). A AB 23-2202313212120020122--⎛⎫⎛⎫ ⎪⎪=-- ⎪⎪ ⎪⎪---⎝⎭⎝⎭2202212020-⎛⎫⎪--- ⎪ ⎪-⎝⎭2223186240-⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭2202212020-⎛⎫ ⎪--- ⎪ ⎪-⎝⎭210612622680-⎛⎫ ⎪=- ⎪ ⎪--⎝⎭(2). 220231231212120120020122122T A B ---⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=--= ⎪⎪ ⎪ ⎪⎪ ⎪-----⎝⎭⎝⎭⎝⎭222186240-⎛⎫⎪=-- ⎪ ⎪--⎝⎭7、设A ,B 是n 阶方阵满足AB B A =+,证明:E A -可逆. 7、解、1()A E B E --=-8、设方阵A 满足0332=--E A A ,证明:A 可逆,并求1-A .8、解、由2330A A E --=有A (3A E -)=3E ,于是,A [21(3A E -)]=E ,所以A 可逆,且11(3)3A A E -=-.9、计算行列式:1014300211321221---=D9、69D =-.10、计算行列式D =4232002005250230---- 10、解:D =423200200525230----0205252304--=55208---=80-=11、计算n 阶行列式abbb b a bb b a D =11、1[(1)]()n D a n b a b -=+--。

(完整word版)线性代数经典试题4套及答案

(完整word版)线性代数经典试题4套及答案

线性代数经典试题4套及答案试卷1一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分。

1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λs βs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。

大一线性代数知识点例题

大一线性代数知识点例题

大一线性代数知识点例题1. 矩阵运算给定矩阵 A = [2 1; 3 4], B = [5 6; 7 8],计算以下运算:a) 2A + 5Bb) ABc) BA2. 矩阵消元给定矩阵 C = [1 2 3; 4 5 6; 7 8 9],通过列消元将其转化为矩阵 RREF。

3. 线性方程组求解给定线性方程组:2x + 3y - z = 14x + 2y + z = -2x - y + 2z = 3求解上述线性方程组的解集。

4. 向量空间以下向量组是否为向量空间?如果是,证明其为向量空间;如果不是,解释原因。

a) V = {(x, y) | x + y = 1},其中 x 和 y 是实数。

b) V = {(x, y) | x^2 + y^2 = 1},其中 x 和 y 是实数。

5. 线性变换给定线性变换 T:R^2 → R^3,使得 T((1, 0)) = (2, 1, 3) 和T((0, 1)) = (-1, 2, 0)。

a) 计算 T((3, 2))。

b) 判断 T 是否为一一映射。

6. 特征值和特征向量给定矩阵 D = [4 1; 2 3],求其特征值和特征向量。

7. 内积和正交性给定向量 A = (3, -1, 2) 和向量 B = (-2, 5, 1)。

a) 计算 A 和 B 的内积。

b) 判断 A 和 B 是否正交。

c) 如果 A 和 B 是正交的,计算它们的夹角。

8. 最小二乘法给定数据点 (1, 2), (2, 3), (3, 4),求使拟合的直线 y = ax + b 与这些数据点的距离最小化的最佳拟合直线。

以上是大一线性代数的一些知识点例题,通过这些例题的练习,可以加深对线性代数的理解,提升解题技巧。

希望能够为你的学习提供一些帮助。

线性代数应用题总结分类及经典例题

线性代数应用题总结分类及经典例题

线性代数应用题总结分类及经典例题本文旨在总结线性代数中的应用题,并提供一些经典例题。

以下是对应的分类和例题:1. 线性方程组例题1:已知线性方程组如下:$$\begin{cases}2x + y - z = 5 \\x - 3y + 2z = -4 \\3x + 4y - z = 6 \\\end{cases}$$求解以上线性方程组。

例题2:已知线性方程组如下:$$\begin{cases}2x + 3y - z = 4 \\x - 2y + 3z = -1 \\3x + 4y - 2z = 7 \\\end{cases}$$求解以上线性方程组。

2. 矩阵与向量例题1:已知矩阵$A=\begin{bmatrix}1 &2 &3 \\4 &5 &6 \\\end{bmatrix}$,向量$\mathbf{b}=\begin{bmatrix}2 \\-1 \\\end{bmatrix}$,求解方程组$A\mathbf{x}=\mathbf{b}$。

例题2:已知矩阵$A=\begin{bmatrix}2 & -1 \\3 &4 \\\end{bmatrix}$,向量$\mathbf{b}=\begin{bmatrix}1 \\2 \\\end{bmatrix}$,求解方程组$A\mathbf{x}=\mathbf{b}$。

3. 线性变换例题1:已知线性变换$T$将向量$\mathbf{v}=\begin{bmatrix}2 \\3 \\\end{bmatrix}$映射为$\mathbf{w}=\begin{bmatrix}5 \\-1 \\\end{bmatrix}$,求线性变换$T$的矩阵表示。

例题2:已知线性变换$T$将向量$\mathbf{v}=\begin{bmatrix} 1 \\-2 \\\end{bmatrix}$映射为$\mathbf{w}=\begin{bmatrix}3 \\4 \\\end{bmatrix}$,求线性变换$T$的矩阵表示。

线性代数大学试题及答案

线性代数大学试题及答案

线性代数大学试题及答案一、选择题(每题2分,共20分)1. 向量空间的基是该空间的一组向量,它们满足以下哪些条件?A. 线性无关B. 向量空间中的任何向量都可以由基向量线性组合得到C. 向量空间中的任何向量都可以由基向量线性表示D. 所有选项答案:D2. 矩阵A的秩是指:A. A的行向量组的秩B. A的列向量组的秩C. A的转置矩阵的秩D. 所有选项答案:D3. 下列哪个矩阵是可逆的?A. 零矩阵B. 任何2x2的对角矩阵,对角线上的元素不全为零C. 任何3x3的单位矩阵D. 任何4x4的对称矩阵答案:B4. 线性变换可以用矩阵表示,当且仅当:A. 该变换是线性的B. 该变换是可逆的C. 变换的基向量线性无关D. 变换的输出空间是有限维的答案:C5. 特征值和特征向量是线性变换的基本概念,其中特征向量是指:A. 变换后长度不变的向量B. 变换后方向不变的向量C. 变换后保持不变的向量D. 变换后与原向量成比例的向量答案:D6. 矩阵的迹是:A. 矩阵主对角线上元素的和B. 矩阵的行列式的值C. 矩阵的秩D. 矩阵的逆的转置答案:A7. 以下哪个矩阵是正交矩阵?A. 单位矩阵B. 任何对称矩阵C. 任何对角矩阵D. 任何行列式为1的方阵答案:A8. 矩阵的行列式可以用于判断矩阵的:A. 可逆性B. 秩C. 特征值D. 迹答案:A9. 线性方程组有唯一解的条件是:A. 系数矩阵是可逆的B. 系数矩阵的秩等于增广矩阵的秩C. 方程的个数等于未知数的个数D. 所有选项答案:B10. 以下哪个矩阵是对称矩阵?A. 单位矩阵B. 对角矩阵C. 任何方阵的转置D. 任何方阵与其转置的乘积答案:D二、填空题(每题2分,共10分)1. 矩阵的______是矩阵中所有行(或列)向量生成的子空间的维数。

答案:秩2. 如果矩阵A和B可交换,即AB=BA,则称矩阵A和B是______的。

答案:可交换3. 一个向量空间的维数是指该空间的______的个数。

线性代数练习题及答案10套

线性代数练习题及答案10套

1 0 1 14.设矩阵 A= 0 2 0 ,矩阵 B A E ,则矩阵 B 的秩 r(B)= __2__. 0 0 1 0 0 1 B A E = 0 1 0 ,r(B)=2. 0 0 0
15.向量空间 V={x=(x1,x2,0)|x1,x2 为实数}的维数为__2__. 16.设向量 (1,2,3) , (3,2,1) ,则向量 , 的内积 ( , ) =__10__. 17.设 A 是 4×3 矩阵,若齐次线性方程组 Ax=0 只有零解,则矩阵 A 的秩 r(A)= __3__. 18 . 已 知 某 个 3 元 非 齐 次 线 性 方 程 组 Ax=b 的 增 广 矩 阵 A 经 初 等 行 变 换 化 为 :
三、计算题(本大题共 6 小题,每小题 9 分,共 54 分)
Ibugua
交大打造不挂女神的领跑者
123 23 3 21.计算 3 阶行列式 249 49 9 . 367 67 7 123 23 3 100 20 3 解: 249 49 9 200 40 9 0 . 367 67 7 300 60 7
线代练习题及答案(一)
一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)
1.设 A 为 3 阶方阵,且 | A | 2 ,则 | 2 A 1 | ( D A.-4 B.-1 C. 1 ) D.4
| 2 A 1 | 2 3 | A | 1 8
1 4. 2

1 2 3 1 2 2. 设矩阵 A= (1, 2) , B= C= 则下列矩阵运算中有意义的是 ( B 4 5 6 , 3 4 ,
行成比例值为零.
a1b2 a 2 b2 a 3 b2

线性代数行列式经典例题

线性代数行列式经典例题

线性代数行列式经典例题例1计算元素为a ij = | i -j |的n 阶行列式.解 方法1 由题设知,11a =0,121a =,1,1,n a n =-,故01110212n n n D n n --=--1,1,,2i i r r i n n --=-=011111111n ----1,,1j n c c j n +=-=1211021(1)2(1)20001n n n n n n ------=----其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列.方法2 01110212n n n D n n --=--11,2,,111111112i i r r i n n n +-=----=--12,,1001201231j c c j n n n n +=---=---=12(1)2(1)n n n ----例2. 设a , b , c 是互异的实数, 证明:的充要条件是a + b + c =0.证明: 考察范德蒙行列式:=行列式即为y 2前的系数. 于是=所以的充要条件是a + b + c = 0.例3计算D n =121100010nn n x x a a a xa----+解: 方法1 递推法 按第1列展开,有D n = x D 1-n +(-1)1+n a n11111n x x x-----= x D 1-n + a n由于D 1= x + a 1,2211x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2D 2-n +a 1-n x + a n == x1-n D 1+ a 2x2-n + + a 1-n x + a n =111n n n n x a x a x a --++++方法2 第2列的x 倍,第3列的x 2倍, ,第n 列的x1-n 倍分别加到第1列上12c xc n D +=21121010010000n n n n x x x a xa a a xa-----++213c x c += 32121231010000100010n n n n n n x xx a xa x a a a a xa --------+++==111x fx---n r =按展开1(1)n f+-1111n x xx----=111n n n n x a x a x a --++++方法3 利用性质,将行列式化为上三角行列式.D n21321111n n c c x c c xc c x-+++=11220000000n n nnn n nx x x a a a a a a k xx x---+++n =按c 展开x1-n k n = x1-n (1-n n xa + 21--n n x a + +x a 2+a 1+x) =111n n n n a a x a x x --++++方法4n r nD =按展开1(1)n na +-10001001x x ---+21(1)n n a +--00001001x x --+ +212(1)n a --1000001x x --+21(1)()na x -+1000000x x x-=(-1)1+n (-1)1-n a n +(-1)2+n (-1)2-n a 1-n x + +(-1)12-n (-1)a 2x 2-n +(-1)n 2( a 1+x) x 1-n = 111n n n n a a x a x x --++++例4. 计算n 阶行列式:11212212nn n n na b a a a a b a D a a a b ++=+ (120n b b b ≠)解 采用升阶(或加边)法.该行列式的各行含有共同的元素12,,,n a a a ,可在保持原行列式值不变的情况下,增加一行一列,适当选择所增行(或列)的元素,使得下一步化简后出现大量的零元素.1211212212100n n n n n na a a ab a a D a a b a a a a b +=++升阶213111n r r r r r r +---=121211001001n na a ab b b --- 1112,,1j j c c b j n -+=+=11121112100000000n na a a a ab b b b b +++=1121(1)nn na ab b b b b +++这个题的特殊情形是121212nn n n a x a a a a x a D a a a x++=+=11()nn i i xx a -=+∑可作为公式记下来.例5.计算n 阶“三对角”行列式D n =001000101αβαβαβαβαβαβ++++解 方法1 递推法.D n1=按c 展开()αβ+D 1-n —(1)00001001n αβαβαβαβ-++1=按r 展开()αβ+D 1-n -αβD 2-n即有递推关系式 D n =()αβ+D 1-n -αβD 2-n (n ≥3) 故 1n n D D α--=12()n n D D βα---递推得到 1n n D D α--=12()n n D D βα---=223()n n D D βα---==221()n D D βα--而1()D αβ=+,2D =β+α1αββ+α=22ααββ++,代入得1n n n D D αβ--=1n n n D D αβ-=+ (2.1)由递推公式得1n n n D D αβ-=+=12()n n n D ααββ--++=α2D2-n +1n n αββ-+==nα+1n αβ-+ +1n n αββ-+=时=,当时,当--βαβα1)α(n αβαβ111≠⎪⎩⎪⎨⎧++++n n n方法2 把D n 按第1列拆成2个n 阶行列式D n =000100010001ααβαβαβαβαβ++++0010001000001βαβαβαβαβαβαβαβ+++上式右端第一个行列式等于αD 1-n ,而第二个行列式0010001000001βαβαβαβαβαβαβαβ+++12,,i i c ac i n--==00010000101ββββ=βn于是得递推公式1nn n D D αβ-=+,已与(2.1)式相同.方法3 在方法1中得递推公式D n =()αβ+D 1-n -αβD 2-n又因为当αβ+时 D 1=αβ+=βαβα--2221D αβαβαβ+=+=2()αβ+-αβ=22ααββ++=βαβα--33D 3=βααββααββα+++1010=3()αβ+-2αβ()αβ+ = ()αβ+22()αβ+=βαβα--44于是猜想11n n n D αβαβ++-=-,下面用数学归纳法证明.当n=1时,等式成立,假设当n ≤k 时成立. 当n=k+1是,由递推公式得D 1+k =()αβ+D k -αβD 1-k=()αβ+βαβα--++11k k —αββαβα--k k =βαβα--++22k k所以对于n ∈N +,等式都成立例6. 计算n 阶行列式:12111111111n na a D a++=+其中120n a a a ≠.解 这道题有多种解法. 方法1 化为上三角行列式nD 12,,i r r i n-==1121111n a a a a a +--112,,jj a c c a j n+==21100nb a a其中11211ni i b a a a ==++∑1111ni i a a =⎛⎫=+ ⎪⎝⎭∑,于是n D 12111nn i i a a a a =⎛⎫=+ ⎪⎝⎭∑.方法2 升阶(或加边)法121111011101110111n na D a a +=++升阶12,3,,1i r r i n -=+=121111101001na a a ---11111121,2,,1121111111j jni jc c a nn j n i i na a a a a a a a +=+=-=+⎛⎫==+⎪⎝⎭∑∑方法3 递推法.将n D 改写为1211101110111n na a D a ++++=+n =按c 拆开12111111111a a +++1211011011na a a ++由于12111111111a a ++1,,1i n r r i n -=-=12111a a 121n a a a -=1211011011na a a ++n =按c 展开1n n a D -因此n D =1n n a D -121n a a a -+为递推公式,而111D a =+,于是n D =1n n a D -121n a a a -+=12n a a a 11211n n n D a a a a --⎛⎫+ ⎪⎝⎭=12n a a a 2122111n n n n D a a a a a ---⎛⎫++ ⎪⎝⎭==12n a a a 11211n D a a a ⎛⎫+++⎪⎝⎭=12n a a a 121111n a a a ⎛⎫++++⎪⎝⎭Welcome To Download !!!欢迎您的下载,资料仅供参考!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数第一章 行列式典型例题一、利用行列式性质计算行列式 二、按行(列)展开公式求代数余子式已知行列式412343344615671122D ==-,试求4142A A +与4344A A +.三、利用多项式分解因式计算行列式1.计算221123122313151319x D x -=-。

2.设()x b c d b x cdf x b c x d b c dx=,则方程()0f x =有根_______.x = 四、抽象行列式的计算或证明1。

设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B + 2。

设A 为三阶方阵,*A 为A 的伴随矩阵,且1||2A =,试计算行列式1*(3)22.A A O O A -⎡⎤-⎢⎥⎣⎦3.设A 是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式||.A4。

设矩阵210120001A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,矩阵B 满足**2ABA BA E =+,则||_____.B = 5.设123,,ααα均为3维列向量,记矩阵123123123123(,,),(,24,39)A B αααααααααααα==+++++如果||1A =,那么||_____.B = 五、n 阶行列式的计算 六、利用特征值计算行列式1.若四阶矩阵A 与B 相似,矩阵A 的特征值为1111,,,2345,则行列式1||________.B E --=2。

设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E +第二章 矩阵典型例题一、求逆矩阵1。

设,,A B A B +都是可逆矩阵,求:111().A B ---+2。

设0002100053123004580034600A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,求1.A -二、讨论抽象矩阵的可逆性1.设n 阶矩阵A 满足关系式320A A A E +--=,证明A 可逆,并求1.A - 2。

已知322,22A E B A A E ==-+,证明B 可逆,并求出逆矩阵。

3.设T A E xy =+,其中,x y 均为n 维列向量,且2T x y =,求A 的逆矩阵。

4。

设,A B 为n 阶矩阵,且E AB -可逆,证明E BA -也可逆。

三、解矩阵方程1.设矩阵111111111A -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,矩阵X 满足*12A X A X -=+,求矩阵X 。

2。

已知矩阵100011110,101111110A B ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,且矩阵X 满足 AXA BXB AXB BXA E +=++,求X .四、利用伴随矩阵进行计算或证明 1。

证明下列等式(1)**()()T T A A =; (2)若||0A ≠,则1**1()()A A --=; (3)||0A ≠,则1**1[()][()]T T A A --=;(4) ||0A ≠,则*1*()(0,n kA k A k A n -=≠为阶矩阵);(5)若,A B 为同阶可逆矩阵,则***()AB B A =。

2.设矩阵33()ij A a ⨯=满足*T A A =,若111213,,a a a 为三个相等正数,则11_______.a = 五、关于初等矩阵和矩阵的秩(看教材)第三章 矩阵典型例题一、判断向量组的线性相关性 1.设12(,,,)(1,2,,;)T i i i in i r r n αααα==<是n 维实向量,且12,,,r ααα线性无关,已知12(,,,)T n b b b β=是线性方程组111122121122221122000n n n n r r rn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩的非零解向量,试判断向量组12,,,,r αααβ的线性相关性。

2。

设12,,,n ααα是n 个n 维的线性无关向量,11122n n n k k k αααα+=+++,其中12,,,n k k k 全不为零,证明121,,,n ααα+中任意n 个向量均无关.3.设A 为43⨯矩阵,B 为33⨯矩阵,且0AB =,其中111121230012A -⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥--⎣⎦,证明B 的列向量组线性相关。

4。

设121,,,n ααα-为1n -个线性无关的n 维列向量,1ξ和2ξ是与121,,,n ααα-均正交的n 维非零列向量,证明(1)1ξ、2ξ线性相关;(2)121,,,n ααα-,1ξ线性相关。

二、把一个向量用一组向量线性表示证明线性方程组111122121122221122000n n n n m m mn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩的解都是11220n n b x b x b x +++=的解的充要条件是β是12,,,m ααα的线性组合,其中12(,,,)n b b b β=,12(,,,)(1,2,,)i i i in i m αααα==。

三、求向量组的秩1.给定一个向量组,求其一个极大线性无关组,并将其余向量用该极大无关组线性表示.2.已知向量组(1)123,,ααα;(2)1234,,,αααα;(3)1235,,,αααα.如果各向量组的秩分别是3、3、4,证明:向量组12354,,,ααααα-的秩为4。

四、有关矩阵秩的命题1.设A 为m n ⨯实矩阵,证明:()().T R A R A A =2。

设A 为n 阶方阵,且满足22A A E =+,证明:(2)()R A E R A E n -++=。

综合题1。

设A 为m n ⨯矩阵,B 为()n n m ⨯-矩阵,且已知0AB =,(),()R A m R B n m ==-,设α是满足0Ax =的一个n 维向量,证明:存在唯一的一个()n m -维列向量β,使B αβ=.2。

已知随机变量01~0.250.75X ⎡⎤⎢⎥⎣⎦,{}0.51P Y =-=,又n 维向量123,,ααα线性无关,求向量122331,2,X Y αααααα+++线性相关的概率。

第四章 线性方程组典型例题一、基本概念题(解的判定、性质、结构) 二、含有参数的线性方程组的求解 三、抽象线性方程组求解1.已知线性方程组:1111221,222112222,221122,2200()0n n n n n n n n n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪I ⎨⎪⎪+++=⎩的一个基础解系为11121,221222,212,2(,,,),(,,,),,(,,,).T T T n n n n n n b b b b b b b b b 试写出线性方程组:1111221,222112222,221122,2200()0n n n n n n n n n b y b y b y b y b y b y b y b x b y +++=⎧⎪+++=⎪II ⎨⎪⎪+++=⎩的通解,并说明理由。

2。

已知4阶方阵12341234(,,,),,,,A αααααααα=均为4维列向量,其中234,,ααα线性无关,1232ααα=-,如果1234βαααα=+++,求线性方程组Ax β=的通解。

四、讨论两个方程组的公共解1。

设线性方程组123123212302040x x x x x ax x x a x ++=⎧⎪++=⎨⎪++=⎩与方程12321x x x a ++=-有公共解,求a 的值及所有公共解。

2。

已知下列非齐次线性方程组124123412326()4133x x x x x x x x x x +-=-⎧⎪I ---=⎨⎪--=⎩,1234234345()21121x mx x x nx x x x x t +--=-⎧⎪II --=-⎨⎪-=-+⎩(1)求解方程组()I ,用其导出组的基础解系表示通解;(2)当方程组()II 中的参数,,m n t 为何值时,方程组()I 与()II 同解。

3.设,A B 都是n 阶级矩阵,且()()r A r B n +<,证明齐次方程组0Ax =与0Bx =有非零公共解.五、讨论两个方程组解之间的关系 1。

0Ax =与0T A Ax =的解的关系。

2。

设有齐次线性方程组0Ax =与0Bx =,其中,A B 都是m n ⨯矩阵,现有4个命题:①若0Ax =的解均是0Bx =的解,则()()r A r B ≥; ②若()()r A r B ≥,则0Ax =的解均是0Bx =的解; ③若0Ax =与0Bx =同解,则()()r A r B =; ④若()()r A r B =,则0Ax =与0Bx =同解。

以上命题中正确的是:(A) ①② (B ) ①③ (C) ②④ (D ) ③④ 六、已知方程组的解,反求系数矩阵或系数矩阵中的参数1。

设121201101A t t t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,且方程组0Ax =的基础解系含有2个线性无关的解向量,求0Ax =的通解.2.设12112010131,1,11101A b a c η⎡⎤⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-⎣⎦,如果η是Ax b =的一个解,试求Ax b =的通解。

七、有关基础解系的讨论1。

设12,,,s ααα为线性方程组0Ax =的一个基础解系,1112221223121,,,s s t t t t t t βααβααβαα=+=+=+其中12,t t 为实常数,试问12,t t 满足什么关系时,12,,,s βββ也为0Ax =的一个基础解系?2.若矩阵A 的秩为r ,其r 个列向量为某一齐次线性方程组的一个基础解系,B 为r 阶非奇异矩阵,证明:AB 的r 个列向量也是该齐次线性方程组的一个基础解系.3.设*ξ是非齐次线性方程组Ax b =的一个解,12,,,n r ηηη-是其导出组的一个基础解系,证明: (1)*12,,,,n r ξηηη-线性无关;(2)****12,,,,n r ξξηξηξη-+++是方程组Ax b =的1n r -+个线性无关的解;(3)方程组Ax b =的任一解x ,都可以表示为这1n r -+个解的线性组合,而且组合系数之和为1。

八、有关0AB =的应用1.已知方阵12221311A λ-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,三阶方阵0B ≠满足0AB =,试求λ的值。

相关文档
最新文档