数学文化与数学史问题详解

合集下载

尔雅公开课数学文化问题详解

尔雅公开课数学文化问题详解

数学文化(一)1 2002年,为中国少年数学论坛活动题词“数学好玩”的是()。

A、邓东皋B、钱学森C、齐民友D、陈省身正确答案: D2“数学文化”一词最早进入官方文件,是出现在中华人民共和国教育部颁布的()。

A、《小学数学课程标准》B、《初中数学课程标准》C、《高中数学课程标准》D、《大学数学课程标准》正确答案: C3数学的研究对象是从众多物质形态种抽象出来的人脑的产物,这是它与其他自然科学研究的一个共同点。

()正确答案:×4广义的数学文化,是指数学的思想、精神、方法、观点、语言,以及他们的形成和发展。

正确答案:×数学文化(二)1 1998年以后,教育部的专业目录里规定了数学学科专业,包括数学与应用数学专业、A、统计学B、数理统计学C、信息与计算科学专业D、数学史与数学文化正确答案: C2数学目前仅仅是一种重要的工具,要上升至思维模式的高度,还需学者们的探索。

()正确答案:×3数学素养的通俗说法,是指在经过数学学习后,将所学的数学知识都排除或忘掉后,剩下的东西。

()正确答案:√数学文化(三)1“数学文化”课是以数学问题为载体,以教授数学系统知识及其应用为目的。

()正确答案:×2反证法是解决数学难题的一种有效方法。

()正确答案:√数学文化(四)1“哥尼斯堡七桥问题”最后是被谁解决的?A、阿基米德B、欧拉C、高斯D、笛卡尔正确答案: B2在解决“哥尼斯堡七桥问题”时,数学家先做的第一步是()。

A、分析B、概括C、推理D、抽象正确答案: D3数学是研究现实世界中的数量关系与空间形式的一门科学。

这句话出自()。

A、阿基米德B、欧拉C、恩格斯D、马克思正确答案: C4从牛顿的著作《自然哲学之数学原理》可以看出,他是不支持数学定义中的“哲学说”的()正确答案:×5罗素关于数学概念的描述,是从数学的公理体系角度而言的。

()正确答案:√数学文化(六)1一堆20粒的谷粒,甲乙两个人轮流抓,每次可以抓一粒到五粒,规定谁抓到最后一把谁赢。

数学史与数学文化知识点

数学史与数学文化知识点

数学史与数学文化知识点数学史数学作为一门古老而重要的学科,在人类文明的发展中扮演着重要角色。

了解数学史不仅可以帮助我们更好地理解数学的发展和演变,还可以培养我们的数学思维和创造力。

本文将介绍一些关键的数学史事件和数学文化知识点,帮助读者更好地了解数学的历史和背景。

1. 古代数学文化古代数学文化是数学史上的重要组成部分。

古埃及人和古希腊人是古代数学发展的两个重要文化群体。

古埃及人发展了一种基于几何形状和比例的数学系统,他们的数学知识主要应用于土地测量、建筑和天文学等领域。

古希腊人则以数学为哲学基础,开创了几何学和数学证明的范式。

毕达哥拉斯定理和欧几里得的《几何原本》是古希腊数学的重要成果。

2. 阿拉伯数学文化阿拉伯数学文化是中世纪数学史上的重要里程碑。

在中世纪,阿拉伯世界成为数学知识的中心。

阿拉伯学者通过翻译和批注古希腊和古埃及的数学文献,将其传播到欧洲,并在此基础上进行了许多重要的创新。

他们引入了阿拉伯数字系统、十进制计数法和代数学的概念,这些数学概念至今仍然广泛应用于现代数学。

3. 文艺复兴时期的数学文艺复兴时期是数学史上的又一个高潮时期。

在这一时期,欧洲的数学家们恢复了对古希腊数学文献的研究,并对数学的发展做出了重要贡献。

莱布尼茨和牛顿的微积分学、笛卡尔的解析几何学以及费马的数论等都是文艺复兴时期数学的重要成就。

这些成就不仅为数学打下了坚实的基础,还对物理学和工程学的发展产生了深远影响。

4. 现代数学的发展现代数学是指从19世纪开始的数学发展阶段。

这一时期的数学家们通过对数学基础和基本概念的重新思考,推动了数学的大革命。

在这一时期,数学的抽象性和形式化程度显著增强,新的数学分支如复分析、拓扑学和群论等相继涌现。

现代数学的发展使得数学成为一个自成体系的学科,也使得数学在现实世界中的应用更加广泛和深入。

结语数学史的了解对于培养我们的数学兴趣和思维能力至关重要。

通过了解古代数学文化、阿拉伯数学文化、文艺复兴时期数学和现代数学的发展,我们可以更好地理解数学学科的历史沿革和重要概念的起源。

sx1212高中课程标准中的数学史选修课与数学文化

sx1212高中课程标准中的数学史选修课与数学文化

专题12 高中课程标准中的数学史选修课与数学文化我们为什么关注这样一个话题?新的高中数学课程标准设置了数学史选修课和数学文化模块。

作为数学教师的基本素养。

国际趋势。

数学史融入数学课程;数学教育与人文教育的结合,数学教育的人文价值。

当今数学教育研究中的热点问题。

第一部分高中数学史选讲及其相关问题一、对高中数学史选修课的基本看法高中数学史选修课应该主要是一门数学课,而不是历史课。

它的目标和重点应该在很大程度上围绕高中数学课程的目标和重点,同时兼顾义务教育阶段已经涉及的一些重要数学内容。

在知识性问题上不应要求过高,重在突出数学思想方法,突出启发性和引导性,激发学生的兴趣和思考。

由于只有18课时,不可能系统讲授。

又由于这门选修课是为在数学方面具有一定实力和足够兴趣的学生开设的,因此在内容选取上要精心考虑。

教材要有足够的引导性和相当程度的开放性。

为使课程有适当的容量,适当的扩展阅读是非常必要的。

我设想了两种模式:讲授为主的模式,引导为主的模式。

无论哪种模式,它们都一方面对教师的数学专业素养和数学史素养提出了较高的要求,另一方面也对配套的课程资源提出了要求,如教师参考用书,学生课外读物,电子音像资料,多媒体教学课件等。

数学史与数学文化的结合应该是必要的,而且几乎是必然的。

对此,课程标准在教学要求和选题上已经有明确的考虑,例如,“数学文化”模块中有一半左右的推荐选题与数学史有直接关系。

二、课程标准中的相关内容系列3、系列4说明(数学史选讲属于系列3)系列3,系列4所涉及的内容都是基础性的数学内容,不仅应鼓励那些希望在理工、经济等方面发展的学生积极选修,同时也应鼓励那些希望在人文、社会科学方面发展的学生选修这些课程。

这些专题的学习有利于学生的终身发展,有利于扩展学生的数学视野,有利于提高学生对数学的科学价值、应用价值、文化价值的认识,有助于学生进一步打好数学基础,提高应用意识。

数学史选讲,内容与要求通过生动、丰富的事例,了解数学发展过程中若干重要事件、重要人物与重要成果,初步了解数学产生与发展的过程,体会数学对人类文明发展的作用,提高学习数学的兴趣,加深对数学的理解,感受数学家的严谨态度和锲而不舍的探索精神。

数学史与数学文化浅谈

数学史与数学文化浅谈

数学史与数学文化浅谈数学是人类的一门重要学科,它具有深厚的历史积淀和独特的文化内涵。

数学史是研究数学学科发展的历史过程和对数学家及其成就的考证、记述与评价,数学文化则是通过对数学活动与思维方式的分析,揭示数学思想与人文精神的互动关系。

本文将浅谈数学史与数学文化的关系和意义。

数学史是人类文明发展的重要组成部分,它的研究不仅可以帮助我们了解数学本身的发展历程,还可以揭示人类文明的脉络和演变过程。

在早期的人类社会,人们通过观察自然现象和解决实际问题,逐渐产生了一些初步的数学概念和方法。

比如,早在古埃及和古巴比伦时期,人们就使用了基本的算术运算,掌握了简单的几何知识。

而在古希腊时代,数学开始成为一门独立的学科,并产生了许多伟大的数学家和数学成果,如毕达哥拉斯定理、欧几里得几何、无理数等。

这些数学成果不仅对后来的数学发展起到了重要的推动作用,而且成为了人类文明的重要标志。

数学史的研究可以让我们了解到数学的发展是一个渐进的过程,数学科学从最初的实用和几何,到代数、分析以及现代数学等不同的分支逐渐发展演化。

数学的发展离不开数学家们的努力与创造,数学史的研究也可以帮助我们了解到许多伟大的数学家和数学思想。

例如,古希腊数学家阿基米德的数学成就不仅在数学史上有重要地位,而且对现代科学和技术的发展也起到了巨大的影响。

另外,数学史的研究还可以帮助我们认识到数学的普适性和客观性。

虽然数学的发展是在不同的历史阶段和文化背景下进行的,但是数学的基本理论和原则是普遍适用的,不受时间和空间的限制。

数学文化是数学与人文精神的有机结合,它涉及到数学的应用、教育、美学等方面的问题。

数学文化的研究可以帮助我们认识到数学作为一门学科具有的广泛影响和重要地位。

首先,数学是一门普遍存在于人类社会的学科,它是人类文化的一部分。

数学的发展与人类的思维方式、认知能力、审美观念等密切相关,通过对数学文化的研究,我们可以了解到数学如何影响和反映着人们的思维方式和文化传统。

高考数学复习热点02 数学传统文化和实际民生为载体的创新题(解析版)

高考数学复习热点02  数学传统文化和实际民生为载体的创新题(解析版)

热点02 数学传统文化和实际民生为载体的创新题【命题形式】1、考查题型主要是选择题和填空题,计算题和证明题比较少,涉及到的知识点主要集中在函数、数列、立体几何证明与计算、复数、组合、三角函数、概率、推理、圆锥曲线。

2、数学文化考查背景总结如下:①以数学名著为考查背景,以中国数学典籍史料中优秀成果为背景。

②以数学猜想和定理为命题背景。

③以数学名家的故事为命题背景,以数学家的故事,为考查背景,正是对创新精神数学精神的一种传承。

④以数学的应用为命题背景。

⑤历史名人。

⑥历史发展。

3、文化背景的考查在突出所要考查的数学知识的同时,培养学生的数学素养,不仅可以让学生理解数学文化形成数学素养,同时也让学生感受我们古代数学的伟大成就,增强爱国情怀,引导学生了解数学文化体现数学文化以数化人的本质内涵。

这是新高考考察的目的,从而这类问题也是新高考必考题型。

4、数学高考题渗透了大量的数学文化,尤其是渗透到中国古代独特的数学题目。

但这些题目考查的知识点有限,很多内容并未涉及到。

我们现在的社会在飞速发展,无论是科技还是人的思想都不断地变化。

为了让学生能够更好地适应未来社会的发展,我们的教育需要及时更新,不仅仅要反映在教材,考试也应该与时俱进,而不再是摸小球,投骰子,算水费这些老古董的模型背景,更应该与时俱进。

比如以科技为背景文化材料都可以作为激发学生学习兴趣的新材料。

像2020年12月2日嫦娥五号成功降落在月球上,它里面所涉及的轨道、运动都能成为很好的考查背景材料,而这些发射卫星的基地名称也可以作为命题背景的一大亮眼之处。

除次以外,同样可以结合其他学科知识和实际民生,比如新冠肺炎这些热点问题也可以成为出题的背景,进入数学高考题。

【满分技巧】1、多掌握数学文化知识通过对数学文化知识了解使学生对文化素养的提升,做题时能够做到有的放矢,减少对这类问题的恐惧心理。

2、注意数学文化的译文很多数学文化的题型都是选用的是中国传统数学文化,题目前面都是以文言文的形式出现,而后面都会对给出译文,译文才是本题的关键题意,所以这类题的关键地方是在译文上理解。

《数学课程标准》中的数学史及数学文化

《数学课程标准》中的数学史及数学文化
意见稿 ) 中也指 出要 适 当地 向学生 介绍所 学数学 知 》 识 的历 史 背景 。 ] [ 3
例呈现数学 发展历 史 中 的一些 过 程 , 使学 生体 会 数
学 的重要思 想和发 展轨 迹 , 而使 学 生感 到数 学不 从
数 学 史 在 数 学 教 育 中 的作 用 近 年 来 也 常 有论 述 , 括起来 主要 指对 学 生学 习数学 的 作 用和 对学 概 生素 质能力 培养 的作 用 。对 前 者 , 课 标 》 新《 中讲 了
王青建 , 陈洪 鹏
( 宁师 范大 学 数 学学 院 ,辽 宁 大连 1 6 2 ) 辽 1 0 9
摘 要: 阐述 新 的《 学 课 程 标 准 》 数 中数 学史 及 数 学 文 化 内容 的设 置 , 析 其 产生 背 景 、 分 相应 教 材 的 构 成 及 问 题 。 对 有 关 教 学 并
数学 史进入 中学《 课标 》 是数 学史界 和数学 教育
界 多年共 同努力 的结果 。早在 1 8 年 7月 , 96 中国高 等 学校 的数学史工 作者就 在江苏徐 州《 九章 》 习 双 讲
班 上成立 了“ 高校 数 学史 研究 会 筹 委会 ” 目的之 一 , 就 是使高 等学校数 学 史 教学 在 形成 一定 规 模 后 , 促
结 报告 , 数学发展 的历史 轨迹 , 对 自己感兴趣 的历史 事件与人 物 , 出 自己的研 究报告 。 由此可见 , 写 高中
阶段并不要 求学生 系 统学 习数 学 史 , 而是 通过 学 生
容易理解 的 内容 、 生动 活 泼 的语 言 和喜 闻乐 见 的事
20 0 0年 教育部 《 务教 育 阶 段数 学 课 程 标 准 ( 义 征求

数学中的数学史与数学文化

数学中的数学史与数学文化

数学中的数学史与数学文化数学作为一门科学,拥有悠久的历史和丰富的文化内涵。

在数学中,数学史和数学文化是两个重要的方面,它们相互交融,共同构成了数学的发展和独特魅力。

本文将从数学史和数学文化的角度,探讨数学在历史中的发展轨迹以及对于当代社会的影响。

一、数学史1. 古代数学的起源和发展古代数学的起源可以追溯到古埃及和古巴比伦时代。

这些文明古国的数学发展对于数学史有着重要的影响。

埃及人发展了计算面积和体积的方法,并应用于建筑和土地测量。

巴比伦人则为世界数学史上的一个重要里程碑,他们发明了60进制的计数系统,并提出了代数和几何的问题。

2. 古希腊数学的辉煌时期古希腊以其杰出的数学家而闻名于世。

毕达哥拉斯、欧几里得、阿基米德等数学家在几何学、数论、解析学等方面做出了许多突出的贡献。

欧几里得的《几何原本》被誉为几何学的经典之作,对后世产生了深远的影响。

3. 中世纪数学的发展与变革中世纪欧洲的数学发展在某种程度上受到了宗教和哲学思想的限制。

然而,在阿拉伯世界和印度的影响下,阿拉伯数字和代数学得到了推广和应用。

同时,欧洲的数学家们开始从几何向代数的转变,并逐渐建立了现代数学的基础。

4. 近代数学的革命与创新在近代科学革命的推动下,数学经历了一系列重大的突破和创新。

牛顿和莱布尼茨的微积分发现引发了一场数学革命,为理论物理学的发展奠定了基础。

同时,统计学、概率论、数理逻辑等新的数学分支也相继涌现,推动了数学的多元发展。

5. 当代数学的新起与前沿当代数学的发展进入了新的时代。

数学的前沿领域包括数学物理学、计算数学、拓扑学等。

数学的应用领域也正在不断扩展,如金融数学、密码学、数据科学等。

当代数学正日益成为社会发展的重要力量,展示着其无限的潜力。

二、数学文化1. 数学的哲学与思维方式数学作为一门科学,不仅仅是一种工具或技术,更代表着一种独特的哲学和思维方式。

数学所强调的严密性、逻辑性和推理能力等都对人类思维产生了积极影响,培养了人们的逻辑思维和分析问题的能力。

数学文化题目及解答

数学文化题目及解答

数学文化题目及解答数学文化题目及解答(一)1、毕达哥拉斯学派发现第一个不能被整数比的数是根号二2、数学是研究现实世界中的数量关系和空间形式:恩格斯3、四色猜想的提出者:英国人古德里4、不属于数学起源的河谷地带:密西西比河5、平面图形对称中用到的三种运动:平移折叠旋转7、现代数学起源于:19世纪20年8、相容的体系一定是不完全的,得出这个结论的是:哥德尔第一定理9、高等数学的研究范围不包括:常量10、反证法是依据逻辑学中的:排中律11、被称为理发师悖论的悖论是:罗素悖论12:、上海路佳明发现的元朝玉桂:1986年13、1993年,经哥德尔证明,把“连续统假设”加紧急合论的zf 系统中是相容的,不会导致矛盾:康托集合论14、被积函数不连续,其定积分也可能存在的理论的提出者:黎曼15、根据两个事物之间的相同或相拟之处,推知她们在其他方面也有可能相同或相拟的推理方法:类比16、极限理论的创立者:柯西18、.下列不属于黄金分割点的是(C)A.印堂 B. 膝盖 C.鼻子D都不对19、5个平面分空间,最多可分为(C)A22 B25 C26 D2820、.S(N)中任意两个元素,相继作用的结果仍保持N整体不变,仍在S(N)中,称之为S(N)中的运算满足(B)A幺元律B封闭率C结合律D都不对21、南开大学每年出的杂志,收录数学文化课的学生优秀读书报告:数学之美22、下列公式中不对称的是(A)A.勾股定理B海伦定理C正玄定理D都不对23、为了庆祝毕达哥拉斯定理的发现,当时的毕达哥拉斯学派宰了什么:牛24、《几何学》的作者是:笛卡尔25、直角三角形的两直角边的平方和等于斜边的平方这一定理在西方叫做毕达哥拉斯定理26、1820-1870年是现代数学的(C)A.形成阶段 B.繁荣阶段 C.酝酿阶段 D.衰落阶段27、下列不属于形式的公理化方法在逻辑上所要满足的要求的是:客观性28、数学文化这个词最早出现于(C)A.1986 B. 1974 C.1990 D.199629、大多数植物的花瓣数都符合(C)A.黄金分割 B.素数分割C裴波那契数列 D.都不对1、保持平面上任意两点间距离不变的运动是保距变换:对2、父女关系与夫妻关系是一种对称关系:不是,错3、之有数学专业的人在需要数学素养:错4、不懂数学的人也可以搞社会学:错5、数学的研究对象和具体的自然科学的研究对象很不一样,具有、、、:对6、近代数学时期是公元17世纪到19世纪,和工业革命、天文、航天业的发展有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这两种情况都和P是最大素数矛盾。所以假设错误,所以素数是无限
27.如图所示,ADBC是球O被纸面所截得的大圆,AB和CD是其相互垂直的两条直径。XVWY是球O的外切圆柱(以AB为轴)的相应截面。阿基米德通过力学方法发现:球O的体积等于直径为CD且垂直于纸面的大圆为底、以B为顶点的圆锥BCD的体积的4倍。试介绍阿基米德的方法。
4.“埃及几何学中的珍宝”是什么?
正四棱台体积公式:
Lecture3古代数学(II):美索不达米亚
3.研究古巴比伦时期的泥版BM15285。设想你是一位祭司,你会提出什么数学问题?
5古代巴比伦人是如何求平方根近似值的?
7.美国哥伦比亚大学收藏的Plimpton 322号巴比伦泥版的容是什么?
泥版上有15行、4列数字,原来人们还以为是一份帐目。但是,奥地利著名数学史家诺伊格鲍尔(O. Neugebauer, 1899~1990)经过研究惊奇地发现:第3列数与第2列数的平方差竟都是平方数(少数行不满足这一规律,但显然是抄写错误所致)!例如(见下表,表中数字均为60进制):
徽:提出从立方体割出牟合方盖之后所余的“外棋”着手。但是外棋的复杂难倒了徽。
祖暅:对边长为D的正方体及其牟合方盖的八分之一进行考察如右图并将其分解为一个棋和三个外棋
祖暅公理:用平行于底面的平面去截两个等高的立体,如果所得的两个截面面积处处相等,则这两个立体的体积就相等。
13.在直角三角形中,勾、股、弦分别为a、b、c,已知勾弦差(c-a)和股弦差(c-b),
41.在约瑟夫问题中,若设排成一圈的人数为n,并且从1号开始按顺时针方向点数,每点
到2,第2号被扔进大海。记最后剩下的一个人位于第J(n)号。试给出J(n)与n的一般关系式,并计算J(100)和J(500)。
Lecture7文艺复兴时期的欧洲数学
29.给出三次方程x3+px=q的求根公式。
试用中国古代的方法来证明下面一组公式:


则有:
14.简要介绍徽的割圆术。(要求写出相关公式)
圆接正多边形边长递推公式:
Lecture 5古希腊数学
21描述希皮亚斯(Hippias,公元前5世纪)的割圆曲线,并用利用它来三等分角。
17.用欧几里得的方法证明勾股定理。
23.用欧几里得的方法证明命题:“素数无限多”。
对于教师来讲,要使个体知识的发生遵循人类知识的发生过程,那么数学史就成为了数学教学的有效工具。将数学史作为一种资源运用到教学中,给教学提供一种新的视角,发挥其启发和借鉴的作用,并丰富课堂教学,使教学活动变得自然而有趣。这对数学教育改革也具有极其重要的意义。
Lecture2古代数学(I):埃及
3.Rhind纸草书问题79是一个等比数列求和问题,介绍其中蕴涵的等比数数列求和方法。
, ,等等这就表明,它是一勾股数表。
英国著名数学家齐曼(C. Zeeman, 1925~)指出,如果巴比伦人使用了勾股数一般公式
, ,
那么,满足 , 且 ( 是勾 所对的角)为有限小数的勾股数只有16组。而Plimpton 322号泥版给出了其中的15组!其水平之高,令人惊叹不已。
6古巴比伦时期的泥版Str.362上记载了如下问题:“十兄弟分银 迈纳,每个兄弟均比相邻的弟弟多得若干,已知老八分得6斤(1迈纳=60斤)。问:各兄弟比相邻的弟弟多得几何?”泥版上给出的解法是:“取十兄弟所得平均数10斤,倍之,得20斤;减去老八所得的两倍即12斤,得8斤。于是,公差为8/5斤。”用我们今天的代数符号来表达这一解法,并写出一般公式。
Lecture4古代数学(III):中国
14用出入相补原理证明勾股定理。
16介绍西汉时期的“日高公式”。南宋数学家辉是如何推导这个公式的?
日高公式:
辉推导日高公式:
根据上面的原理我们可得:(其中d为两个杆子的距离)
19试述徽和祖暅的球体积工作。
正方形与其切圆的面积之比都是:
由“截面原理”可得:
于是我们只要求出牟合方盖的体积即可求出球的体积。
《数学文化与数学史》复习
Lecture0为什么要开设数学史
1.介绍文艺复兴时期意大利艺术大师达·芬奇(L.DaVinci, 1452~1519)和19世纪英国业余数学家伯里加尔(H.Perigal, 1801~1898)证明勾股定理的方法。
达·芬奇
H. Perigal的水车翼轮法
2.谈谈你对数学史教育价值的认识。
答:假设素数个数有限,则必有一个最大的设最大的素数是P
令n=2*3*5*7*……*P+1,即把所有的素数相乘并加上1,显然n>P
若因为P是最大素数,所以n是合数,则n能被2,3,……,P中至少一个素数整除,但用这些数去除n,都有余数1,即都不能整除
这就有两种可能
(1)n是素数(2)n是合数,但他只能被大于P的素数整除
20.利用托勒密定理推导和角正弦公式。
22.证明海伦三角形面积公式。
Lecture6中世纪数学
23.叙述中国剩余定理。
37阿拉伯数学家阿尔·卡克希(Al-Karkhi, 953-1029)是如何推导自然Hale Waihona Puke 三次幂和公式的?如下图所示:
39斐波纳契《计算之书》中有如下问题:“棋盘(64格)上的数列满足:任意一项等于它前面所有各项和的两倍。已知首项为1,求棋盘上数列各项之和。”试用今天的方法求解。
一门学科一座桥梁一条进路一种资源一组专题
对学生来讲,通过对数学史的学习,有利于学生对数学知识的掌握和数学能力的提高,它不仅使学生获得了一种历史感,而且,通过从新的角度看数学学科,他们将对数学产生更敏锐的理解力和鉴赏力,有利于学生对数学的思考,促进学生的数学理解,启发学生的人格成长,有利于激发学生的情感、兴趣和良好的学习态度,有利于辩证唯物主义世界观的形成,有利于学生了解数学的应用价值和文化价值。
相关文档
最新文档