高中数学必修4平面向量测试试卷典型例题(含详细答案)

合集下载

(好题)高中数学必修四第二章《平面向量》检测卷(答案解析)

(好题)高中数学必修四第二章《平面向量》检测卷(答案解析)

一、选择题1.已知向量a 、b 满足||||2a b a b ==⋅=,若,,1x y R x y ∈+=,则1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值为( )A .1B .3C .7D .32.在ABC ∆中,2AB =,3AC =,5cos 6A =,若O 为ABC ∆的外心(即三角形外接圆的圆心),且AO mAB nAC +=,则2n m -=( ) A .199B .4122-C .111-D .17113.已知1a =,2b =,则a b a b ++-的最大值等于( ) A .4B .37+C .25D .54.已知正方形ABCD 的边长为2,EF 为该正方形内切圆的直径,P 在ABCD 的四边上运动,则PE PF ⋅的最大值为( ) A .2B .1C .2D .225.如图,在梯形ABCD 中,//AB CD ,6AB =,3AD CD ==,E 是CD 的中点,14DF DA =,若12AE BF ⋅=-,则梯形ABCD 的高为( )A .1B .6C .5D .26.如图,在平行四边形ABCD 中,点E F 、满足2,2BE EC CF FD ==,EF 与AC 交于点G ,设AG GC λ=,则λ=( )A .97B .74C .72D .927.ABC 是边长为1的等边三角形,CD 为边AB 的高,点P 在射线CD 上,则AP CP ⋅的最小值为( )A .18-B .116-C .316-D .08.在边长为2的正方形ABCD 中,E ,F 分别为BC 和DC 的中点,则AE AF ⋅=( )A .52B .52-C .4D .4-9.已知向量(cos ,sin )a θθ=,向量(3,1)b =-,则2a b -的最大值,最小值分别是( ) A .42,0 B .4,42C .16,0D .4,010.直线0ax by c与圆22:4O x y +=相交于M ,N 两点,若222c a b =+,P 为圆O 上任意一点,则PM PN ⋅的取值范围为( ) A .[2,6]-B .[]2,4-C .[]1,4D .[1,4]-11.在△ABC 中,点D 在线段BC 的延长线上,且3BC CD =,点O 在线段CD 上(与点C ,D 不重合),若()1AO xAB x AC =+-,则x 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,3⎛⎫ ⎪⎝⎭C .1,02⎛⎫-⎪⎝⎭ D .1,03⎛⎫- ⎪⎝⎭12.已知向量a 、b 、c 满足0a b c ++=,且a b c <<,则a b ⋅、b c ⋅、a c ⋅中最小的值是( ) A .a b ⋅B .a c ⋅C .b c ⋅D .不能确定二、填空题13.如图,在ABC 中,D 是BC 的中点,E 在边AB 上,且2BE EA =,若3AB AC AD EC ⋅=⋅,则ABAC的值为___________.14.如图,已知ABC 为边长为2的等边三角形,动点P 在以BC 为直径的半圆上,若AP AB AC λμ=+,则2λμ+的最小值为_______.15.已知正方形ABCD 的边长为4,若3BP PD =,则PA PB ⋅的值为_________________. 16.已知0a b c ++=,3a =,4b =,5c =,则a b b c c a ⋅+⋅+⋅=______; 17.已知3a =,2b =,()()2318a b a b +⋅-=-,则a 与b 的夹角为________. 18.如图,在ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点5BA CA ⋅=,2BF CF ⋅=-,则BE CE ⋅的值是________.19.已知a →,b →为单位向量,2c a b →→→=-,且,3a b π→→<>=,则,a c →→〈〉=________.20.已知向量(1,3)a =,1(2,)2b =-,若单位向量c 与2a b -平行,则c =___________.三、解答题21.平面内给定三个向量(3,2),(1,2),(4,1)a b c ==-=. (1)求32a b c +-;(2)求满足a mb nc =+的实数m 和n ; (3)若()(2)a kc b a +⊥-,求实数k . 22.已知()3,0a =,(1,3)b =. (Ⅰ)求a b ⋅和b 的值;(Ⅱ)当()k k ∈R 为何值时,向量a 与k +a b 互相垂直?23.已知平面直角坐标系中,点 O 为原点,()()3,1,1,2A B - . (I)求AB 的坐标及AB ;(Ⅱ)设 e 为单位向量,且 e OB ⊥,求e 的坐标 24.已知4,3,(23)(2)61a b a b a b ==-⋅+=. (1)求a 与b 的夹角为θ; (2)求a b +;(3)若AB =a ,BC =b ,求△ABC 的面积.25.(1)已知向量()1,3a =,(),2b m =,()3,4c =,且()3a b c -⊥,求实数m 的值;(2)已知(3,2)a =,(2,1)b =-,若a b λ+与a b λ+平行,求实数λ的值 26.如图,在梯形ABCD 中,E 为DC 的中点,//,,2AD BC BAD π∠=,3BDA BC BD π∠==.(1)求AE BD ⋅;(2)求AC 与BD 夹角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用已知条件求出向量a 、b 的夹角,建立直角坐标系把所求问题转化为解析几何问题. 【详解】设a 、b 所成角为θ, 由||||2==a b ,2a b,则1cos 2θ=,因为0θπ≤≤ 所以3πθ=,记a OA =,b OB =,以OA 所在的直线为x 轴,以过O 点垂直于OA 的直线为y 轴, 建立平面直角坐标系,则()2,0A ,(B ,所以()2,0a OA ==,(1,b OB ==,()(1)2x a xb x -+=-,所以((1)2x a xb x -+=-=,表示点()P x 与点()2,0A 两点间的距离, 由,,1x y R x y ∈+=113222ya y b y x ⎛⎫⎛⎛⎫+-=+=-- ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭, 所以1322ya y b x ⎛⎫⎛+-=- ⎪ ⎝⎭,表示点()P x 与点32Q ⎛ ⎝⎭两点间的距离, ∴1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值转化为P 到,A Q 两点的距离和最小,()P x 在直线y =上,()2,0A 关于直线y =的对称点为(R -,PQ PA ∴+的最小值为QR == 故选:C 【点睛】关键点点睛:本题考查了向量模的坐标运算以及模转化为两点之间距离的转化思想,解题的关键是将向量的模转化为点()P x 到()2,0A 、32Q ⎛⎝⎭两点间的距离,考查了运算求解能力.2.D解析:D 【分析】设,D E 分别为,AB AC 的中点,连接,OD OE ,则OD AB ⊥,OE AC ⊥,从而得到·0?0OD AB OE AC ==,,坐标化构建m ,n 的方程组,解之即可. 【详解】设,D E 分别为,AB AC 的中点,连接,OD OE ,则OD AB ⊥,OE AC ⊥,又OD AD AO =-,即11222m OD AB mAB nAC AB nAC -=--=-, 同理122nOE AE AO AC mAB -=-=-, 因为212·||?02mOD AB AB nAB AC -=-=, 所以124502m n -⨯-=,又212·||?02nOE AC AC mAB AC -=-=, 所以129502nm -⨯-=,联立方程组124502129502mn n m -⎧⨯-=⎪⎪⎨-⎪⨯-=⎪⎩,解得922811m n ⎧=-⎪⎪⎨⎪=⎪⎩,所以17211n m -=. 故选D 【点睛】本题考查了数量积运算性质、向量垂直与数量积的关系、三角形外心的性质、向量基本定理,考查了推理能力与计算能力,属于中档题.3.C解析:C 【分析】利用基本不等式得到222a b a b a b a b ++-++-≤,然后利用平面向量数量积运算求解. 【详解】因为1a =,2b =,所以222222252ab a ba b a b a b++-++-≤=+=,当且仅当a b a b+=-,即a b⊥时取等号,故选:C【点睛】本题主要考查平面向量的数量积运算以及基本不等式的应用,属于中档题.4.B解析:B【分析】作出图形,利用平面向量的线性运算以及数量积的运算性质可得出21P OPE PF=⋅-,求得OP的最大值,由此可求得PE PF⋅的最大值.【详解】如下图所示:由题可知正方形ABCD的内切圆的半径为1,设该内切圆的圆心为O,()()()()2221 PE PF OE OP OF OP OP OE OP OE OP OE OP ⋅=-⋅-=-+⋅--=-=-,由图象可知,当点P为ABCD的顶点时,2OP取得最大值2,所以PE PF⋅的最大值为1.故选:B.【点睛】本题考查平面向量数量积最值的计算,考查计算能力,属于中等题.5.C解析:C【分析】以,AD AB为一组基底,表示向量,AE BF,然后利用12AE BF⋅=-,求得2cos 3BAD ∠=,然后由梯形ABCD 的高为sin AD BAD ⋅∠求解. 【详解】因为14AE AD DE AD AB =+=+,34BF AF AB AD AB =-=-, ∴22133113444416AE BF AD AB AD AB AD AB AD AB ⎛⎫⎛⎫⋅=+⋅-=--⋅ ⎪ ⎪⎝⎭⎝⎭, 223113cos 4416AD AB AD AB BAD =--⋅∠, 31117936cos 12448BAD =⨯-⨯-∠=-, ∴2cos 3BAD ∠=,∴25sin 1cos BAD BAD ∠=-∠=, ∴梯形ABCD 的高为sin 5AD BAD ⋅∠=. 故选:C . 【点睛】本题主要考查平面向量的数量积的运算以及平面向量的基本定理,还考查了数形结合的思想和运算求解的能力,属于中档题.6.C解析:C 【分析】设H 是BC 上除E 点外的令一个三等分点,判断出G 是三角形CFH 的重心,得出,CG CO 的比例,由此得出λ的值.【详解】设H 是BC 上除E 点外的令一个三等分点,连接FH ,连接BD 交AC 于O ,则//BD FH .在三角形CFH 中,,CG FG 是两条中线的交点,故G 是三角形CFH 的重心,结合23CH CF BH DF ==可知24.5CG CO =,由于O 是AC 中点,故224.529CG AC ==⨯.所以72AGCG=,由此可知72λ=,故选C.【点睛】本小题主要考查平行线分线段成比例,考查三角形的重心,考查比例的计算,属于中档题.7.C解析:C 【分析】建立平面直角坐标系,()0,P t ,3t ≤,则 22333()16⋅=-=--AP CP t t t ,进而可求最小值. 【详解】以D 点为坐标原点,DC 所在直线为y 轴,DA 所在直线为x 轴建立直角坐标系,1(,0)2A ,1(,0)2B -,3(0,)2C ,设()0,P t ,其中32t ≤1(,)2AP t =-,3(0,)2CP t ==,22333()2416⋅=-=--AP CP t t t ,当34t =时取最小值为316-,所以AP CP ⋅的最小值为316-.故选:C 【点睛】本题考查了平面向量的数量积运算,用坐标法求最值问题,考查了运算求解能力,属于一般题目.8.C解析:C 【分析】建立直角坐标系,利用向量的坐标运算求解即可. 【详解】以点A 为坐标原点,建立如下图所示的直角坐标系(0,0),(2,1),(1,2)A E F(2,1),(1,2)AE AF ∴==21124AE AF ∴⋅=⨯+⨯= 故选:C【点睛】本题主要考查了求平面向量的数量积,属于中档题.9.D解析:D 【分析】利用向量的坐标运算得到|2|a b -用θ的三角函数表示化简求最值. 【详解】解:向量()a cos sin θθ=,,向量()31b =-,,则2a b -=(2cosθ2sinθ+1),所以|2|a b -2=(2cosθ2+(2sinθ+1)2=8﹣cosθ+4sinθ=8﹣8sin (3πθ-),所以|2|a b -2的最大值,最小值分别是:16,0; 所以|2|a b -的最大值,最小值分别是4,0; 故选:D . 【点睛】本题考查了向量的坐标运算以及三角函数解析式的化简;利用了两角差的正弦公式以及正弦函数的有界性.10.A解析:A 【分析】取MN 的中点A ,连接OA 、OP ,由点到直线的距离公式可得1OA =,于是推出1cos 2AON ∠=,1cos 2MON ∠=-,而||||cos 2OM ON OM ON MON ⋅=⋅∠=-,()()PM PN OM OP ON OP ⋅=-⋅-()224cos OM ON OPOP OM ON AOP =⋅+-⋅+=-∠,其中cos [1,1]AOP ∠∈-,从而得解. 【详解】解:取MN 的中点A ,连接OA 、OP ,则OA MN ⊥,∵222c a b =+,∴点O 到直线MN 的距离221OA a b==+,在Rt AON 中,1cos 2OA AON ON ∠==, ∴2211cos 2cos 12122MON AON ⎛⎫∠=∠-=⨯-=- ⎪⎝⎭, ∴1||||cos 2222OM ON OM ON MON ⎛⎫⋅=⋅∠=⨯⨯-=- ⎪⎝⎭, ∴()()PM PN OM OP ON OP ⋅=-⋅-2()OM ON OP OP OM ON =⋅+-⋅+24222||||cos OP OA OP OA AOP =-+-⋅=-⋅∠24cos AOP =-∠,当OP ,OA 同向时,取得最小值,为242-=-; 当OP ,OA 反向时,取得最大值,为246+=. ∴PM PN ⋅的取值范围为[]2,6-. 故选:A. 【点睛】本题考查点到直线距离公式、向量的数量积运算、直线与圆的方程,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查运算求解能力.11.D解析:D 【分析】设CO yBC =,则()1AO AC CO AC yBC yAB y AC =+=+=-++,根据3BC CD =得出y 的范围,再结合()1AO xAB x AC =+-得到,x y 的关系,从而得出x的取值范围. 【详解】设CO yBC =,则()()1AO AC CO AC yBC AC y AC AB yAB y AC =+=+=+-=-++, 因为3BC CD =,点O 在线段CD 上(与点C ,D 不重合), 所以10,3y ⎛⎫∈ ⎪⎝⎭,又因为()1AO xAB x AC =+-, 所以x y =-,所以1,03x ⎛⎫∈- ⎪⎝⎭. 故选:D 【点睛】本题考查平面向量基本定理及向量的线性运算,考查利用向量关系式求参数的取值范围问题,难度一般.12.C解析:C 【分析】由0a b c ++=,可得2222222().2()a b c a b b c a b c =-+=-+、2222()a c b a c =-+,利用||||||a b c <<,即可比较. 【详解】解:由0a b c ++=,可得()c a b =-+,平方可得2222()a b c a b =-+. 同理可得2222()b c a b c =-+、2222()a c b a c =-+,||||||a b c <<,∴222a b c <<则a b 、b c 、a c 中最小的值是b c . 故选:C . 【点睛】本题考查了向量的数量积运算,属于中档题.二、填空题13.【分析】将作为平面向量的一组基底再根据平面向量基本定理用表示出再由即可得出结论【详解】因为在中D 是的中点E 在边上且所以又所以即所以故答案为:【分析】将AB AC 、作为平面向量的一组基底,再根据平面向量基本定理用AB AC 、表示出AD EC ⋅,再由3AB AC AD EC ⋅=⋅即可得出结论.【详解】因为在ABC 中,D 是BC 的中点,E 在边AB 上,且2BE EA =, 所以111()()()223AD EC AB AC AC AE AB AC AC AB ⎛⎫⋅=+⋅-=+⋅-= ⎪⎝⎭22111263AC AB AB AC -+⋅, 又3AB AC AD EC ⋅=⋅,所以2211026AC AB -=,即||3AB AC =, 所以=3ABAC. 故答案为:314.1【分析】如图建系设P 点坐标则可得的坐标根据题意可得的表达式代入所求根据的范围利用三角函数求最值即可得答案【详解】取BC 中点O 以O 为原点OCOA 方向为x 轴y 轴正方向建系如图所示由题意得:所以如图以B解析:1 【分析】如图建系,设P 点坐标(cos ,sin )θθ,则可得,,AP AB AC 的坐标,根据题意,可得,λμ的表达式,代入所求,根据θ的范围,利用三角函数求最值,即可得答案. 【详解】取BC 中点O ,以O 为原点,OC ,OA 方向为x 轴y 轴正方向建系,如图所示由题意得:2sin 603OA =︒=3),(1,0),(1,0)A B C -, 如图以BC 为直径的半圆方程为:221(0)x y y +=≤, 设(cos ,sin )P θθ,因为sin 0θ≤,所以[,2]θππ∈,则(cos ,sin 3)AP θθ=-,(1,3),(1,3)AB AC =--=-,因为AP AB AC λμ=+,所以cos sin 333θλμθλμ=-+⎧⎪⎨-=--⎪⎩,整理可得113cos sin 22131sin cos 22μθθλθθ⎧=+-⎪⎪⎨⎪=--⎪⎩,所以131113322(sin cos )cos sin sin()222226πλμθθθθθ+=--++-=-+, 因为[,2]θππ∈,所以713[,]666πππθ+∈, 当1366ππθ+=时,sin()6πθ+取最大值12,所以2λμ+的最小值为31122-=, 故答案为:1 【点睛】解题的关键是在适当位置建系,进而可得点的坐标及向量坐标,利用向量的坐标运算,即可求得2λμ+的表达式,再利用三角函数图像与性质求解,综合性较强,考查分析理解,计算求值的能力,属中档题.15.6【分析】建立平面直角坐标系求得点P 的坐标进而得到的坐标再利用数量积的坐标运算求解【详解】如图所示建立平面直角坐标系:则设因为解得所以所以所以故答案为:【点睛】本题主要考查平面向量的坐标表示和数量积解析:6 【分析】建立平面直角坐标系,求得点P 的坐标,进而得到,PA PB 的坐标,再利用数量积的坐标运算求解. 【详解】如图所示建立平面直角坐标系:则()()()()04,00,40,44A B C D ,,,,,设(),P x y ,()(),,4,4BP x y PD x y ==--,因为3BP PD =,()()3434x x y y ⎧=⨯-⎪⎨=⨯-⎪⎩,解得33x y =⎧⎨=⎩,所以()3,3P ,所以()()3,1,3,3PA PB =-=--, 所以()()()33136PA PB ⋅=-⨯-+⨯-=, 故答案为:6. 【点睛】本题主要考查平面向量的坐标表示和数量积运算,还考查了运算求解的能力,属于中档题.16.【分析】由已知得再两边平方求得代入可求得答案【详解】因为所以又因为所以即又所以所以所以故答案为:【点睛】本题考查向量的线性运算向量的数量积以及向量的模的计算属于中档题 解析:25-【分析】由已知得()c a b =-+,再两边平方22+2+25a a b b ⋅=,求得0a b ⋅=,代入可求得答案. 【详解】因为0a b c ++=,所以()c a b =-+,又因为5c =, 所以()225a b+=,即22+2+25a a b b ⋅=,又3a =,4b =,所以9+2+1625a b ⋅=,所以0a b ⋅=,所以()()20+25a b b c c a a b c b a c c c ⋅+⋅+⋅=⋅+⋅+=⋅-=-=-, 故答案为:25-. 【点睛】本题考查向量的线性运算,向量的数量积,以及向量的模的计算,属于中档题.17.【分析】本题先求再根据化简整理得最后求与的夹角为【详解】解:∵∴∵∴整理得:∴与的夹角为:故答案为:【点睛】本题考查运用数量积的定义与运算求向量的夹角是基础题 解析:3π【分析】本题先求29a =,24b =,6cos ,a b a b ⋅=,再根据()()2318a b a b +⋅-=-化简整理得1cos ,2a b =,最后求a 与b 的夹角为3π.【详解】解:∵ 3a =,2b =,∴ 229a a ==,224b b==,cos ,6cos ,a b a b a b a b ⋅=⋅⋅<>=<>,∵ ()()2318a b a b +⋅-=-,∴ ()()2223696cos ,6418a b a b aa b b a b +⋅-=-⋅-=-<>-⨯=-整理得:1cos ,2a b <>=, ∴a 与b 的夹角为:3π. 故答案为:3π 【点睛】本题考查运用数量积的定义与运算求向量的夹角,是基础题.18.【分析】将均用表示出来进而将表示成与相关可以求出同时可用表示即可求出结果【详解】因为因此故答案为:【点睛】研究向量的数量积一般有两个思路一是建立平面直角坐标系利用坐标研究向量的数量积;二是利用一组基解析:58【分析】将,,,BA CA BF CF 均用,BC AD 表示出来,进而将BA CA ⋅,BF CF ⋅表示成与,FD BC 相关,可以求出 2223,827FD BC ==,同时BE CE ⋅可用,FD BC 表示,即可求出结果. 【详解】因为222211436=52244AD BC FD BC BA CA BC AD BC AD ()()--⋅=-⋅--==, 2211114223234FD BCBF CF BC AD BC AD ()()-⋅=-⋅--==-,因此2223,827FD BC ==,222211416.224458ED BC FD BC BE CE BC ED BC ED ()()--⋅=-⋅--===故答案为:58. 【点睛】研究向量的数量积,一般有两个思路,一是建立平面直角坐标系,利用坐标研究向量的数量积;二是利用一组基底表示所有向量,两种思路实质相同,但坐标法更易理解和化简. 对于涉及中线的向量问题,一般利用向量加、减法的平行四边形法则进行求解.19.【分析】根据向量的夹角公式及数量积的运算计算即可求解【详解】因为又所以故答案为:【点睛】本题主要考查了向量数量积的定义运算法则性质向量的夹角公式属于中档题解析:6π【分析】根据向量的夹角公式及数量积的运算计算即可求解.【详解】因为22cos(cos,2|||||2)2|aa c aa caba bcπ→→→→→→→→→→→→→→-⋅〈〉==--===⋅,又,0a cπ→→〈≤〉≤,所以,6a cπ→→〈〉=,故答案为:6π【点睛】本题主要考查了向量数量积的定义,运算法则,性质,向量的夹角公式,属于中档题. 20.或【分析】由向量的坐标运算求出并求出它的模用除以它的模得一向量再加上它的相反向量可得结论【详解】由题意∴又∴或故答案为:或【点睛】易错点睛:本题考查求单位向量一般与平行的单位向量有两个它们是相反向量解析:34,55⎛⎫-⎪⎝⎭或34,55⎛⎫-⎪⎝⎭.【分析】由向量的坐标运算求出2a b-,并求出它的模,用2a b-除以它的模,得一向量,再加上它的相反向量可得结论.【详解】由题意2(1,3)(4,1)(3,4)a b-=--=-,∴22(3)5a b-=-=,又234,552a ba b-⎛⎫=- ⎪⎝⎭-,∴c=34,55⎛⎫-⎪⎝⎭或34,55⎛⎫-⎪⎝⎭.故答案为:34,55⎛⎫-⎪⎝⎭或34,55⎛⎫-⎪⎝⎭.【点睛】易错点睛:本题考查求单位向量,一般与a平行的单位向量有两个,它们是相反向量:a a±.只写出一个向量a a是错误的.三、解答题21.(1)6;(2)58,99m n ==;(3)1118k =-.【分析】(1)利用向量加法的坐标运算得到()320,6a b c +-=,再求模长即可;(2)先写mb nc +的坐标,再根据a mb nc =+使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可. 【详解】解:(1)由(3,2),(1,2),(4,1)a b c ==-=,得3(9,6),(1,2),2(8,2)a b c ==-=∴()()32918,6220,6a b c +-=--+-=,∴23206a b c +-=+=;(2)()(),2,4,mb m m nc n n =-=, ∴()4,2mb nc n m m n +=-+,a mb nc =+,∴()4,2(3,2)a n m m n ==-+,故4322n m m n -=⎧⎨+=⎩,解得58,99m n ==;(3)(3,2),(4,)a kc k k ==,∴()34,2a kc k k +=++,(3,2),2(2,4)a b ==-,∴()25,2b a -=-,()()2a kc b a +⊥-,∴()()20a kc b a +⋅-=,即()()534220k k -+++=,解得1118k =-. 【点睛】 结论点睛:若()()1122,,,a x y b x y == ,则//a b 等价于12210x y x y -=;a b ⊥等价于12120x x y y +=.22.(Ⅰ)3⋅=a b ,b =2;(Ⅱ)3k =-. 【分析】(Ⅰ)根据数量积与模的坐标表示计算; (Ⅱ)由向量垂直的坐标表示求解. 【详解】(Ⅰ)由题意3103a b ⋅=⨯+=;21(2b =+=.(Ⅱ)(3,3)a kb k k +=+, 因为向量a 与k +a b 互相垂直,所以()3(3)0a a kb k ⋅+=+=,解得3k =-. 【点睛】本题考查向量数量积与模的坐标表示,考查向量垂直的坐标表示,属于基础题.23.(1)()4,1=-AB,17;=AB (2)25,55⎛=⎝⎭e ,或25.55⎛⎫=-- ⎪ ⎪⎝⎭e【详解】试题分析:(I )利用向量的坐标运算直接求AB 的坐标及AB ; (II )利用向量的垂直,数量积为0,结合单位向量求解即可. 试题(I )()()AB 13,214,1=---=-,(AB =-=(Ⅱ)设单位向量(),e x y =, 所以221x y +=,即221x y += 又(),1,2⊥=-e OB OB , 所以20x y -+=即2x y =由2221x y x y =⎧⎨+=⎩,解得55x y ⎧=⎪⎪⎨⎪=⎪⎩或者55x y ⎧=-⎪⎪⎨⎪=-⎪⎩ 所以25,⎛= ⎝⎭e ,或25.⎛=-⎝⎭e 24.(1)23π;(23) 【分析】(1)将已知条件中的式子展开,利用公式求得6a b ⋅=-,根据向量夹角公式求得1cos 2θ=-,结合角的范围,求得结果;(2)利用向量的模的平方和向量的平方是相等的,从而求得结果; (3)根据向量所成角,求得三角形的内角,利用面积公式求得结果. 【详解】(1)因为(23)(2)61a b a b -⋅+=,所以2244361aa b b-⋅-=.又4,3a b ==, 所以6442761a b -⋅-=, 所以6a b ⋅=-, 所以61cos 432a ba b θ⋅-===-⨯. 又0≤θ≤π,所以23πθ=. (2)2222()2a b a b a a b b +=+=+⋅+=42+2×(-6)+32=13,所以13a b +=; (3)因为AB 与BC 的夹角23πθ=, 所以∠ABC =233πππ-=. 又4,3AB a BC b ====,所以S △ABC =1432⨯⨯= 【点睛】该题考查的是有关向量与解三角形的综合题,涉及到的知识点有向量数量积,向量夹角公式,向量的平方和向量模的平方是相等的,三角形面积公式,属于简单题目. 25.(1)1m =-;(2)1λ=±. 【分析】(1)先求()313,3a b m -=--,再根据向量垂直的坐标运算即可求得1m =-; (2)先计算()32,21a b λλλ+=+-,()23,2a b λλλ+=+-+,再根据向量共线的坐标运算求解即可得1λ=±. 【详解】解:(1)根据题意有:()()()31,33,213,3a b m m -=-=--,∵ ()3a b c -⊥,∴ ()()3313120a b c m -⋅=⨯--=,解得1m =-,所以实数m 的值为:1m =-.(2)根据题意:()()()3,22,132,21a b λλλλλ+=+-=+-,()()()3,22,23,2a b λλλλλ+=+-=+-+,∵ a b λ+与a b λ+平行,∴ ()()()()32223210λλλλ+-+-+-=,解得:1λ=±.【点睛】本题考查向量的坐标运算,向量垂直与平行的坐标表示,考查运算能力,是基础题.26.(1)0;(2) 【分析】(1)由BCD △为等边三角形得出2BC AD =,由向量的加法和减法运算得出13,22AE AB AD BD AD AB =+=-,再由向量的数量积公式得出AE BD ⋅的值;(2)设AD a =,则3,2,AB BC BD a AC ====,由数量积公式得出AC BD ⋅,进而得出AC 与BD 夹角的余弦值.【详解】解:(1)因为//AD BC ,,,23BAD BDA BC BD ππ∠=∠==所以BCD △为等边三角形,23BC AB AD == 又E 为DC 的中点所以1113()(),2222AE AC AD AB BC AD AB AD BD AD AB =+=++=+=- 则221313()02222AE BD AB AD AD AB AB AB AD AD ⎛⎫⋅=+⋅-=--⋅+= ⎪⎝⎭(2)设AD a =,则3,2,7AB a BC BD a AC a ==== 222(2)()2AC BD AB AD AD AB AB AD AB AD a ⋅=+⋅-=--⋅+=-设AC 与BD 的夹角为θ,则2cos 2AC BDAC BD θ⋅=== 【点睛】本题主要考查了利用定义求向量的数量积以及夹角,属于中档题.。

人教版高一数学必修4第二章平面向量测试题(含答案)

人教版高一数学必修4第二章平面向量测试题(含答案)

人教版高一数学必修4第二章平面向量测试题(含答案)必修4第二章平面向量教学质量检测1.以下说法错误的是()A.零向量与任一非零向量平行B.零向量与单位向量的模不相等C.平行向量方向相同D.平行向量一定是共线向量2.下列四式不能化简为AD的是()AB+CD)+BC;(AD+MB)+(BC+CM);MB+AD-BM;OC-OA+CD3.已知向量a=(3,4),向量b=(5,12),a与b夹角的余弦为:cosθ = (a·b) / (|a|·|b|)3×5+4×12) / (5×5+12×12)56 / 169所以选项C正确。

4.已知a、b均为单位向量,它们的夹角为60°,那么|a+ 3b| =a+3b|^2 = (a+3b)·(a+3b)a·a + 6a·b + 9b·b1 + 6cos60° + 913所以选项C正确。

5.已知ABCDEF是正六边形,且AB=a,AE=b,则BC=CD=DE=a-b,所以选项A正确。

6.设a,b为不共线向量,AB=a+2b,BC=-4a-b,CD=-5a-3b,则AD=BC+CD=-9a-4b,所以选项C正确。

7.设e1与e2是不共线的非零向量,且ke1+e2与e1+ke2共线,则有:ke1+e2 = λ(e1+ke2)k-λ)e1 + (1-λ)ke2 = 0由于e1和e2不共线,所以k-λ=0或1-λ=0,即k=λ或k=1/λ,所以选项C正确。

8.在四边形ABCD中,AB=DC,且AC·BD=0,所以四边形ABCD是矩形,所以选项A正确。

9.已知M(-2,7)、N(10,-2),点P是线段MN上的点,且PN=-2PM,则P点的坐标为:P = (1/3)M + (2/3)N = (1/3)(-2,7) + (2/3)(10,-2) = (6,1),所以选项C正确。

最新新人教A版高中数学必修四 平面向量测试卷向量测试(含答案解析)

最新新人教A版高中数学必修四 平面向量测试卷向量测试(含答案解析)

平面向量测试卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出地四个选项中,只有一项是符合题目要求地。

)1.P是△ABC所在平面上一点,若PA⋅==⋅,PCPCPBPBPA⋅A 外心B 内心C 重心D 垂心2.下列命题中,一定正确地是 A.a b a b⋅=⋅r r r r B.若()a b c ⊥-r r r ,则a b a c ⋅=⋅u r u r u r u rC.2a u r ≥||a u rD. n ()()a b c a b c ⋅⋅=⋅⋅u r u r u ru r u r u r3.在四边形ABCD 中,0=⋅,AD BC =,则四边形ABCD A.直角梯形 B.菱形 C.矩形 D.正方形4.若向量ar=(cos α,sin α),b r=(cos β,sin β),则a 与br 一定满足( )A .ar 与b r地夹角等于α-β B .(ar +b r)⊥(ar -b r) C .ar ∥b rD .ar ⊥b r5.已知向量ar≠er ,|er |=1,对任意t ∈R ,恒有|ar -t e r |≥|a r -er |,则 ( )A.ar ⊥er B.er ⊥(ar -er ) C.ar ⊥(ar -er )D.(a r +e r )⊥(a r -er )已知向量ar ≠er ,|er |=1,对任意t ∈R ,恒有|ar -t er |≥|ar -er |,则 ( )A ar ⊥er B ar ⊥(ar -er ) C er ⊥(ar -er ) D (a r +e r )⊥(a r -er )6.平面直角坐标系中,O 为坐标原点,已知两点A (2,-1),B (-1,3),若点C 满足OB OA OC βα+=其中0≤βα,≤1,且1=+βα,则点C 地轨迹方程为 A.0534=-+y x (-1≤x ≤2) B. 083=+-y x (-1≤x ≤2)C. 0432=-+y xD. 25)1()21(22=-+-y x7.若||1,||2,a b c a b===+r r r r r ,且c a⊥r r ,则向量a r 与br 地夹角为( )A 30°B 60°C 120°D 150°8.已知向量a =u r(αcos 2,αsin 2),b =u r(3cos β,3sin β),a u r与bu r地夹角为60o,则直线1cos sin 02x y αα-+=与圆221(cos )(sin )2x y ββ-++=地位置关系是( )A.相离B.相交C.相切D.随βα,地值而定9.在△ABC 中,已知ACAB S AC AB ABC⋅===∆则,3,1||,4||地值为( ) A .-2B .2C .±4D .±210.点P 在平面上作匀速直线运动,速度向量=(4,-3)(即点P 地运动方向与v 相同,且每秒移动地距离为||个单位.设开始时点P 地坐标为(-10,10),则5秒后点P 地坐标为( )A (-2,4)B (10,-5)C (-30,25)D (5,-10)11..设∠BAC 地平分线AE 与BC 相交于E ,那么有λλ其中,CE BC =等于 ( )A 2B 21 C -3 D -31 12.为了得到函数y =sin(2x-6π)地图像,可以将函数y=cos2x地图像 ( )π个单位长度 B 向左平A 向右平移6π个单位长度移3π个单位长度 D向右平移C 向左平移6π个单位长度3班级___________ 姓名_____________ 学号____________ 评分___________:二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中横线上.)u u u r u u u r u u u r,且A、B、C三13.已知向量(,12),(4,5),(,10)===-OA k OB OC k点共线,则k=_ __14.直角坐标平面xoy中,若定点)2,1(A与动点),(y x P满足OP,则点P地轨迹方程是__________.•OA=415.已知点A(2,0),B(4,0),动点P在抛物线y2=-4x运动,则使⋅取得最小值地点P地坐标是.16.下列命题中:①∥⇔存在唯一地实数R∈λ,使得λ=;②为单位向量,且∥,则=±||·;③3||||a⋅;a=⋅aa④a与b共线,b与c共线,则a与c共线;⑤若⋅则且,==≠⋅其中正确命题地序号是.三、解答题(本大题共6小题,共74分.解答应有证明过程或演算步骤)17.已知△ABC中,∠C=120°,c=7,a+b=8,求)A-cos(B 地值。

(word版)高一数学必修四第二章平面向量测试题及答案,文档

(word版)高一数学必修四第二章平面向量测试题及答案,文档

一、选择题:(本大题共10小题,每题4分,共40分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.)1.设点P〔3,-6〕,Q〔-5,2〕,R的纵坐标为-9,且P、Q、R三点共线,那么R点的横坐标为〔〕。

A、-9B、-6C、9D、62.=(2,3),b=(-4,7),那么在b上的投影为〔〕。

A、B、C、D、3.设点A〔1,2〕,B〔3,5〕,将向量按向量=〔-1,-1〕平移后得向量为〔〕。

A、〔2,3〕B、〔1,2〕C、〔3,4〕D、〔4,7〕4.假设(a+b+c)(b+c-a)=3bc,且sinA=sinBcosC,那么ABC是〔〕。

A、直角三角形B、等边三角形C、等腰三角形D、等腰直角三角形5.||=4,|b|=3,与b的夹角为60°,那么|+b|等于〔〕。

A、B、C、D、6.O、A、B为平面上三点,点C分有向线段所成的比为2,那么〔〕。

A、B、C、D、7.O 是ABC所在平面上一点,且满足条件,那么点O是ABC的〔〕。

A、重心B、垂心C、内心D、外心8.设、b、均为平面内任意非零向量且互不共线,那么以下4个命题:(1)(·b)2=2·b2(2)|+b|≥|-b|(3)|+b|2=(+b)2(4)(b)-(a)b与不一定垂直。

其中真命题的个数是〔〕。

A、1B、2C、3D、49.在ABC中,A=60°,b=1,,那么等于〔〕。

A、B、C、D、10.设、b不共线,那么关于x的方程x2+bx+=0的解的情况是〔〕。

A、至少有一个实数解C、至多有两个实数解二、填空题:〔本大题共4小题,每题B、至多只有一个实数解D、可能有无数个实数解4分,总分值16分.〕.11.在等腰直角三角形ABC中,斜边AC=22,那么ABCA=_________ 12.ABCDEF为正六边形,且AC=a,AD=b,那么用a,b表示AB为______. 13.有一两岸平行的河流,水速为1,速度为的小船要从河的一边驶向对岸,为使所行路程最短,小船应朝________方向行驶。

高中数学必修四平面向量测试题及答案

高中数学必修四平面向量测试题及答案

高中数学必修四平面向量测试题一、选择题: (本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设点P(3,-6),Q(-5,2),R的纵坐标为-9,且P、Q、R三点共线,则R点的横坐标为()。

A、-9B、-6C、9D、6bb上的投影为()。

=(-4,7),则 2.已知 =(2,3), 在 D、、B、 CA、 =(-1按向量,-1),B(3,5,将向量)平移后得 3.设点A(1,2)。

向量)为(A、(2,3) B、(1,2) C、(3,4) D、(4,7)4.若(a+b+c)(b+c-a)=3bc,且sinA=sinBcosC,那么ΔABC是()。

A、直角三角形B、等边三角形C、等腰三角形D、等腰直角三角形bbb|等于()。

的夹角为60°,则5.已知| |=4, | | |=3, 与+D C、、 A、 B、所成的比为2,则()。

、已知OA、B为平面上三点,点C分有向线段 6.B、 A、、DC、 ABC所在平面上一点,且满足条件.O是Δ,7则点O是ΔABC的()。

A、重心B、垂心C、内心D、外心b均为平面内任意非零向量且互不共线,则下列4、个命题:、 8.设22222bbbbbb)+-|| =( (3)| (1)( ·)= · +(2)| +|≥|bb a不一定垂直。

其中真命题的个数是(-() ))。

与(4)(4、 D 3 、 C 2 、 B 1 、A.等中,A=60°,b=1,,则 9.在ΔABC 。

于() D、A、、B C、2bb=0的解的情况是(、不共线,则关于x的方程) x+。

x+ 10.设A、至少有一个实数解 B、至多只有一个实数解 D、可能有无数个实数解、至多有两个实数解 C.).分,满分16分二、填空题:(本大题共4小题,每小题4CAAB 22=_________AC=ABC中,斜边,则11.在等腰直角三角形ACABAD babABCDEFa为.已知则用为正六边形,______.且,=表示=,,12速度为的小船要从河的一边驶向,.有一两岸平行的河流,水速为113对岸,为使所行路程最短,小船应朝________方向行驶。

(版)高一数学必修4平面向量测试题(含答案)

(版)高一数学必修4平面向量测试题(含答案)

一.选择题1.以下说法错误的选项是〔〕A.零向量与任一非零向量平行 B.零向量与单位向量的模不相等C.平行向量方向相同D.平行向量一定是共线向量2.以下四式不能化简为AD的是〔〕A.〔AB+CD〕+BC; B.〔AD+MB〕+〔BC+CM〕;C.MB+AD-BM; D.OC-OA+CD;3.a=〔3,4〕,b=〔5,12〕,a与b那么夹角的余弦为〔〕A.63B.65 C.13D.1365 54.a、b均为单位向量,它们的夹角为60°,那么|a+3b|=〔〕A. 7 B. 10 C. 13 D.45.ABCDEF是正六边形,且AB=a,AE=b,那么BC=〔〕〔A〕12(a b)〔B〕12(b a)〔C〕 a+12b〔D〕12(a b)6.设a,b为不共线向量,AB =a+2b,BC=-4a-b,CD=-5a-3b,那么以下关系式中正确的选项是〔〕〔A〕AD=BC 〔B〕AD=2BC 〔C〕AD=-BC〔D〕AD=-2BC7.设e1与e2是不共线的非零向量,且ke1+e2与e1+ke2共线,那么k的值是〔〕〔A〕1 〔B〕-1 〔C〕 1 〔D〕任意不为零的实数8.在四边形 ABCD中,AB=DC,且AC·BD=0,那么四边形ABCD是〔〕〔A〕矩形〔B〕菱形〔C〕直角梯形〔D〕等腰梯形9.M〔-2,7〕、N〔10,-2〕,点P是线段MN上的点,且PN=-2PM,那么P点的坐标为〔〕〔A〕〔-14,16〕〔B〕〔22,-11〕〔C〕〔6,1〕〔D〕〔2,4〕10.a=〔1,2〕,b=〔-2,3〕,且ka+b与a-kb垂直,那么k=〔〕〔A〕 1 2〔B〕 2 1〔C〕 2 3〔D〕 3 211、假设平面向量r(2x3,x)互相平行,其中r〕a(1,x)和bxR.那么a b〔A .2或0;B.25; C.2或25;D.2或10.12、下面给出的关系式中正确的个数是〔〕①0a0②abba③a2a2④(ab)ca(bc)⑤abab(A)0(B)1(C)2(D)3二.填空题:13.假设AB(3,4),A点的坐标为〔-2,-1〕,那么B点的坐标为.14.a(3,4),b(2,3),那么2|a|3ab.15、向量a3,b(1,2),且ab,那么a的坐标是_________________。

高一数学必修4平面向量测试题(含答案)

高一数学必修4平面向量测试题(含答案)

2.下列四式不能化简为AD 的是( )A .;)+(B .);++(MC .;-+BM AD M B D .;+-CD OA OC3.已知a =(3,4),b =(5,12),a 与b 则夹角的余弦为( )A .6563B .65C .513 D .134. 已知a 、b 均为单位向量,它们的夹角为60°,那么|a + 3b | =( )A .7B .10C .13D .45.已知ABCDEF 是正六边形,且−→−AB =→a ,−→−AE =→b ,则−→−BC =( )(A ))(21→→-b a (B ) )(21→→-a b (C ) →a +→b 21 (D ) )(21→→+b a6.设→a ,→b 为不共线向量,−→−AB =→a +2→b ,−→−BC =-4→a -→b ,−→−CD = -5→a -3→b ,则下列关系式中正确的是 ( )(A )−→−AD =−→−BC (B )−→−AD =2−→−BC (C )−→−AD =-−→−BC (D )−→−AD =-2−→−BC 7.设→1e 与→2e 是不共线的非零向量,且k →1e +→2e 与→1e +k →2e 共线,则k 的值是( )(A ) 1 (B ) -1 (C ) 1± (D ) 任意不为零的实数 8.在四边形ABCD 中,−→−AB =−→−DC ,且−→−AC ·−→−BD =0,则四边形ABCD 是( )(A ) 矩形 (B ) 菱形 (C ) 直角梯形 (D ) 等腰梯形9.已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且−→−PN =-2−→−PM ,则P 点的坐标为( )(A ) (-14,16)(B ) (22,-11)(C ) (6,1) (D ) (2,4)10.已知→a =(1,2),→b =(-2,3),且k →a +→b 与→a -k →b 垂直,则k =( )(A ) 21±-(B ) 12±(C ) 32±(D ) 23±11、若平面向量(1,)a x =r和(23,)b x x =+-r 互相平行,其中x R ∈.则a b -=r r ( )A. 2-或0;B.C. 2或D. 2或10.12、下面给出的关系式中正确的个数是( )① 00ρρρ=⋅a ②a b b a ρρρρ⋅=⋅③22a a ρρ=④)()(c b a c b a ρρρρρρ⋅=⋅⑤b a b a ρρρρ⋅≤⋅(A) 0 (B) 1 (C) 2 (D) 3二. 填空题:13.若),4,3(=AB A点的坐标为(-2,-1),则B点的坐标为 . 14.已知(3,4),(2,3)=-=a b ,则2||3-⋅=a a b .15、已知向量)2,1(,3==b a ρρ,且b a ρρ⊥,则a ρ的坐标是_________________。

高中数学必修4平面向量测试卷典型例题含详细答案

高中数学必修4平面向量测试卷典型例题含详细答案

高中数学平面向量组卷一.选择题〔共18小题〕1.向量与的夹角为θ,定义×为与的“向量积〞,且×是一个向量,它的长度|×|=||||sinθ,假设=〔2,0〕,﹣=〔1,﹣〕,那么|×〔+〕|=〔〕A.4B.C.6D.22.,为单位向量,其夹角为60°,那么〔2﹣〕•=〔〕A.﹣1 B.0C.1D.23.向量=〔1,〕,=〔3,m〕,假设向量,的夹角为,那么实数m=〔〕A.2B.C.0D.﹣4.向量,,且∥,那么=〔〕A.B.C.D.5.如图,在△ABC中,BD=2DC.假设,,那么=〔〕A.B.C.D.6.假设向量=〔2cosα,﹣1〕,=〔,tanα〕,且∥,那么sinα=〔〕A.B.C.D.7.点A〔3,0〕,B〔0,3〕,C〔cosα,sinα〕,O〔0,0〕,假设,那么的夹角为〔〕A.B.C.D.8.设向量=,=不共线,且|+|=1,|﹣|=3,那么△OAB的形状是〔〕A.等边三角形B.直角三角形C.锐角三角形D.钝角三角形9.点G是△ABC的重心,假设A=,•=3,那么||的最小值为〔〕A.B.C.D.210.如图,各棱长都为2的四面体ABCD中,=,=2,那么向量•=〔〕A.﹣B.C.﹣D.11.函数f〔x〕=sin〔2πx+φ〕的局部图象如下图,点B,C是该图象与x轴的交点,过点C的直线与该图象交于D,E两点,那么〔〕•的值为〔〕A.B.C.1D.212.P为三角形ABC部任一点〔不包括边界〕,且满足(﹣〕•〔+﹣2〕=0,那么△ABC的形状一定为〔〕A.等边三角形B.直角三角形C.钝三角形D.等腰三角形13.如下图,设P为△ABC所在平面的一点,并且=+,那么△ABP与△ABC的面积之比等于〔〕A.B.C.D.14.在△ABC中,|AB|=3,|AC|=2,=,那么直线AD通过△ABC的〔〕A.垂心B.外心C.重心D.心15.在△ABC中,∠BAC=60°,AB=2,AC=1,E,F为边BC的三等分点,那么=〔〕A.B.C.D.16.空间向量满足,且的夹角为,O为空间直角坐标系的原点,点A、B满足,,那么△OAB的面积为〔〕A.B.C.D.17.点P为△ABC一点,且++3=,那么△APB,△APC,△BP C的面积之比等于〔〕A.9:4:1 B.1:4:9 C.3:2:1 D.1:2:318.在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,那么=〔〕A.2B.4C.5D.10二.解答题〔共6小题〕19.如图示,在△ABC中,假设A,B两点坐标分别为〔2,0〕,〔﹣3,4〕点C在AB上,且OC平分∠BOA.〔1〕求∠AOB的余弦值;〔2〕求点C的坐标.20.向量=〔cosθ,sinθ〕和.〔1〕假设∥,求角θ的集合;〔2〕假设,且|﹣|=,求的值.21.如下图,假设D是△ABC的一点,且AB2﹣AC2=DB2﹣DC2.求证:AD⊥BC.22.向量,,其中A、B是△ABC的角,.〔1〕求tanA•tanB的值;〔2〕假设a、b、c分别是角A、B、C的对边,当C最大时,求的值.23.向量且,函数f〔x〕=2〔I〕求函数f〔x〕的最小正周期及单调递增区间;〔II〕假设,分别求tanx及的值.24.,函数f〔x〕=.〔1〕求函数f〔x〕的最小正周期;〔2〕求函数f〔x〕的单调减区间;〔3〕当时,求函数f〔x〕的值域.高中数学平面向量组卷〔2021年09月24日〕参考答案与试题解析一.选择题〔共18小题〕1.向量与的夹角为θ,定义×为与的“向量积〞,且×是一个向量,它的长度|×|=||||sinθ,假设=〔2,0〕,﹣=〔1,﹣〕,那么|×〔+〕|=〔〕A.4B.C.6D.2考点:平面向量数量积的运算.专题:平面向量及应用.分析:利用数量积运算和向量的夹角公式可得=.再利用平方关系可得,利用新定义即可得出.解答:解:由题意,那么,∴=6,==2,=2.∴===.即,得,由定义知,应选:D.点评:此题考察了数量积运算、向量的夹角公式、三角函数的平方关系、新定义,考察了计算能力,属于根底题.2.,为单位向量,其夹角为60°,那么〔2﹣〕•=〔〕A.﹣1 B.0C.1D.2考点:平面向量数量积的运算.专题:平面向量及应用.分析:由条件利用两个向量的数量积的定义,求得、的值,可得〔2﹣〕•的值.解答:解:由题意可得,=1×1×cos60°=,=1,∴〔2﹣〕•=2﹣=0,应选:B.点评:此题主要考察两个向量的数量积的定义,属于根底题.3.向量=〔1,〕,=〔3,m〕,假设向量,的夹角为,那么实数m=〔〕A.2B.C.0D.﹣考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:由条件利用两个向量的夹角公式、两个向量的数量积公式,求得m的值.解答:解:由题意可得cos===,解得m=,应选:B.点评:此题主要考察两个向量的夹角公式、两个向量的数量积公式的应用,属于根底题.4.向量,,且∥,那么=〔〕A.B.C.D.考点:平行向量与共线向量;同角三角函数间的根本关系;诱导公式的作用.专题:计算题;三角函数的求值.分析:根据向量平行的条件建立关于α的等式,利用同角三角函数的根本关系与诱导公式,化简即可得到的值.解答:解:∵,,且∥,∴,即,得sinα=,由此可得=﹣sinα=.应选:B点评:此题给出向量含有三角函数的坐标式,在向量互相平行的情况下求的值.着重考察了同角三角函数的根本关系、诱导公式和向量平行的条件等知识,属于根底题.5.如图,在△ABC中,BD=2DC.假设,,那么=〔〕A.B.C.D.考点:向量的加法及其几何意义.专题:平面向量及应用.分析:由题意可得=,而,,代入化简可得答案.解答:解:由题意可得=====应选C点评:此题考察平面向量的加法及其几何意义,涉及向量的数乘,属根底题.6.假设向量=〔2cosα,﹣1〕,=〔,tanα〕,且∥,那么sinα=〔〕A.B.C.D.考点:平面向量共线〔平行〕的坐标表示.专题:平面向量及应用.分析:直接由向量共线的坐标表示列式计算.解答:解:∵向量=〔2cosα,﹣1〕,=〔,tanα〕,且∥,那么2cosα•tanα﹣〔﹣1〕×=0,即2sinα=.∴.应选:B.点评:共线问题是一个重要的知识点,在高考题中常常出现,常与向量的模、向量的坐标表示等联系在一起,要特别注意垂直与平行的区别.假设=〔a1,a2〕,=〔b1,b2〕,那么⊥⇔a1a2+b1b2=0,∥⇔a1b2﹣a2b1=0.是根底题.7.点A〔3,0〕,B〔0,3〕,C〔cosα,sinα〕,O〔0,0〕,假设,那么的夹角为〔〕A.B.C.D.考点:平面向量数量积的坐标表示、模、夹角.专题:计算题.分析:根据题意求出的坐标,再由它的模求出角α,进而求出点C的坐标,利用数量积的坐标表示求出和夹角的余弦值,再求出夹角的度数.解答:解:∵A〔3,0〕,C〔cosα,sinα〕,O〔0,0〕,∴=〔3+cosα,sinα〕,∵,∴〔3+cosα〕2+sin2α=13,解得,cosα=,那么α=,即C〔,〕,∴和夹角的余弦值是==,∴和的夹角是.应选:D.点评:此题考察向量线性运算的坐标运算,以及数量积坐标表示的应用,利用向量坐标形式进展运算求出对应向量的模,以及它们的夹角的余弦值,进而结合夹角的围求出夹角的大小.8.设向量=,=不共线,且|+|=1,|﹣|=3,那么△OAB的形状是〔〕A.等边三角形B.直角三角形C.锐角三角形D.钝角三角形考点:平面向量数量积的运算.专题:计算题;平面向量及应用.分析:对|+|=1,|﹣|=3分别平方并作差可得,由其符号可判断∠AOB为钝角,得到答案.解答:解:由|+|=1,得=1,即①,由|﹣|=3,得,即②,①﹣②得,4=﹣8,解得<0,∴∠AOB为钝角,△OAB为钝角三角形,应选:D.点评:此题考察平面向量数量积运算,属根底题.9.点G是△ABC的重心,假设A=,•=3,那么||的最小值为〔〕A.B.C.D.2考点:平面向量数量积的运算.专题:不等式的解法及应用;平面向量及应用.分析:由A=,•=3,可求得=6,由点G是△ABC的重心,得=,利用不等式那么||2==〔+6〕≥,代入数值可得.解答:解:∵A=,•=3,∴=3,即=6,∵点G是△ABC的重心,∴=,∴||2==〔+6〕≥==2,∴||≥,当且仅当=时取等号,∴||的最小值为,应选B.点评:此题考察平面向量数量积的运算、不等式求最值,注意不等式求最值时适用的条件.10.如图,各棱长都为2的四面体ABCD中,=,=2,那么向量•=〔〕A.﹣B.C.﹣D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:由向量的运算可得=〔〕,=,由数量积的定义可得.解答:解:∵=,=2,∴=〔〕,=,∴=====,∴•=〔〕•〔〕===应选:B点评:此题考察向量数量积的运算,用向量表示未知向量是解决问题的关键,属中档题.11.函数f〔x〕=sin〔2πx+φ〕的局部图象如下图,点B,C是该图象与x轴的交点,过点C的直线与该图象交于D,E两点,那么〔〕•的值为〔〕A.B.C.1D.2考点:平面向量数量积的运算;正弦函数的图象;正弦函数的定义域和值域.专题:平面向量及应用.分析:根据三角函数的图象和性质,求出函数的周期,利用向量的根本运算和向量的数量积定义即可得到结论.解答:解:∵函数f〔x〕=sin〔2πx+φ〕的周期T=,那么BC=,那么C点是一个对称中心,那么根据向量的平行四边形法那么可知:=2•∴〔〕•==2×=.点评:此题主要考察向量的数量积运算,利用三角函数的图象和性质是解决此题的关键.12.P为三角形ABC部任一点〔不包括边界〕,且满足(﹣〕•〔+﹣2〕=0,那么△ABC的形状一定为〔〕A.等边三角形B.直角三角形C.钝三角形D.等腰三角形考点:平面向量数量积的运算.专题:平面向量及应用.分析:利用向量的三角形法那么和平行四边形法那么、向量垂直于数量积的关系即可得出.解答:解:∵,=,〔﹣〕•〔+﹣2〕=0,∴=0.而一定经过边AB的中点,∴垂直平分边AB,即△ABC的形状一定为等腰三角形.点评:此题考察了向量的三角形法那么和平行四边形法那么、向量垂直于数量积的关系、等腰三角形的定义,考察了推理能力,属于难题.13.如下图,设P为△ABC所在平面的一点,并且=+,那么△ABP与△ABC的面积之比等于〔〕A.B.C.D.考点:向量在几何中的应用.专题:计算题;压轴题.分析:此题考察的知识点是向量在几何中的应用,及三角形面积的性质,由△ABP与△ABC为同底不等高的三角形,故高之比即为两个三角面积之间,连接CP并延长后,我们易得到CP与CD长度的关系,进展得到△ABP的面积与△AB C面积之比.解答:解:连接CP并延长交AB于D,∵P、C、D三点共线,∴=λ+μ,且λ+μ=1设=k,结合=+,得=+由平面向量根本定理解之,得λ=,k=3且μ=,∴=+,可得=,∵△ABP的面积与△ABC有一样的底边AB高的比等于||与||之比∴△ABP的面积与△ABC面积之比为,应选:C点评:三角形面积性质:同〔等〕底同〔等〕高的三角形面积相等;同〔等〕底三角形面积这比等于高之比;同〔等〕高三角形面积之比等于底之比.14.在△ABC中,|AB|=3,|AC|=2,=,那么直线AD通过△ABC的〔〕A.垂心B.外心C.重心D.心考点:向量在几何中的应用.专题:综合题;平面向量及应用.分析:首先根据条件可知||=||=,又因为=,设=,=,由向量加法的平行四边形法那么可知四边形AEDF为菱形,从而可确定直线AD通过△ABC的心.解答:解:∵|AB|=3,|AC|=2∴||=||=.设=,=,那么||=||,∴==+.由向量加法的平行四边形法那么可知,四边形AEDF为菱形.∴AD为菱形的对角线,∴AD平分∠EAF.∴直线AD通过△ABC的心.应选:D.点评:此题考察向量加法的平行四边形法那么及其几何意义,属于中档题.15.在△ABC中,∠BAC=60°,AB=2,AC=1,E,F为边BC的三等分点,那么=〔〕A.B.C.D.考点:向量在几何中的应用;平面向量数量积的运算.专题:计算题.分析:先判定三角形形状,然后建立直角坐标系,分别求出,向量的坐标,代入向量数量积的运算公式,即可求出答案.解答:解:∵在△ABC中,∠BAC=60°,AB=2,AC=1,∴根据余弦定理可知BC=由AB=2,AC=1,BC=满足勾股定理可知∠BCA=90°以C为坐标原点,CA、CB方向为x,y轴正方向建立坐标系∵AC=1,BC=,那么C〔0,0〕,A〔1,0〕,B〔0,〕又∵E,F分别是Rt△ABC中BC上的两个三等分点,那么E〔0,〕,F〔0,〕那么=〔﹣1,〕,=〔﹣1,〕∴=1+=应选A.点评:此题考察的知识点是平面向量数量积的运算,其中建立坐标系,将向量数量积的运算坐标化可以简化此题的解答过程.16.空间向量满足,且的夹角为,O为空间直角坐标系的原点,点A、B满足,,那么△OAB的面积为〔〕A.B.C.D.考点:平面向量数量积的运算;三角形的面积公式.专题:平面向量及应用.分析:由向量的运算可得,,以及,代入夹角公式可得cos∠BOA,由平方关系可得sin∠BOA,代入三角形的面积公式S=,计算可得.解答:解:由题意可得====,同理可得====,而=〔〕•〔〕==6×12﹣12=,故cos∠BOA===,可得sin∠BOA==,所以△OAB的面积S===.应选B点评:此题考察平面向量的数量积和三角形面积的求解,熟练掌握公式是解决问题的关键,属中档题.17.点P为△ABC一点,且++3=,那么△APB,△APC,△BPC的面积之比等于〔〕A.9:4:1 B.1:4:9 C.3:2:1 D.1:2:3考点:向量在几何中的应用.专题:计算题;压轴题.分析:先将向量式化为两个向量共线的形式,再利用平行四边形法那么及向量数乘运算的几何意义,三角形面积公式确定面积之比解答:解:∵++3=,∴+=﹣+〕,如图:∵,∴∴F、P、G三点共线,且PF=2PG,GF为三角形ABC的中位线∴====2而S△APB=S△ABC∴△APB,△APC,△BPC的面积之比等于3:2:1应选C点评:此题考察了向量式的化简,向量加法的平行四边形法那么,向量数乘运算的几何意义等向量知识,充分利用向量共线是解决此题的关键18.在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,那么=〔〕A.2B.4C.5D.10考点:向量在几何中的应用.专题:计算题;综合题.分析:以D为原点,AB所在直线为x轴,建立坐标系,由题意得以AB为直径的圆必定经过C点,因此设AB=2r,∠CDB=α,得到A、B、C和P各点的坐标,运用两点的距离公式求出|PA|2+|PB|2和|PC|2的值,即可求出的值.解答:解:以D为原点,AB所在直线为x轴,建立如图坐标系,∵AB是Rt△ABC的斜边,∴以AB为直径的圆必定经过C点设AB=2r,∠CDB=α,那么A〔﹣r,0〕,B〔r,0〕,C〔rcosα,rsinα〕∵点P为线段CD的中点,∴P〔rcosα,rsinα〕∴|PA|2=+=+r2cosα,|PB|2=+=﹣r2cosα,可得|PA|2+|PB|2=r2又∵点P为线段CD的中点,CD=r∴|PC|2==r2所以:==10应选D点评:此题给出直角三角形ABC斜边AB上中线AD的中点P,求P到A、B距离的平方和与PC平方的比值,着重考察了用解析法解决平面几何问题的知识点,属于中档题.二.解答题〔共6小题〕19.如图示,在△ABC中,假设A,B两点坐标分别为〔2,0〕,〔﹣3,4〕点C在AB上,且OC平分∠BOA.〔1〕求∠AOB的余弦值;〔2〕求点C的坐标.考点:向量在几何中的应用.专题:综合题.分析:〔1〕由题意可得,把代入可求〔2〕设点C〔x,y〕,由OC平分∠BOA可得cos∠AOC=cos∠BOC即=;再由点C在AB即共线,建立关于x,y的关系,可求解答:解:〔1〕由题意可得,,∴==〔2〕设点C〔x,y〕,由OC平分∠BOA可得cos∠AOC=cos∠BOC∵,∴=∴,∴y=2x①又点C在AB即共线,∴4x+5y﹣8=0②由①②解得,∴点C的坐标为点评:此题注意考察了向量的夹角公式的坐标表示的应用,向量共线的坐标表示在三角形中的应用,解题的关键是借助于图象中的条件,灵活的应用向量的根本知识.20.向量=〔cosθ,sinθ〕和.〔1〕假设∥,求角θ的集合;〔2〕假设,且|﹣|=,求的值.考点:平面向量的坐标运算.专题:计算题.分析:〔1〕由题意和共线向量的等价条件,列出关于角θ的方程,求出θ的一个三角函数值,再根据三角函数求出角θ的集合.〔2〕由题意先求出﹣的坐标,根据此向量的长度和向量长度的坐标表示,列出方程求出cos〔θ﹣〕,由余弦的二倍角公式和θ的围求出的值.解答:解:〔1〕由题意知∥,那么cosθ×cosθ﹣sinθ×〔﹣sinθ〕=0,∴sinθ=1,sinθ=,∴角θ的集合={θ|θ=+2kπ或θ=+2kπ,k∈Z};〔2〕由题意得,﹣=〔cosθ﹣+sinθ,sinθ﹣cosθ〕,∴|﹣|===2=,即cos〔θ﹣〕=,由余弦的二倍角公式得,=①,∵,∴<<,∴<﹣<,即cos〔﹣〕<0,∴由①得cos〔﹣〕=﹣.点评:此题考察了共线向量的坐标表示和向量长度的坐标表示,利用两角正弦〔余弦〕和差公式和二倍角公式进展变形求解,注意由条件求出所求角的围,来确定所求三角函数值的符号.21.如下图,假设D是△ABC的一点,且AB2﹣AC2=DB2﹣DC2.求证:AD⊥BC.考点:向量在几何中的应用.专题:计算题;证明题;平面向量及应用.分析:设=,=,=,=,=,将=+、=+代入2﹣2的式子,化简整理2﹣2=2+2•﹣2•﹣2,结合题意2﹣2=2﹣2化简,可得•〔﹣〕=0,再结合向量的加减法法那么得到•=0,由此结合数量积的性质即可得到AD⊥BC.解答:解:设=,=,=,=,=,那么=+,=+.∴2﹣2=〔+〕2﹣〔+〕2=2+2•﹣2•﹣2.∵由AB2﹣AC2=DB2﹣DC2,得2﹣2=2﹣2,∴2+2•﹣2•﹣2=2﹣2,即•〔﹣〕=0.∵=+=﹣,∴•=•〔﹣〕=0,因此,可得⊥,即AD⊥BC.点评:此题给出三角形ABC满足平方关系的点D,求证AD⊥BC.着重考察了平面向量的加减法那么、向量的数量积及其运算性质等知识,属于中档题.22.向量,,其中A、B是△ABC的角,.〔1〕求tanA•tanB的值;〔2〕假设a、b、c分别是角A、B、C的对边,当C最大时,求的值.考点:平面向量的综合题.专题:计算题.分析:〔1〕根据推断出=0,利用向量的数量积运算结合二倍角公式求得tanA•tanB;〔2〕由于tanA•tanB=>0,利用根本不等式得出当且仅当时,c取得最大值,再利用同角公式求出sinC,sinA,最后由正弦定理求的值.解答:解:〔Ⅰ〕由题意得=0 即,﹣5cos〔A+B〕+4cos〔A﹣B〕=0cosAcosB=9sinAsinB∴tanA•tanB=.〔2〕由于tanA•tanB=>0,且A、B是△ABC的角,∴tanA>0,tanB>0∴=﹣当且仅当取等号.∴c为最大边时,有,tanC=﹣,∴sinC=,sinA=由正弦定理得:=.点评:此题是中档题,考察三角函数的化简与求值,正弦定理的应用,根本不等式的知识,是一道综合题,考察学生分析问题解决问题的能力,公式的熟练程度决定学生的能力的上下.23.向量且,函数f〔x〕=2〔I〕求函数f〔x〕的最小正周期及单调递增区间;〔II〕假设,分别求tanx及的值.考点:平面向量数量积的坐标表示、模、夹角;复合三角函数的单调性.专题:平面向量及应用.分析:〔I〕化简函数f〔x〕=2=2sin〔2x+〕,可得函数的周期,令2kπ﹣≤2x+≤2kπ+,k∈z,求得x的围,即可得到函数的单调递增区间.〔II〕由,求得tanx=,再由==,运算求得结果.解答:〔I〕解:函数f〔x〕=2=2sinxcosx+2cos2x﹣1=sin2x+cos2x=2sin〔2x+〕,故函数的周期为=π,令2kπ﹣≤2x+≤2kπ+,k∈z,求得kπ﹣≤x≤kπ+,故函数的单调递增区间为[kπ﹣,kπ+],k∈z.〔II〕解:假设,那么sinx=cosx,即tanx=.∴====﹣.点评:此题主要考察两个向量的数量积的定义,三角函数的恒等变换及化简求值,正弦函数的增区间,三角函数的周期性和求法,属于中档题.24.,函数f〔x〕=.〔1〕求函数f〔x〕的最小正周期;〔2〕求函数f〔x〕的单调减区间;〔3〕当时,求函数f〔x〕的值域.考点:平面向量的综合题;三角函数中的恒等变换应用;三角函数的周期性及其求法;复合三角函数的单调性.专题:综合题.分析:〔1〕根据向量的数量积公式,结合二倍角公式、辅助角公式化简函数,利用周期公式,可求函数f〔x〕的最小正周期;〔2〕由2kπ+≤2x+≤2kπ+得kπ+≤x≤kπ+,从而可得f〔x〕的单调减区间;〔3〕由,可得,从而可求函数f〔x〕的值域.解答:解:〔1〕∵,,∴函数f〔x〕==5sinxcosx+sin2x+6cos2x===5sin〔2x+〕+∴f〔x〕的最小正周期;〔2〕由2kπ+≤2x+≤2kπ+得kπ+≤x≤kπ+,k∈Z∴f〔x〕的单调减区间为[kπ+,kπ+]〔k∈Z〕〔3〕∵∴∴∴1≤f〔x〕≤即f〔x〕的值域为[1,].点评:此题考察向量知识的运用,考察三角函数的化简,考察函数的单调性与值域,化简函数是关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学平面向量组卷一.选择题(共18小题)1.已知向量与的夹角为θ,定义×为与的“向量积”,且×是一个向量,它的长度|×|=||||sinθ,若=(2,0),﹣=(1,﹣),则|×(+)|=()A.4B.C.6D.22.已知,为单位向量,其夹角为60°,则(2﹣)•=()A.﹣1 B.0C.1D.23.已知向量=(1,),=(3,m),若向量,的夹角为,则实数m=()A.2B.C.0D.﹣4.向量,,且∥,则=()A.B.C.D.5.如图,在△ABC中,BD=2DC.若,,则=()A.B.C.D.6.若向量=(2cosα,﹣1),=(,tanα),且∥,则sinα=()A.B.C.D.7.已知点A(3,0),B(0,3),C(cosα,sinα),O(0,0),若,则的夹角为()A.B.C.D.8.设向量=,=不共线,且|+|=1,|﹣|=3,则△OAB的形状是()A.等边三角形B.直角三角形C.锐角三角形D.钝角三角形9.已知点G是△ABC的重心,若A=,•=3,则||的最小值为()A.B.C.D.210.如图,各棱长都为2的四面体ABCD中,=,=2,则向量•=()A.﹣B.C.﹣D.11.已知函数f(x)=sin(2πx+φ)的部分图象如图所示,点B,C是该图象与x轴的交点,过点C的直线与该图象交于D,E两点,则()•的值为()A.B.C.1D.212.已知P为三角形ABC内部任一点(不包括边界),且满足(﹣)•(+﹣2)=0,则△ABC的形状一定为()A.等边三角形B.直角三角形C.钝三角形D.等腰三角形13.如图所示,设P为△ABC所在平面内的一点,并且=+,则△ABP与△ABC的面积之比等于()A.B.C.D.14.在△ABC中,|AB|=3,|AC|=2,=,则直线AD通过△ABC的()A.垂心B.外心C.重心D.内心15.在△ABC中,∠BAC=60°,AB=2,AC=1,E,F为边BC的三等分点,则=()A.B.C.D.16.已知空间向量满足,且的夹角为,O为空间直角坐标系的原点,点A、B满足,,则△OAB的面积为()A.B.C.D.17.已知点P为△ABC内一点,且++3=,则△APB,△APC,△BPC的面积之比等于()A.9:4:1 B.1:4:9 C.3:2:1 D.1:2:318.在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,则=()A.2B.4C.5D.10二.解答题(共6小题)19.如图示,在△ABC中,若A,B两点坐标分别为(2,0),(﹣3,4)点C在AB上,且OC平分∠BOA.(1)求∠AOB的余弦值;(2)求点C的坐标.20.已知向量=(cosθ,sinθ)和.(1)若∥,求角θ的集合;(2)若,且|﹣|=,求的值.21.如图所示,若D是△ABC内的一点,且AB2﹣AC2=DB2﹣DC2.求证:AD⊥BC.22.已知向量,,其中A、B是△ABC 的内角,.(1)求tanA•tanB的值;(2)若a、b、c分别是角A、B、C的对边,当C最大时,求的值.23.已知向量且,函数f(x)=2(I)求函数f(x)的最小正周期及单调递增区间;(II)若,分别求tanx及的值.24.已知,函数f(x)=.(1)求函数f(x)的最小正周期;(2)求函数f(x)的单调减区间;(3)当时,求函数f(x)的值域.高中数学平面向量组卷(2014年09月24日)参考答案与试题解析一.选择题(共18小题)1.已知向量与的夹角为θ,定义×为与的“向量积”,且×是一个向量,它的长度|×|=||||sinθ,若=(2,0),﹣=(1,﹣),则|×(+)|=()A.4B.C.6D.2考点:平面向量数量积的运算.专题:平面向量及应用.分析:利用数量积运算和向量的夹角公式可得=.再利用平方关系可得,利用新定义即可得出.解答:解:由题意,则,∴=6,==2,=2.∴===.即,得,由定义知,故选:D.点评:本题考查了数量积运算、向量的夹角公式、三角函数的平方关系、新定义,考查了计算能力,属于基础题.2.已知,为单位向量,其夹角为60°,则(2﹣)•=()A.﹣1 B.0C.1D.2考点:平面向量数量积的运算.专题:平面向量及应用.分析:由条件利用两个向量的数量积的定义,求得、的值,可得(2﹣)•的值.解答:解:由题意可得,=1×1×cos60°=,=1,∴(2﹣)•=2﹣=0,故选:B.点评:本题主要考查两个向量的数量积的定义,属于基础题.3.已知向量=(1,),=(3,m),若向量,的夹角为,则实数m=()A.2B.C.0D.﹣考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:由条件利用两个向量的夹角公式、两个向量的数量积公式,求得m的值.解答:解:由题意可得cos===,解得m=,故选:B.点评:本题主要考查两个向量的夹角公式、两个向量的数量积公式的应用,属于基础题.4.向量,,且∥,则=()A.B.C.D.考点:平行向量与共线向量;同角三角函数间的基本关系;诱导公式的作用.专题:计算题;三角函数的求值.分析:根据向量平行的条件建立关于α的等式,利用同角三角函数的基本关系与诱导公式,化简即可得到的值.解答:解:∵,,且∥,∴,即,得sinα=,由此可得=﹣sinα=.故选:B点评:本题给出向量含有三角函数的坐标式,在向量互相平行的情况下求的值.着重考查了同角三角函数的基本关系、诱导公式和向量平行的条件等知识,属于基础题.5.如图,在△ABC中,BD=2DC.若,,则=()A.B.C.D.考点:向量的加法及其几何意义.专题:平面向量及应用.分析:由题意可得=,而,,代入化简可得答案.解答:解:由题意可得=====故选C点评:本题考查平面向量的加法及其几何意义,涉及向量的数乘,属基础题.6.若向量=(2cosα,﹣1),=(,tanα),且∥,则sinα=()A.B.C.D.考点:平面向量共线(平行)的坐标表示.专题:平面向量及应用.分析:直接由向量共线的坐标表示列式计算.解答:解:∵向量=(2cosα,﹣1),=(,tanα),且∥,则2cosα•tanα﹣(﹣1)×=0,即2sinα=.∴.故选:B.点评:共线问题是一个重要的知识点,在高考题中常常出现,常与向量的模、向量的坐标表示等联系在一起,要特别注意垂直与平行的区别.若=(a1,a2),=(b1,b2),则⊥⇔a1a2+b1b2=0,∥⇔a1b2﹣a2b1=0.是基础题.7.已知点A(3,0),B(0,3),C(cosα,sinα),O(0,0),若,则的夹角为()A.B.C.D.考点:平面向量数量积的坐标表示、模、夹角.专题:计算题.分析:根据题意求出的坐标,再由它的模求出角α,进而求出点C的坐标,利用数量积的坐标表示求出和夹角的余弦值,再求出夹角的度数.解答:解:∵A(3,0),C(cosα,sinα),O(0,0),∴=(3+cosα,sinα),∵,∴(3+cosα)2+sin2α=13,解得,cosα=,则α=,即C(,),∴和夹角的余弦值是==,∴和的夹角是.故选:D.点评:本题考查向量线性运算的坐标运算,以及数量积坐标表示的应用,利用向量坐标形式进行运算求出对应向量的模,以及它们的夹角的余弦值,进而结合夹角的范围求出夹角的大小.8.设向量=,=不共线,且|+|=1,|﹣|=3,则△OAB的形状是()A.等边三角形B.直角三角形C.锐角三角形D.钝角三角形考点:平面向量数量积的运算.专题:计算题;平面向量及应用.分析:对|+|=1,|﹣|=3分别平方并作差可得,由其符号可判断∠AOB为钝角,得到答案.解答:解:由|+|=1,得=1,即①,由|﹣|=3,得,即②,①﹣②得,4=﹣8,解得<0,∴∠AOB为钝角,△OAB为钝角三角形,故选:D.点评:本题考查平面向量数量积运算,属基础题.9.已知点G是△ABC的重心,若A=,•=3,则||的最小值为()A.B.C.D.2考点:平面向量数量积的运算.专题:不等式的解法及应用;平面向量及应用.分析:由A=,•=3,可求得=6,由点G是△ABC的重心,得=,利用不等式则||2==(+6)≥,代入数值可得.解答:解:∵A=,•=3,∴=3,即=6,∵点G是△ABC的重心,∴=,∴||2==(+6)≥==2,∴||≥,当且仅当=时取等号,∴||的最小值为,故选B.点评:本题考查平面向量数量积的运算、不等式求最值,注意不等式求最值时适用的条件.10.如图,各棱长都为2的四面体ABCD中,=,=2,则向量•=()A.﹣B.C.﹣D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:由向量的运算可得=(),=,由数量积的定义可得.解答:解:∵=,=2,∴=(),=,∴=====,∴•=()•()===故选:B点评:本题考查向量数量积的运算,用已知向量表示未知向量是解决问题的关键,属中档题.11.已知函数f(x)=sin(2πx+φ)的部分图象如图所示,点B,C是该图象与x轴的交点,过点C的直线与该图象交于D,E两点,则()•的值为()A.B.C.1D.2考点:平面向量数量积的运算;正弦函数的图象;正弦函数的定义域和值域.专题:平面向量及应用.分析:根据三角函数的图象和性质,求出函数的周期,利用向量的基本运算和向量的数量积定义即可得到结论.解答:解:∵函数f(x)=sin(2πx+φ)的周期T=,则BC=,则C点是一个对称中心,则根据向量的平行四边形法则可知:=2•∴()•==2×=.点评:本题主要考查向量的数量积运算,利用三角函数的图象和性质是解决本题的关键.12.已知P为三角形ABC内部任一点(不包括边界),且满足(﹣)•(+﹣2)=0,则△ABC的形状一定为()A.等边三角形B.直角三角形C.钝三角形D.等腰三角形考点:平面向量数量积的运算.专题:平面向量及应用.分析:利用向量的三角形法则和平行四边形法则、向量垂直于数量积的关系即可得出.解答:解:∵,=,(﹣)•(+﹣2)=0,∴=0.而一定经过边AB的中点,∴垂直平分边AB,即△ABC的形状一定为等腰三角形.点评:本题考查了向量的三角形法则和平行四边形法则、向量垂直于数量积的关系、等腰三角形的定义,考查了推理能力,属于难题.13.如图所示,设P为△ABC所在平面内的一点,并且=+,则△ABP与△ABC的面积之比等于()A.B.C.D.考点:向量在几何中的应用.专题:计算题;压轴题.分析:本题考查的知识点是向量在几何中的应用,及三角形面积的性质,由△ABP与△ABC为同底不等高的三角形,故高之比即为两个三角面积之间,连接CP并延长后,我们易得到CP与CD长度的关系,进行得到△ABP 的面积与△ABC面积之比.解答:解:连接CP并延长交AB于D,∵P、C、D三点共线,∴=λ+μ,且λ+μ=1设=k,结合=+,得=+由平面向量基本定理解之,得λ=,k=3且μ=,∴=+,可得=,∵△ABP的面积与△ABC有相同的底边AB高的比等于||与||之比∴△ABP的面积与△ABC面积之比为,故选:C点评:三角形面积性质:同(等)底同(等)高的三角形面积相等;同(等)底三角形面积这比等于高之比;同(等)高三角形面积之比等于底之比.14.在△ABC中,|AB|=3,|AC|=2,=,则直线AD通过△ABC的()A.垂心B.外心C.重心D.内心考点:向量在几何中的应用.专题:综合题;平面向量及应用.分析:首先根据已知条件可知||=||=,又因为=,设=,=,由向量加法的平行四边形法则可知四边形AEDF为菱形,从而可确定直线AD通过△ABC的内心.解答:解:∵|AB|=3,|AC|=2 ∴||=||=.设=,=,则||=||,∴==+.由向量加法的平行四边形法则可知,四边形AEDF为菱形.∴AD为菱形的对角线,∴AD平分∠EAF.∴直线AD通过△ABC的内心.故选:D.点评:本题考查向量加法的平行四边形法则及其几何意义,属于中档题.15.在△ABC中,∠BAC=60°,AB=2,AC=1,E,F为边BC的三等分点,则=()A.B.C.D.考点:向量在几何中的应用;平面向量数量积的运算.专题:计算题.分析:先判定三角形形状,然后建立直角坐标系,分别求出,向量的坐标,代入向量数量积的运算公式,即可求出答案.解答:解:∵在△ABC中,∠BAC=60°,AB=2,AC=1,∴根据余弦定理可知BC=由AB=2,AC=1,BC=满足勾股定理可知∠BCA=90°以C为坐标原点,CA、CB方向为x,y轴正方向建立坐标系∵AC=1,BC=,则C(0,0),A(1,0),B(0,)又∵E,F分别是Rt△ABC中BC上的两个三等分点,则E(0,),F(0,)则=(﹣1,),=(﹣1,)∴=1+=故选A.点评:本题考查的知识点是平面向量数量积的运算,其中建立坐标系,将向量数量积的运算坐标化可以简化本题的解答过程.16.已知空间向量满足,且的夹角为,O为空间直角坐标系的原点,点A、B满足,,则△OAB的面积为()A.B.C.D.考点:平面向量数量积的运算;三角形的面积公式.专题:平面向量及应用.分析:由向量的运算可得,,以及,代入夹角公式可得cos∠BOA,由平方关系可得sin∠BOA,代入三角形的面积公式S=,计算可得.解答:解:由题意可得====,同理可得====,而=()•()==6×12﹣12=,故cos∠BOA===,可得sin∠BOA==,所以△OAB的面积S===.故选B点评:本题考查平面向量的数量积和三角形面积的求解,熟练掌握公式是解决问题的关键,属中档题.17.已知点P为△ABC内一点,且++3=,则△APB,△APC,△BPC的面积之比等于()A.9:4:1 B.1:4:9 C.3:2:1 D.1:2:3考点:向量在几何中的应用.专题:计算题;压轴题.分析:先将已知向量式化为两个向量共线的形式,再利用平行四边形法则及向量数乘运算的几何意义,三角形面积公式确定面积之比解答:解:∵++3=,∴+=﹣+),如图:∵,∴∴F、P、G三点共线,且PF=2PG,GF为三角形ABC的中位线∴====2而S△APB=S△ABC∴△APB,△APC,△BPC的面积之比等于3:2:1故选C点评:本题考查了向量式的化简,向量加法的平行四边形法则,向量数乘运算的几何意义等向量知识,充分利用向量共线是解决本题的关键18.在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD 的中点,则=()A.2B.4C.5D.10考点:向量在几何中的应用.专题:计算题;综合题.分析:以D为原点,AB所在直线为x轴,建立坐标系,由题意得以AB为直径的圆必定经过C点,因此设AB=2r,∠CDB=α,得到A、B、C和P各点的坐标,运用两点的距离公式求出|PA|2+|PB|2和|PC|2的值,即可求出的值.解答:解:以D为原点,AB所在直线为x轴,建立如图坐标系,∵AB是Rt△ABC的斜边,∴以AB为直径的圆必定经过C点设AB=2r,∠CDB=α,则A(﹣r,0),B(r,0),C(rcosα,rsinα)∵点P为线段CD的中点,∴P (rcosα,rsinα)∴|PA|2=+=+r2cosα,|PB|2=+=﹣r2cosα,可得|PA|2+|PB|2=r2又∵点P为线段CD的中点,CD=r∴|PC|2==r2所以:==10 故选D点评:本题给出直角三角形ABC斜边AB上中线AD的中点P,求P到A、B距离的平方和与PC平方的比值,着重考查了用解析法解决平面几何问题的知识点,属于中档题.二.解答题(共6小题)19.如图示,在△ABC中,若A,B两点坐标分别为(2,0),(﹣3,4)点C在AB上,且OC平分∠BOA.(1)求∠AOB的余弦值;(2)求点C的坐标.考点:向量在几何中的应用.专题:综合题.分析:(1)由题意可得,把已知代入可求(2)设点C(x,y),由OC平分∠BOA可得cos∠AOC=cos∠BOC即=;再由点C在AB即共线,建立关于x,y的关系,可求解答:解:(1)由题意可得,,∴==(2)设点C(x,y),由OC平分∠BOA可得cos∠AOC=cos∠BOC∵,∴=∴,∴y=2x①又点C在AB即共线,∴4x+5y﹣8=0②由①②解得,∴点C的坐标为点评:本题注意考查了向量的夹角公式的坐标表示的应用,向量共线的坐标表示在三角形中的应用,解题的关键是借助于已知图象中的条件,灵活的应用向量的基本知识.20.已知向量=(cosθ,sinθ)和.(1)若∥,求角θ的集合;(2)若,且|﹣|=,求的值.考点:平面向量的坐标运算.专题:计算题.分析:(1)由题意和共线向量的等价条件,列出关于角θ的方程,求出θ的一个三角函数值,再根据三角函数求出角θ的集合.(2)由题意先求出﹣的坐标,根据此向量的长度和向量长度的坐标表示,列出方程求出cos(θ﹣),由余弦的二倍角公式和θ的范围求出的值.解答:解:(1)由题意知∥,则cosθ×cosθ﹣sinθ×(﹣sinθ)=0,∴sinθ=1,sinθ=,∴角θ的集合={θ|θ=+2kπ或θ=+2kπ,k∈Z};(2)由题意得,﹣=(cosθ﹣+sinθ,sinθ﹣cosθ),∴|﹣|===2=,即cos(θ﹣)=,由余弦的二倍角公式得,=①,∵,∴<<,∴<﹣<,即cos(﹣)<0,∴由①得cos(﹣)=﹣.点评:本题考查了共线向量的坐标表示和向量长度的坐标表示,利用两角正弦(余弦)和差公式和二倍角公式进行变形求解,注意由已知条件求出所求角的范围,来确定所求三角函数值的符号.21.如图所示,若D是△ABC内的一点,且AB2﹣AC2=DB2﹣DC2.求证:AD⊥BC.考点:向量在几何中的应用.专题:计算题;证明题;平面向量及应用.分析:设=,=,=,=,=,将=+、=+代入2﹣2的式子,化简整理2﹣2=2+2•﹣2•﹣2,结合题意2﹣2=2﹣2化简,可得•(﹣)=0,再结合向量的加减法法则得到•=0,由此结合数量积的性质即可得到AD⊥BC.解答:解:设=,=,=,=,=,则=+,=+.∴2﹣2=(+)2﹣(+)2=2+2•﹣2•﹣2.∵由已知AB2﹣AC2=DB2﹣DC2,得2﹣2=2﹣2,∴2+2•﹣2•﹣2=2﹣2,即•(﹣)=0.∵=+=﹣,∴•=•(﹣)=0,因此,可得⊥,即AD⊥BC.点评:本题给出三角形ABC内满足平方关系的点D,求证AD⊥BC.着重考查了平面向量的加减法则、向量的数量积及其运算性质等知识,属于中档题.22.已知向量,,其中A、B是△ABC的内角,.(1)求tanA•tanB的值;(2)若a、b、c分别是角A、B、C的对边,当C最大时,求的值.考点:平面向量的综合题.专题:计算题.分析:(1)根据推断出=0,利用向量的数量积运算结合二倍角公式求得tanA•tanB;(2)由于tanA•tanB=>0,利用基本不等式得出当且仅当时,c取得最大值,再利用同角公式求出sinC,sinA,最后由正弦定理求的值.解答:解:(Ⅰ)由题意得=0 即,﹣5cos(A+B)+4cos(A﹣B)=0cosAcosB=9sinAsinB∴tanA•tanB=.(2)由于tanA•tanB=>0,且A、B是△ABC的内角,∴tanA>0,tanB>0∴=﹣当且仅当取等号.∴c为最大边时,有,tanC=﹣,∴sinC=,sinA=由正弦定理得:=.点评:本题是中档题,考查三角函数的化简与求值,正弦定理的应用,基本不等式的知识,是一道综合题,考查学生分析问题解决问题的能力,公式的熟练程度决定学生的能力的高低.23.已知向量且,函数f(x)=2(I)求函数f(x)的最小正周期及单调递增区间;(II)若,分别求tanx及的值.考点:平面向量数量积的坐标表示、模、夹角;复合三角函数的单调性.专题:平面向量及应用.分析:(I)化简函数f(x)=2=2sin(2x+),可得函数的周期,令2kπ﹣≤2x+≤2kπ+,k∈z,求得x的范围,即可得到函数的单调递增区间.(II)由,求得tanx=,再由==,运算求得结果.解答:(I)解:函数f(x)=2=2sinxcosx+2cos2x﹣1=sin2x+cos2x=2sin(2x+),故函数的周期为=π,令2kπ﹣≤2x+≤2kπ+,k∈z,求得kπ﹣≤x≤kπ+,故函数的单调递增区间为[kπ﹣,kπ+],k∈z.(II)解:若,则sinx=cosx,即tanx=.∴====﹣.点评:本题主要考查两个向量的数量积的定义,三角函数的恒等变换及化简求值,正弦函数的增区间,三角函数的周期性和求法,属于中档题.24.已知,函数f(x)=.(1)求函数f(x)的最小正周期;(2)求函数f(x)的单调减区间;(3)当时,求函数f(x)的值域.考点:平面向量的综合题;三角函数中的恒等变换应用;三角函数的周期性及其求法;复合三角函数的单调性.专题:综合题.分析:(1)根据向量的数量积公式,结合二倍角公式、辅助角公式化简函数,利用周期公式,可求函数f(x)的最小正周期;(2)由2kπ+≤2x+≤2kπ+得kπ+≤x≤kπ+,从而可得f(x)的单调减区间;(3)由,可得,从而可求函数f(x)的值域.解答:解:(1)∵,,∴函数f(x)==5sinxcosx+sin2x+6cos2x===5sin(2x+)+∴f(x)的最小正周期;(2)由2kπ+≤2x+≤2kπ+得kπ+≤x≤kπ+,k∈Z∴f(x)的单调减区间为[kπ+,kπ+](k∈Z)(3)∵∴∴∴1≤f(x)≤即f(x)的值域为[1,].点评:本题考查向量知识的运用,考查三角函数的化简,考查函数的单调性与值域,化简函数是关键.。

相关文档
最新文档