4.2算符的矩阵表示

合集下载

算符的矩阵表示_

算符的矩阵表示_
例 一电子处于态Ψ32m ,测力学量L2,测量值为几? 测量值为几? ∧ Lz可能取哪些值? 可能取哪些值?在Lz表象中, 表象中,Lz自身的矩阵形式是什么? 自身的矩阵形式是什么?
2 2 ˆ L ψ = l ( l + 1 ) h ψ 32 m 解: 32 m = 2(2 + 1)h 2ψ 32 m 2 = 6h ψ 32 m ˆ ψ = mhψ L z 32 m 32 m
p47 (3.1-8)式

=
{∫ u
* nm
* n
ˆ u ( x ) dx (x)F m
}
*
=F
厄密算符的矩阵 厄密算符的矩阵 是厄密矩阵
* ˆ Fnm = ∫ un F ( x ,− ih ∂ )um ( x ) dx ∂x
7 算符的矩阵表示
对角矩阵与单位矩阵: 对角矩阵与单位矩阵:
对角矩阵
An ( m = n ) Anm = Anδ nm = 0 ( m ≠ n ) 除对角元外其余为零
§4-2-2 厄密算符的矩阵
* * A A A13 * 11 12 A = 复共轭 A* A* A23 21 22
* A13 * A23
m列n行 n 列m 行 转置矩阵: 转置矩阵:把矩阵A * * A A A A 的行和列互相调换, 的行和列互相调换, 11 21 11 21 * ~ + * 所得新矩阵称为A的 A = A A 共轭矩阵 A = A12 A22 12 22 转置矩阵 A* A* A A
+
~ * * A → ( A ) mn = ( Amn ) = Anm + * 定义矩阵A 的共轭矩阵 Amn = Anm

态和力学量的表象

态和力学量的表象

动量表象下的薛定谔方程(一维) 动量表象下的薛定谔方程(一维)
在动量表象中, 在动量表象中,动量算符就是动量自身 是势能算符, 是势能算符,即以坐标算符 对应于势能函数) 数(对应于势能函数) 为变量的算符函

动量表象(2/4) 动量表象(2/4)
谐振子势
坐标表象中的薛定谔方程
动量表象中的薛定谔方程
对于谐振子势,在动量表象中是二阶微分方程,求解类似于 对于谐振子势,在动量表象中是二阶微分方程,求解类似于 二阶微分方程 在坐标表象中的求解,不能简化求解过程 在坐标表象中的求解,不能简化求解过程

动量表象(3/4) 动量表象(3/4)
线性势
坐标表象、 坐标表象、动量表象中的薛定谔方程
对于线性势,在动量表象中的方程是简单的一阶微分方程 对于线性势,在动量表象中的方程是简单的一阶微分方程 与第二章“一维线性势阱”的结果一致) 求解 (与第二章“一维线性势阱”的结果一致)
算符 的表示的变换 表象中: 在 F 表象中:基矢为 表象中: 在 F' 表象中:基矢为
,算符 的矩阵元为 ,算符 的矩阵元为

线性谐振子与占有数表象(1/2) 线性谐振子与占有数表象(1/2)
线性谐振子的能级和波函数 湮灭算符 和产生算符
Microsoft Word 文档
为单位改变, 谐振子能量以 为单位改变,将这个 看作一个粒子 即粒子数减一, 使体系由 态变到 态,即粒子数减一,称湮灭算符 即粒子数加一, 使体系由 态变到 态,即粒子数加一,称产生算符

动量表象(1/4) 动量表象(1/4)
坐标表象和动量表象的对比
坐标表象的优点 容易写出边界条件,例如: 容易写出边界条件,例如:区分束缚态和散射态 容易表述常用的势,例如:方势、线性势、 容易表述常用的势,例如:方势、线性势、谐振子势 动量表象的优点 某些势场下的薛定谔方程比较简单, 某些势场下的薛定谔方程比较简单,容易求解

20力学量算符和量子力学公式的矩阵表示

20力学量算符和量子力学公式的矩阵表示

* m
x
n
dx
1
n
2
m,n1
n
2
1
dx
n dx
ih
n
2
m,n1
n
2
1
m,n1
Hmn
* m

n
dx
Enm,n
n
1 2
h
m,n
所以,它们的矩阵表示分别是
0 1 0 0
1 0 2 0
x
1
2
0 0
20
3
0 3 0
0
1 0 0
(x,t) Fˆ (x,t)
把波函数 (、x,t) 分别(x,向t) 展开{g (x)}
(x,t) ag (t)g (x)dg
(x,t) bg (t)g (x)dg
代入到算符方程中,得
bg (t)g (x)dg ag (t)Fˆg (x)dg
上式两端做运算 g*, L得dx
bg (t)
bk (t) Fk1
F12 F22
Fk 2
F1k a1 (t)
F2k a2 (t)
Fkk ak (t)
或简写为 2.本征方程
bm (t) Fmnan (t)
n
Fˆ (x,t) (x,t)
F11 F12 F1k a1 (t) a1 (t)
(2)不论在任何具体表象中,任何厄米算符 的Fˆ矩阵元 一F定mn 是 一个数值,故其可以在公式中随意移动位置;
(3)在不同的表象中,算符的矩阵元可能会不同,但是该算符 的本征值不会改变;
(4)如果的本征值为连续谱,则
Gˆg (x) gg (x)
{g (x构)}成正交归一完备基矢组。

N(四章2讲)算符与公式的矩阵表示

N(四章2讲)算符与公式的矩阵表示
行列式等于零
F11 f F21 Fn1 F12 F22 f Fn 2 F1n 0 Fnn f (2)
久期方程
解久期方程可以得到所有本征值: f1 , f 2 ,..., f n ,...
把 f i 代入方程(1)可得 属于本征值 f i 的本征函数
F an (t ) f n
2 n
2.本征值方程
F f
F11 F12 F1n a 1 (t ) a (t ) 2 F21 F22 Fn1 Fn 2 Fnn a n (t ) F11 f F21 Fn1 F12 F22 f Fn 2 Fnn f F1n a 1 (t ) a 2 (t ) f a n (t ) a 1 (t ) a ( t ) 2 0 a n (t )
F a (t )Fmn an (t )
* m m, n
* F am (t )Fmn an (t ) m, n
F11 F12 F21 F12 * * F a1 (t ), , am (t ) Fm1 (续7)
F1n a1 (t ) F1n a2 (t ) Fmn an (t )
F
b1 (t ) a1 (t ) b2 (t ) F? a2 (t ) a (t ) bn (t ) m
1.算符的矩阵表示

量子力学期末考试试卷及答案集

量子力学期末考试试卷及答案集

量子力学试题集量子力学期末试题及答案(A)选择题(每题3分共36分)1.黑体辐射中的紫外灾难表明:CA. 黑体在紫外线部分辐射无限大的能量;B. 黑体在紫外线部分不辐射能量;C.经典电磁场理论不适用于黑体辐射公式;D.黑体辐射在紫外线部分才适用于经典电磁场理论。

2.关于波函数Ψ的含义,正确的是:BA. Ψ代表微观粒子的几率密度;B. Ψ归一化后,ψψ*代表微观粒子出现的几率密度;C. Ψ一定是实数;D. Ψ一定不连续。

3.对于偏振光通过偏振片,量子论的解释是:DA. 偏振光子的一部分通过偏振片;B.偏振光子先改变偏振方向,再通过偏振片;C.偏振光子通过偏振片的几率是不可知的;D.每个光子以一定的几率通过偏振片。

4.对于一维的薛定谔方程,如果Ψ是该方程的一个解,则:AA.*ψ一定也是该方程的一个解;B.*ψ一定不是该方程的解;C. Ψ与*ψ一定等价;D.无任何结论。

5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:CA. 粒子在势垒中有确定的轨迹;B.粒子在势垒中有负的动能;C.粒子以一定的几率穿过势垒;D粒子不能穿过势垒。

6.如果以∧l表示角动量算符,则对易运算],[yxll为:BA. ih∧z lB. ih∧z lC.i∧x l D.h∧xl7.如果算符∧A 、∧B 对易,且∧A ψ=Aψ,则:BA.ψ 一定不是∧B 的本征态; B.ψ一定是 ∧B 的本征态; C.*ψ一定是∧B 的本征态;D. ∣Ψ∣一定是∧B 的本征态。

8.如果一个力学量∧A 与H∧对易,则意味着∧A :CA. 一定处于其本征态;B.一定不处于本征态;C.一定守恒;D.其本征值出现的几率会变化。

9.与空间平移对称性相对应的是:B A. 能量守恒; B.动量守恒; C.角动量守恒; D.宇称守恒。

10.如果已知氢原子的 n=2能级的能量值为-3.4ev ,则 n=5能级能量为:D A. -1.51ev; B.-0.85ev; C.-0.378ev; D. -0.544ev11.三维各向同性谐振子,其波函数可以写为nlm ψ,且 l=N-2n ,则在一确定的能量 (N+23)h ω下,简并度为:BA.)1(21+N N ; B.)2)(1(21++N N ;C.N(N+1);D.(N+1)(n+2)12.判断自旋波函数 )]1()2()2()1([21βαβαψ+=s 是什么性质:CA. 自旋单态;B.自旋反对称态;C.自旋三态;D.z σ本征值为1.二 填空题(每题4分共24分)1.如果已知氢原子的电子能量为eV nE n 26.13-= ,则电子由n=5 跃迁到n=4 能级时,发出的光子能量为:———————————,光的波长为———— ————————。

第五章量子力学的矩阵形式和表象变换

第五章量子力学的矩阵形式和表象变换

例题: 例题:一维粒子运动的状态是
Axe , x ≥ 0 ψ ( x) = { 0, x ≤ 0
求1)粒子动量的几率分布; )粒子动量的几率分布; 2)粒子的平均动量 )

− λx
∫x
0
ν −1 − µx
e
dx =
1
µ
ν
(ν − 1)! (ν ∈ N 0 )
解:由于波函数为归一化,首先要对波函数进行归一化 由于波函数为归一化,


0
( x − λx )e
2
− 2 λx
dx
3. 能量表象
考虑任意力学量Q本征值为λ 考虑任意力学量 本征值为λ1, λ 2,…, λ n…,对应的正交本 本征值为 对应的正交本 则任意波函数ψ ) 征函数 u1(x), u 2 (x),… u n (x) …, 则任意波函数ψ(x)按Q的 的 本征函数展开为 本征函数展开为
P2 H = T +V = + Fx 2m
在动量表象中, 的 在动量表象中,x的 算符表示为
1 ψ p (x) = e 1/ 2 (2πh)
i px x h
i px x h
d i 1 ψ p ( x) = x e 1/ 2 dp h (2πh )
d i ˆ = xψ p ( x) x = ih dp h
总结
直角坐标系中,矢量 的方向由 三个单位矢量基 直角坐标系中,矢量A的方向由i,j,k三个单位矢量基 三个单位矢量 决定,大小由 三个分量(基矢的系数)决定。 矢决定,大小由Ax,Ay,Az三个分量(基矢的系数)决定。
在量子力学中,选定一个 表象 表象, 在量子力学中,选定一个F表象,将Q的本征函数 的本征函数 u1(x), u2(x),… un(x),…看作一组基矢,有无限多个。 看作一组基矢 看作一组基矢,有无限多个。 大小由a1(t), a2(t), …an(t),…系数决定。 大小由 系数决定。 系数决定 所以,量子力学中态矢量所决定的空间是无限维的 所以,量子力学中态矢量所决定的空间是无限维的 空间函数,基矢是正交归一的波函数。 空间函数,基矢是正交归一的波函数。数学上称为 希尔伯特( 希尔伯特(Hilbert)空间 )空间. 常用的表象有坐标表象、动量表象、 常用的表象有坐标表象、动量表象、能量表象和角 动量表象

第四章 表象理论1

第四章 表象理论1

(4.2-6)
因此算符 在Q表象中是一个矩阵, (4.2-6)式也可简写为:
称为矩阵元。
(4.2-7)
说明: 力学量算符 于表象基矢
在 表象中的矩阵元 依赖
2. 厄密矩阵 对其取复共轭得到 根据厄密算符的定义
故有:
(4.2-8)
(4.2-8)式表示算符在Q表象中的表示是一个厄密矩阵 。
补充: 1、转置矩阵:矩阵A的行列互换,所得的新矩阵称 为矩阵A的转置矩阵,用符号 表示。 即:如果,则由(43) 得到(4.1-5)
在动量表象中, 粒子具有确定动量p’ 的波函数是以动 量p为变量的函数: 同理可得: 在坐标表象中, 粒子具有确定坐标x’ 的波函数是以坐标x 为变量的函数: 坐标算符的本征值方程为:
(4.1-6)
2. 一般情况 在任意力学量Q 的表象中, 假设具有分立的本征值, 对应的本征函数是 :
体系的归一化条件 写成矩阵形式: 对表象的理解: (1) 状态ψ : 态矢量
(4.1-13)
(2) Q表象: 坐标系 (无限维希耳伯特空间)。
(3) 本征函数: (4) 基矢量的分量。
坐标系的基矢量。 是态矢量ψ 在表象中沿各
态矢 在 表象基矢上的分量
构成了 在 表象中的
表示 ,由于
构成的空间维数可以是无穷的,甚至是不
故有:
内容小节
1、表象:量子力学中状态和力学量的具体表示方式 2、ψ(x,t) 态在动量表象中的表示:
其中: 3、ψ(x,t) 态在Q表象中的波函数是:
4、力学量F在Q表象中的表示 力学量F在Q表象中的表示是一个矩阵:
其中矩阵元: 算符在自身表象中是一个对角矩阵。
§4.3 量子力学公式的矩阵表述

第四章矩阵力学基础——表象理论

第四章矩阵力学基础——表象理论

第四章矩阵力学基础——表象理论部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑第四章矩阵力学基础(Ⅱ>——表象理论4.1态和算符的表象表示1.态的表象表示(1> 坐标表象以坐标算符的本征态为基底构成的表象称为坐标表象。

以一维的x 坐标为例。

算符本征方程是(4-1-1>本征函数是量子态总可按x的本征函数系展开,得<4.1.2)展开系数必就是该量子态在x表象的表示,即波函数。

(2> 动量表象以动量算符的本征态为基底构成的表象是动量表象。

选x为自变量,动量算符的本征函数是平面波。

以动量算符为例,其本征态为:b5E2RGbCAP(4 .1 .3>将量子态按展开(4 .1 .4>C(px>就是动量表象中的波函数。

这正是第二章中已熟知的结果。

动量表象也可以用动量为自变量表示。

在Px表象中,粒子具有确定动量分量Px的波函数是以Px为自变量的函数p1EanqFDPw<4.1.5)在动量表象中的波函数也可以用类似于(4. 1. 2>式的方式给出。

(3> 任意表象设有某一线性厄M算符。

为叙述方便起见,假定算符具有分立本征值谱。

它的本征方程为(4.1.6>将波函数按算符的正交归一本征函数系展开<4.1.7)展开系数{an(t>}就是波函数必在Q表象中的表示。

它可由的正交归一性推出。

将(4.1.7>式两边分别乘并对空间积分,得DXDiTa9E3d(4 .1 .8>an(t>的物理意义是:当体系处在以(r,t>所描述的状态时,力学量Q具有确定值Qn的概率是具有和波函数统计解释相同的概率解释。

因此我们可以用一组系数RTCrpUDGiT{(t>}代替户(,t>来描述该状态。

将数列 a 1(t>,a2(t>,…,an(t>,…写成一个列矩阵,则(r,t>在Q表象的表示为5PCzVD7HxA<4.1.9)它的共轭矩阵是<4.1.10)归一条件是<4.1.10)(4.1.9>式是波函数在Q表象中的表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

这些实数的对角矩阵元即为算符 Q 的本征值 {Qm } 对于连续谱,矩阵元写成为连续变量下标, 对于连续谱,矩阵元写成为连续变量下标,行和列是 不可数的
Fq′q′′
∂ = ∫ u ( x) F ( x,−ih )u q′′ ( x)dx ∂x
* q′ ∧
(4.2-10) )
写成矩阵形式如下
b1 F11 b2 F21 = b3 F31 b4 M
F12 F22 F32 M
F13 F23 F33 M
L a1 L a2 L a3 O M
(4.2 − 6)
* Fmm = Fmm
即对角元为实数 (3)由共轭矩阵(转置取复共轭)的定义知 )由共轭矩阵(转置取复共轭) ~* + * Fmn = Fmn = Fnm = Fmn 这样的矩阵称为厄米矩阵
在自身表象中的矩阵为对角矩阵, 算符F 在自身表象中的矩阵为对角矩阵,即当
F =Q
∧ ∧

时,有 ∧ * Qnm = ∫ u n ( x) Qu m ( x)dx = Qmδ nm (4.2-9) )
(4.2 − 2) (4.2 − 3)

令 则
ˆ Fmn = ∫ um* ( x) Fun ( x)dx bm = ∑ an Fmn = ∑ Fmn an
n n
(4.2 − 4) (m = 1, 2,L) (4.2 − 5)
b1 = F11 a 1 + F12 a 2 + F13 a 3 + L b 2 = F 21 a 1 + F 22 a 2 + F 23 a 3 + L b 3 = F 31 a 1 + F 32 a 2 + F 33 a 3 + L LL
§4.2
在坐标表象中: 在坐标表象中:
ˆ 表象中: 在 Q 表象中:
算符的矩阵表示
(4.2-1)
ˆ Fψ (x,t) = ϕ (x,t)
ψ ( x, t) = ϕ ( x, t ) =

n
a n ( t ) u n ( x ), b n ( t )u n ( x ),
a n (t ) = bn (t ) =
讨论 ∧ ∂ F ( x,−ih ) 在 Q 表象中的矩阵元Fnm 依赖于 Q (1)力学量算符 ) ∂x * 表象基矢 u n ( x), u m ( x) ∧ (2)厄米算符 F 在 Q 表象中的矩阵 F ,其对角矩阵元互为 ) 共轭复数 * Fnm = Fmn (4.2-8) ) 当 m = n 时 对角元
∫ u n ( x )ψ ( x , t ) dx
*∑Βιβλιοθήκη n∫ u n ( x )ϕ ( x , t ) dx
*

n
ˆ bn (t )u n ( x ) = F

n
a n ( t )u n ( x )
乘以上式并积分, 以 um* 乘以上式并积分,得
∗ ∗ ˆ bn ∫ um ( x)un ( x)dx = ∑ an ∫ um ( x) Fun ( x)dx ∑ n n ∗ ˆ bnδ mn = bm = ∑ an ∫ um ( x) Fun ( x)dx ∑ n n
相关文档
最新文档