Dsp软件实验

Dsp软件实验
Dsp软件实验

MATLAB仿真实验报告

——数字信号处理课

专业:电子科学与技术

班级:

学号:

姓名:

Beijing University of Posts and Telecommunications

实验一:数字信号的 FFT 分析

1、实验内容及要求

(1) 离散信号的频谱分析: 设信号 此信号的0.3pi 和 0.302pi 两根谱线相距很近,谱线 0.45pi 的幅度很小,请选择合适的序列长度 N 和窗函数,用 DFT 分析其频谱,要求得到清楚的三根谱线。

(2) DTMF 信号频谱分析

用计算机声卡采用一段通信系统中电话双音多频(DTMF )拨号数字 0~9的数据,采用快速傅立叶变换(FFT )分析这10个号码DTMF 拨号时的频谱。

2、实验目的

通过本次实验,应该掌握:

(a) 用傅立叶变换进行信号分析时基本参数的选择。

(b) 经过离散时间傅立叶变换(DTFT )和有限长度离散傅立叶变换(DFT ) 后信号频谱上的区别,前者 DTFT 时间域是离散信号,频率域还是连续的,而 DFT 在两个域中都是离散的。

(c) 离散傅立叶变换的基本原理、特性,以及经典的快速算法(基2时间抽选法),体会快速算法的效率。

(d) 获得一个高密度频谱和高分辨率频谱的概念和方法,建立频率分辨率和时间分辨率的概念,为将来进一步进行时频分析(例如小波)的学习和研究打下基础。 (e) 建立 DFT 从整体上可看成是由窄带相邻滤波器组成的滤波器组的概念,此概念的一个典型应用是数字音频压缩中的分析滤波器,例如 DVD AC3 和MPEG Audio 。

3、实验结果

(1) 离散信号的频谱分析:

【实验代码】: 源程序:

注释: N=1000;

n=[0:1:N-1]; x=0.001*cos(0.45*pi*n)+sin(0.3*pi*n)-cos(0.302*pi*n-pi/4); subplot(2,1,1); stem(n,x);

title('x(n)波形');xlabel('n');ylabel('幅度');

axis([0,N,-2.5,2.5])

X=fft(x,N);

%取样点数 %离散信号 %绘制第一张图 %快速傅里叶变换,matlab 自带

fft 函数 00010450303024().*cos(.)sin(.)cos(.)x n n n n ππππ=+--

magX=abs(X(1:1:(N/2+1)));

k=0:1:N/2;

w=2*pi/N*k;

subplot(2,1,2);

stem(w/pi,magX);

title('x(n)FFT 频谱图');xlabel('频率');ylabel('幅值');

axis([0.25,0.5,0,3])

%绘制第二张图

【实验波形】:

(2) DTMF 信号频谱分析 【实验代码】:

源程序:

注释: [x,fs,bits]=wavread('soundwave');

len=length(x)

n=0:1:len-1;

subplot(2,1,1);

plot(x);

title('拨号声音信号波形');xlabel('n');

xm=fft(x,len); %以fs 取样频率读取下面题目中产生的

soundwave 文件

%信号长度 %绘制第一张图 %快速傅里叶变换,

k=0:len/2;w=2*pi/len*k;

subplot(2,1,2);stem(w/pi,abs(xm(1:(len/2+1))),'.');

title('2|o拨号声音信号的FFT');

xlabel('频率/10^4')

matlab 自带fft 函数 %绘制第二张图,拨号信号的频谱图在一块

【实验波形】:

实验二: DTMF 信号的编码

1、实验内容及要求

1)把您的联系电话号码 通过DTMF 编码生成为一个 .wav 文件。

技术指标:

根据 ITU Q.23 建议,DTMF 信号的技术指标是:传送/接收率为

每秒 10 个号码,或每个号码 100ms 。

每个号码传送过程中,信号存在时间至少 45ms ,且不多于 55ms ,

100ms 的其余时间是静音。

在每个频率点上允许有不超过 ±1.5% 的频率误差。任何超过给定

频率 ±3.5% 的信号,均被认为是无效的,拒绝接收。

(其中关键是不同频率的正弦波的产生。可以使用查表方式模拟产生两个不同频率的正弦波。正弦表的制定要保证合成信号的频率误差在±1.5%以内,同时使取样点数尽量少)

2)对所生成的DTMF 文件进行解码。DTMF 信号解码可以采用 FFT 计算 N

点频率处的频谱值,然后估计出所拨号码。但 FFT 计算了许多不需要的值,计算量太大,而且为保证频率分辨率,FFT 的点数较大,不利于实时实现。因此,FFT 不适合于 DTMF 信号解码的应用。

由于只需要知道 8 个特定点的频谱值,因此采用一种称为 Goertzel 算法

的 IIR 滤波器可以有效地提高计算效率。其传递函数为:

2、实验目的

(a)复习和巩固 IIR 数字滤波器的基本概念;

(b)掌握 IIR 数字滤波器的设计方法;

(c)掌握 IIR 数字滤波器的实现结构;

(d)能够由滤波器的实现结构分析滤波器的性能(字长效应);

(e)了解通信系统电话 DTMF 拨号的基本原理和 IIR 滤波器实现方法。

3、实验结果 【实验代码】:

源程序:

注释: d=input('???üè?μ??°o???£o ','s');

sum=length(d);

total_x=[];

sum_x=[];

sum_x=[sum_x,zeros(1,800)];

for a=1:sum

symbol=abs(d(a));

tm=[49,50,51,65;

52,53,54,66;

55,56,57,67;

42,48,35,68];

for p=1:4;

for q=1:4;

if tm(p,q)==abs(d(a)); break ,end

end

if tm(p,q)==abs(d(a)); break ,end

end

f1=[697,770,852,941];

f2=[1209,1336,1477,1633];

n=1:400;

x=sin(2*pi*n*f1(p)/8000) + sin(2*pi*n*f2(q)/8000); x=[x,zeros(1,400)];

sum_x=sum_x+x; %输入电话号码 %循环sum 次 %求输入的ASCII 码 %DTMF 表中键的16个ASCII 码 %检测码相符的列号q %检测码相符的行号p %行频率向量 %列频率向量 %构成双频信号 %将所编码连接起来

2/1

121()12cos(2/)j k N k e z H z k N z z ππ-----=-+

total_x=[total_x x];

end

wavwrite(total_x,'soundwave')

sound(total_x);

subplot(2,1,1);

plot(total_x);

title('DTMP信号的时域波形')

xk=fft(x);

mxk=abs(xk);

subplot(2,1,2);

k=(1:800)*sum*8000/800;

plot(k,mxk);

xlabel('频率');

title('DTMF信号频谱');

%

disp('双频信号已经产生并发出……')

k = [18 20 22 24 31 34 38 42];

N=205;

disp(['下方频谱图显示检测到的八个近似基频的DFT幅度'])

disp(['接收到的号码解码显示为如下:'])

for a=1:sum

m=800*(a-1);

X=goertzel(total_x(m+1:m+N),k+1); %

val = abs(X);

stem(k,val,'.');grid;xlabel('k');ylabel('|X(k)|') % ?D画出DFI(k)幅度

set(gcf,'color','w') % 置图形背景颜色为白shg;pause %

limit = 80; %

for s=5:8;

if val(s) > limit, break, end% 查找列号

end

for r=1:4;

if val(r) > limit, break, end%查找行号

end

disp([setstr(tm(r,s-4))]) %显示接收到的字符

end %发出声音

%接收检测端的程序

%要求的DFT样本序列

%用Goertzel算法计算八点DFT样本

%列出八点DFI向量

【实验波形】:

实验三:FIR 数字滤波器的设计和实现

1、实验内容及要求:

录制自己的一段声音,长度为 45秒(十多秒以上)取样频率 32kHz ,然后叠加一个高斯白噪声,(知道噪声分布,知道噪声功率,只要知道输入信号

功率),使得信噪比为 20dB 。请采用窗口法。设计一个 FIR 带通滤波器,

滤除噪声提高质量。

? 提示:

滤波器指标参考:通带边缘频率为 4kHz ,阻带边缘频率为4.5kHz ,阻带衰减大于 50dB ;

Matlab 函数 y = awgn(x,snr,'measured') ,首先测量输入信号 x 的功率,然后对其叠加高斯白噪声;

2、实验目的

通过本次实验,掌握以下知识:

FIR 数字滤波器窗口设计法的原理和设计步骤;

Gibbs 效应发生的原因和影响;

不同类型的窗函数对滤波效果的影响,以及窗函数和长度 N 的选

择。

(效果,耳机听前后声音,或者看前后的频谱图:2,看一下大家设计的滤波器的频谱图)

3、实验结果: 【实验代码】:

源程序:

注释: [y1,fs,bits]=wavread('Sound clip');

y2=y1(:,1);

fs=42000;

fprintf('原声音\n');

pause;

wavplay(y2,fs);

k=1:4096;

Yk1=fft(y2,4096);

subplot(2,1,1); plot(y2); title('原声音文件波形');

subplot(2,1,2);

plot(32/4096*k,abs(Yk1))

axis([-2,5,0,15]);

xlabel('f/kHz') title('原文件频率');

y3= awgn(y2,20,'measured','db'); %读声音文件 %以fs=42KHz 取样 %播放原声音 %对原信号进行快速傅里叶变换

%画出原声音时域波形

%加高斯白噪声

fprintf('加噪声后\n');

pause;

wavplay(y3,fs);

Yk2=fft(y3,4096);

figure(2)

subplot(2,1,1);

plot(y3);

title('加噪声时域波形');

subplot(2,1,2);

plot(32/4096*k,abs(Yk2))

xlabel('f/kHz');

axis([-2,5,0,15]);

title('加噪声后频谱');

fp=4000;

fr=4500;

wp=2*pi*fp/fs;

wr=2*pi*fr/fs; tr_width=wr-wp; N=ceil(6.6*pi/tr_width); n=0:1:N-1;

wc=(wr+wp)/2; alpha=(N-1)/2;

n=0:1:N-1;

m=n-alpha+eps;

hd=sin(wc*m)./(pi*m);

w_ham=(hamming(N))';

h=hd.*w_ham;

[H,w]=freqz(h,[1],1000,'whole');

H=(H(1:1:501))';

w=(w(1:1:501))';

mag=abs(H);

db=20*log10((mag+eps)/max(mag));

pha=angle(H);

delta_w=2*pi/1000;

figure(3)

subplot(3,1,1);plot(w/pi,db);title('加汉明窗频谱响应(db)');axis([0,1,-100,0])

x=conv(h,y3);

fprintf('滤波后\n');

pause;

wavplay(x,fs);

%通带边缘频率 %阻带边缘频率

subplot(3,1,2);

plot(x);

title('滤波后的时域波形'); Xk=fft(x,4096);

subplot(3,1,3);

plot(32/4096*k,abs(Xk)) axis([-2,5,0,15]);

xlabel('f/kHz')

title('滤波后频谱')

【实验波形】:

【含源代码】北邮dsp-MATLAB实验三梳状滤波器的应用

Dsp-matlab实验 实验三:梳状滤波器的应用 设 计 报 告 课题名称:梳状滤波器的应用 学生姓名: 班级: 班内序号: 学号: 日期:2015/06/15

目录 一、实验内容········································· 二、Matlab运行结果(含分析)································· 三、Matlab源代码···························· 四、遇到的难题与解决方法···························· 参考文献·························································

一、实验内容 录制一段自己的话音,时间长度及取样频率自定;对该段声音加入一次反射、三次反射和无穷多次反射。试验报告要求: 1、对试验原理的说明; 回声往往是原始声音衰减后的多个延迟叠加而组成的,因此回声可以用延迟单元来生成。X(n)表示原始声音信号,α为衰减系数,N为延迟周期,回声信号Y(n)=X(n)α*x(n-T)+α^2*x(n-2T)+……+α^N*x(n-NT). Z变换后的系统函数H(Z)可由梳状滤波器实现。MATLAB filter函数可用来仿真差分方程,本次实验用的就是这个函数。 2、在同一张图上,绘制原声音序列() x n、加入一次反射后的声音序列 1() x n、加入三次反射后的声音序列 3() x n和加入无穷多次反射后的声音序列() I x n;

其中蓝色为原声音序列x(n),粉红色为加入一次反射后的声音序列 x1(n),绿色为加入三次反射后的声音序列x3(n),红色为加入无穷多次反射后的声音序列x ∞(n)。 二、Matlab 运行结果(含分析)· 结合上述各序列,分析延时、衰减系数对回声效果的影响(提示:定量考察序列()x n 、1()x n 、3()x n 和()I x n 之间的区别) 延时不变时,衰减系数a 从零增大到1的过程中,回声效果由差变好再变差。a 很小时几乎听不到回声,a 在0.5±0.1时回声效果最明显,a 接近1时声音变得很不清晰,几乎不可识别。衰减系数不变时延时T 从零增大的过程中回声效果由差变好再变差。T 接近0时可以听到回声,但多次回声的层次感不清晰。0.1s1s 三、Matlab 源代码· >> [x,fs]=audioread('a.wav');sound(x,fs);a=0.6;T=0.2; y1=filter([1,zeros(1,T*fs-1),a],1,x);sound(y1,fs);wavwrite(y1,fs,'echo1.wav'); y2=filter([1,zeros(1,T*fs-1),a,zeros(1,T*fs-1),a^2,zeros(1,T*fs-1),a^3],1,x); sound(y2,fs);wavwrite(y2,fs,'echo2.wav');y3=filter(1,[1,zeros(1,T*fs-1),a],x);sound(y3,fs);wavwri te(y3,fs,'echo3.wav');plot(y3,'m'); hold on;plot(y2,'r'); hold on;plot(y1,'g');hold on;plot(x,'b'); 四、遇到的难题与解决办法 最开始遇到的问题是matlab 软件安装问题,因为电脑环境的特殊性尝试了多次才成功; 在建模过程中发现对实验原理因为学习时间过长有些不熟悉,于是翻书查阅复习,熟悉实验原理; 在实验过程中因为粗心,忘记保存,没有打符号等等之类问题使系统开始报错,细心调试之后成功建模

数字信号处理实验五

实验五:FIR数字滤波器设计与软件实现 信息学院 10电本2班王楚炘 2010304224 10.5.1 实验指导 1.实验目的 (1)掌握用窗函数法设计FIR数字滤波器的原理和方法。 (2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。 (3)掌握FIR滤波器的快速卷积实现原理。 (4)学会调用MATLAB函数设计与实现FIR滤波器。 2.实验内容及步骤 (1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理; (2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图10.5.1所示; 图10.5.1 具有加性噪声的信号x(t)及其频谱如图(3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。先观察xt的频谱,确定滤波器指标参数。 (4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,

调用MATLAB函数fir1设计一个FIR低通滤波器。并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。 (4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord和remez设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。 提示:MATLAB函数fir1和fftfilt的功能及其调用格式请查阅本书 第7章和第?章; 采样频率Fs=1000Hz,采样周期T=1/Fs; 根据图10.6.1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz,阻带截至频率fs=150Hz,换算成数字频率,通带截止频率,通带最大衰为0.1dB,阻带截至频率,阻带最小衰为60dB。]实验程序框图如图10.5.2所示,供读者参考。 Fs=1000,T=1/Fs xt=xtg 产生信号xt, 并显示xt及其频谱 用窗函数法或等波纹最佳逼近法 设计FIR滤波器hn 对信号xt滤波:yt=fftfilt(hn,xt) 1、计算并绘图显示滤波器损耗函数 2、绘图显示滤波器输出信号yt End 图10.5.2 实验程序框图 4.思考题 (1)如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器?请写出设计步骤. 答:用窗函数法设计线性相位低通滤波器的设计步骤: a.根据对阻带衰减及过渡带的指标要求,选择窗函数的类型,并估计窗口的长度N; b.构造希望逼近的频率响应函数; c.计算h d(n); d.加窗得到设计结果h(n)=h d(n)w(n)。 (2)如果要求用窗函数法设计带通滤波器,且给定通带上、下截止频率为和,阻带上、下截止频率为和,试求理想带通滤波器的截止频率。 答:希望逼近的理想带通滤波器的截止频率分别为:

DSP实验二 拨码开关实验

实验二拨码开关实验 —、实验目的 1.了解DSP开发系统的组成和结构 2.了解IO的基本编程方法 二、实验设备 计算机,CCS3.3版本软件,DSP仿真器,E300实验箱,2812CPU板。 三、实验原理 8位的数字量输入(由拨码开关产生),当拨码打到靠近LED时为低。相反为高。通过 74LS244(可读)缓冲连接到DSP的数据总线的低8位。CPU通过读指令读取到拨码开关产 生的8位输出的数字量,然后CPU通过写指令把读出的8位数字量写入(0x2200)单元内, 使连接到DSP的数据总线的低8位的74LS273的输出端产生高低信号,此时LED灯产生亮灭。 当对应LED灯点亮时说明输出为低,熄灭时为高。 (器件74LS244和74LS273详细的介绍请参看数据手册) 数字量输入输出单元的资源分配如下: 基地址:2000h(当CS1为0时分配有效) 数字量分配空间为数据空间地址:基地 址+0x2200(低8位,只读) 拨码开关扩展工作原理 说明:74LS244片选号、74LS273 片选信号和74LS273复位信号由E300 上CPLD译码产生。 本实验使用DSP数据总线的低8 位。 实验任务一: 1、编写程序完成将拨码开关的信息读入DSP,然后再将该信息回写,控制led灯。调整"数字输入输出单元"的开关K1~K8,观察LED1~LED8灯亮灭的变化。 2、本实验的程序流程框图如下:

3、输入主要程序 #include "DSP281x_Device.h" // DSP281x Headerfile Include File #include "DSP281x_Examples.h" // DSP281x Examples Include File void main(void) { unsigned int temp; temp = 0; DINT; InitSysCtrl(); InitPieCtrl(); IER = 0x0000; IFR = 0x0000; InitPieVectTable(); for(;;) { asm(" nop "); temp = *(int *)0x2200&0x00ff; asm(" nop "); * (int *)0x2200 = temp; asm(" nop "); } } 四、实验步骤(步骤基本与实验一相同) 1. 2812CPU板的JUMP1的1和2脚短接,拨码开关SW1的第二位置ON。 2.E300板上的开关SW4的第二位置ON,其余OFF;SW5开关全部置ON;其余开关全部置OFF。 3.运行Code Composer Studio (CCS)(CCS3.3需要“DEBUG→Connect”) 4. 用“Project\open”打开系统项目文件 路径为“c:\DSP_examep\DSP281X_examples\e300_02_switch\Example_281x_switch.pjt”双击该文件 5、输入主要程序。

数字信号处理实验(吴镇扬)答案-2

(1) 观察高斯序列的时域和幅频特性,固定信号)(n x a 中参数p=8,改变q 的 值,使q 分别等于2、4、8,观察他们的时域和幅频特性,了解当q 取不同值时,对信号序列的时域和幅频特性的影响;固定q=8,改变p,使p 分别等于8、13、14,观察参数p 变化对信号序列的时域和幅频特性的影响,注意p 等于多少时会发生明显的泄漏现象,混叠是否也随之出现?记录实验中观察到的现象,绘出相应的时域序列和幅频特性曲线。 ()() ?????≤≤=-其他0150,2n e n x q p n a 解:程序见附录程序一: P=8,q 变化时: t/T x a (n ) k X a (k ) t/T x a (n ) p=8 q=4 k X a (k ) p=8 q=4 t/T x a (n ) p=8 q=8 k X a (k ) p=8 q=8 幅频特性 时域特性

t/T x a (n ) p=8 q=8 k X a (k ) p=8 q=8 t/T x a (n ) 5 10 15 k X a (k ) p=13 q=8 t/T x a (n ) p=14 q=8 5 10 15 k X a (k ) p=14 q=8 时域特性幅频特性 分析: 由高斯序列表达式知n=p 为期对称轴; 当p 取固定值时,时域图都关于n=8对称截取长度为周期的整数倍,没有发生明显的泄漏现象;但存在混叠,当q 由2增加至8过程中,时域图形变化越来越平缓,中间包络越来越大,可能函数周期开始增加,频率降低,渐渐小于fs/2,混叠减弱; 当q 值固定不变,p 变化时,时域对称中轴右移,截取的时域长度渐渐地不再是周期的整数倍,开始无法代表一个周期,泄漏现象也来越明显,因而图形越来越偏离真实值, p=14时的泄漏现象最为明显,混叠可能也随之出现;

DSP实验报告

实验0 实验设备安装才CCS调试环境 实验目的: 按照实验讲义操作步骤,打开CCS软件,熟悉软件工作环境,了解整个工作环境内容,有助于提高以后实验的操作性和正确性。 实验步骤: 以演示实验一为例: 1.使用配送的并口电缆线连接好计算机并口与实验箱并口,打开实验箱电源; 2.启动CCS,点击主菜单“Project->Open”在目录“C5000QuickStart\sinewave\”下打开工程文件sinewave.pjt,然后点击主菜单“Project->Build”编译,然后点击主菜单“File->Load Program”装载debug目录下的程序sinewave.out; 3.打开源文件exer3.asm,在注释行“set breakpoint in CCS !!!”语句的NOP处单击右键弹出菜单,选择“Toggle breakpoint”加入红色的断点,如下图所示; 4.点击主菜单“View->Graph->Time/Frequency…”,屏幕会出现图形窗口设置对话框 5.双击Start Address,将其改为y0;双击Acquisition Buffer Size,将其改为1; DSP Data Type设置成16-bit signed integer,如下图所示; 6.点击主菜单“Windows->Tile Horizontally”,排列好窗口,便于观察 7.点击主菜单“Debug->Animate”或按F12键动画运行程序,即可观察到实验结果: 心得体会: 通过对演示实验的练习,让自己更进一步对CCS软件的运行环境、编译过程、装载过程、属性设置、动画演示、实验结果的观察有一个醒目的了解和熟悉的操作方法。熟悉了DSP实验箱基本模块。让我对DSP课程产生了浓厚的学习兴趣,课程学习和实验操作结合为一体的学习体系,使我更好的领悟到DSP课程的实用性和趣味性。

数字信号处理实验及参考程序

数字信号处理实验实验一离散时间信号与系统及MA TLAB实现 1.单位冲激信号: n = -5:5; x = (n==0); subplot(122); stem(n, x); 2.单位阶跃信号: x=zeros(1,11); n0=0; n1=-5; n2=5; n = n1:n2; x(:,n+6) = ((n-n0)>=0); stem(n,x); 3.正弦序列: n = 0:1/3200:1/100; x=3*sin(200*pi*n+1.2); stem(n,x); 4.指数序列 n = 0:1/2:10; x1= 3*(0.7.^n); x2=3*exp((0.7+j*314)*n); subplot(221); stem(n,x1); subplot(222); stem(n,x2); 5.信号延迟 n=0:20; Y1=sin(100*n); Y2=sin(100*(n-3)); subplot(221); stem(n,Y1); subplot(222); stem(n,Y2);

6.信号相加 X1=[2 0.5 0.9 1 0 0 0 0]; X2=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7]; X=X1+X2; stem(X); 7.信号翻转 X1=[2 0.5 0.9 1]; n=1:4; X2=X1(5-n); subplot(221); stem(n,X1); subplot(222); stem(n,X2); 8.用MATLAB计算序列{-2 0 1 –1 3}和序列{1 2 0 -1}的离散卷积。a=[-2 0 1 -1 3]; b=[1 2 0 -1]; c=conv(a,b); M=length(c)-1; n=0:1:M; stem(n,c); xlabel('n'); ylabel('幅度'); 9.用MA TLAB计算差分方程 当输入序列为时的输出结果。 N=41; a=[0.8 -0.44 0.36 0.22]; b=[1 0.7 -0.45 -0.6]; x=[1 zeros(1,N-1)]; k=0:1:N-1; y=filter(a,b,x); stem(k,y) xlabel('n'); ylabel('幅度') 10.冲激响应impz N=64; a=[0.8 -0.44 0.36 0.22];

DSP实验二.

实验三 IIR 滤波器设计 一、实验目的: 1.认真复习滤波器幅度平方函数的特性,模拟低通滤波器的巴特沃思逼近、切比雪夫型逼近方法;复习从模拟低通到模拟高通、带通、带阻的频率变换法;从模拟滤波器到数字滤波器的脉冲响应不变法、双线性变换法的基本概念、基本理论和基本方法。 2掌握巴特沃思、切比雪夫模拟低通滤波器的设计方法;利用模拟域频率变换设计模拟高通、带通、带阻滤波器的方法.。 3.掌握利用脉冲响应不变法、双线性变换法设计数字滤波器的基本方法;能熟练设计巴特沃思、切比雪夫低通、带通、高通、带阻数字滤波器。 4.熟悉利用MATLAB 直接进行各类数字滤波器的设计方法。 二、实验内容 a. 设计模拟低通滤波器,通带截止频率为10KHz,阻带截止频率为16KHz,通带最大衰减1dB,阻带最小衰减20dB。 (1) 分别用巴特沃思、切比雪夫I、切比雪夫II 型、椭圆型滤波器分别进行设计,并绘制所设计滤波器的幅频和相频特性图。 (2) 在通带截止频率不变的情况下,分别用n=3,4,5,6 阶贝塞尔滤波器设计所需的低通滤波器,并绘制其相应的幅频响应和相频响应图。 %%%%%%%%%----巴特沃思-----%%%%%%% clc;clear all; omegap=10000*2*pi;omegas=16*10^3*2*pi; Rp=1;As=20; [N,omegac]=buttord(omegap,omegas,Rp,As,'s');%低通的节次 [b,a]=butter(N,omegac,'s'); [H,w]=freqs(b,a); %设计滤波器的幅频和相频特性图 subplot(211) plot(w/2*pi/1000,20*log10(abs(H)))

数字信号处理实验报告(实验1_4)

实验一 MATLAB 仿真软件的基本操作命令和使用方法 实验容 1、帮助命令 使用 help 命令,查找 sqrt (开方)函数的使用方法; 2、MATLAB 命令窗口 (1)在MATLAB 命令窗口直接输入命令行计算3 1)5.0sin(21+=πy 的值; (2)求多项式 p(x) = x3 + 2x+ 4的根; 3、矩阵运算 (1)矩阵的乘法 已知 A=[1 2;3 4], B=[5 5;7 8],求 A^2*B

(2)矩阵的行列式 已知A=[1 2 3;4 5 6;7 8 9],求A (3)矩阵的转置及共轭转置 已知A=[1 2 3;4 5 6;7 8 9],求A' 已知B=[5+i,2-i,1;6*i,4,9-i], 求B.' , B' (4)特征值、特征向量、特征多项式 已知A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4] ,求矩阵A的特征值、特征向量、特征多项式;

(5)使用冒号选出指定元素 已知:A=[1 2 3;4 5 6;7 8 9];求A 中第3 列前2 个元素;A 中所有列第2,3 行的元素; 4、Matlab 基本编程方法 (1)编写命令文件:计算1+2+…+n<2000 时的最大n 值;

(2)编写函数文件:分别用for 和while 循环结构编写程序,求 2 的0 到15 次幂的和。

5、MATLAB基本绘图命令 (1)绘制余弦曲线 y=cos(t),t∈[0,2π]

(2)在同一坐标系中绘制余弦曲线 y=cos(t-0.25)和正弦曲线 y=sin(t-0.5), t∈[0,2π] (3)绘制[0,4π]区间上的 x1=10sint 曲线,并要求: (a)线形为点划线、颜色为红色、数据点标记为加号; (b)坐标轴控制:显示围、刻度线、比例、网络线 (c)标注控制:坐标轴名称、标题、相应文本; >> clear;

北邮dsp软件实验报告

Matlab仿真实验 实验报告 学院:电子工程学院 专业:电子信息科学与技术 班级: 学号: 姓名:

时间:2015年12月23日 实验一:数字信号的FFT分析 1.实验目的 通过本次试验,应该掌握: (a)用傅里叶变换进行信号分析时基本参数的选择 (b)经过离散时间傅里叶变换和有限长度离散傅里叶变换后信号频谱上的区别,前者DTFT时间域是离散信号,频率域还是连续的,而DFT在两个域中都是离散的。(c)离散傅里叶变化的基本原理、特性,以及经典的快速算法(基2时间抽选法),体会快速算法的效率。 (d)获得一个高密度频谱和高分辨率频谱的概念和方法,建立频率分辨率和时间分辨率的概念,为将来进一步进行时频分析(例如小波)的学习和研究打下基础。(e)建立DFT从整体上可看成是由窄带相邻滤波器组成的滤波器组的概念,此概念的一个典型应用时数字音频压缩中的分析滤波器,例如DVD AC3和MPEG Audio。 2.实验容、要求及结果。 (1)离散信号的频谱分析: 设信号x(n)=0.001*cos(0.45n)+sin(0.3n)-cos(0.302n-) 此信号的0.3谱线相距很近,谱线0.45的幅度很小,请选择合适的序列长度N和窗函数,用DFT分析其频谱,要求得到清楚的三根谱线。 【实验代码】:

k=2000; n=[1:1:k]; x=0.001*cos(0.45*n*pi)+sin(0.3*n*pi)-cos(0.302*n*pi-pi/4); subplot(2,1,1); stem(n,x,'.'); title(‘时域序列'); xlabel('n'); ylabel('x(n)'); xk=fft(x,k); w=2*pi/k*[0:1:k-1]; subplot(2,1,2); stem(w/pi,abs(xk)); axis([0 0.5 0 2]); title('1000点DFT'); xlabel('数字频率'); ylabel('|xk(k)|'); 【实验结果图】:

数字信号处理实验一 IIR数字滤波器设计及软件实现

实验一 IIR数字滤波器设计及软件实现 一、实验目的 (1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法; (2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。 (3)掌握IIR数字滤波器的MATLAB实现方法。 (3)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。 二、实验原理 设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。MATLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。第六章介绍的滤波器设计函数butter、cheby1 、cheby2 和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。本实验要求同学调用如上函数直接设计IIR数字滤波器。 本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。 三、实验内容及步骤 (1)调用信号产生函数mstg,产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线,如图1-1所示。由图可见,三路信号时域混叠无法在时域分离。但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。

图1-1 三路调幅信号st 的时域波形和幅频特性曲线 (2)要求将st 中三路调幅信号分离,通过观察st 的幅频特性曲线,分别确定可以分离st 中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。要求滤波器的通带最大衰减为0.1dB,阻带最小衰减为60dB 。 提示:抑制载波单频调幅信号的数学表示式为 0001()cos(2)cos(2)[cos(2())cos(2())]2 c c c s t f t f t f f t f f t ππππ==-++ 其中,cos(2)c f t π称为载波,f c 为载波频率,0cos(2)f t π称为单频调制信号,f 0为调制正弦波信号频率,且满足0c f f >。由上式可见,所谓抑制载波单频调幅信号,就是2个正弦信号相乘,它有2个频率成分:和频0c f f +和差频0c f f -,这2个频率成分关于载波频率f c 对称。所以,1路抑制载波单频调幅信号的频谱图是关于载波频率f c 对称的2根谱线,其中没有载频成分,故取名为抑制载波单频调幅信号。容易看出,图1-1中三路调幅信号的载波频率分别为250Hz 、500Hz 、1000Hz 。如果调制信号m(t)具有带限连续频谱,无直流成分,则()()cos(2)c s t m t f t π=就是一般的抑制载波调幅信号。其频谱图是关于载波频率f c 对称的2个边带(上下边带),在专业课通信原理中称为双边带抑制载波 (DSB-SC) 调幅信号,简称双边带 (DSB) 信号。如果调制信号m(t)有直流成分,则()()cos(2)c s t m t f t π=就是一般的双边带调幅信号。其频谱图是关于载波频率f c 对称的2个边带(上下边带),并包含载频成分。

DSP实验程序及结果

#include"math.h" #define PI 3.1415926 #define WANG 16 #define RUI 1024 int FIRLOW(int *nx,float *nh,int nError,int nCoeffNumber); float h[WANG],fU; int xx[RUI],rr[RUI],wc[RUI]; main() { int i,n_Output=0; fU=0.0005; for ( i=0;i

FIR #include #define RUI 25 #define RUI1 1000 #define RUI2 4500 #define SAMPLEF 10000 #define PI 3.1415926 float Wave(); float FIR(); float fHn[RUI]={ 0.0,0.0,0.001,-0.002,-0.002,0.01,-0.009, -0.018,0.049,-0.02,0.11,0.28,0.64,0.28, -0.11,-0.02,0.049,-0.018,-0.009,0.01, -0.002,-0.002,0.001,0.0,0.0 }; float fXn[RUI]={ 0.0 }; float fInput,fOutput; float fSignal1,fSignal2; float fStepSignal1,fStepSignal2; float f2PI; int i; float fIn[256],fOut[256]; int nIn,nOut; main() { nIn=0; nOut=0; f2PI=2*PI; fSignal1=0.0; fSignal2=PI*0.1; fStepSignal1=2*PI/30;

北邮DSP实验报告

北京邮电大学 数字信号处理硬件实验 实验名称:dsp硬件操作实验姓名:刘梦颉班级: 2011211203 学号:2011210960 班内序号:11 日期:2012年12月20日 实验一常用指令实验 一、实验目的 了解dsp开发系统的组成和结构,熟悉dsp开发系统的连接,熟悉dsp的开发界面,熟 悉c54x系列的寻址系统,熟悉常用c54x系列指令的用法。 二、实验设备 计算机,ccs 2.0版软件,dsp仿真器,实验箱。 三、实验操作方法 1、系统连接 进行dsp实验之前,先必须连接好仿真器、实验箱及计算机,连接方法如下所示: 1)上电复位 在硬件安装完成后,接通仿真器电源或启动计算机,此时,仿真盒上的“红色小灯”应 点亮,否则dsp开发系统与计算机连接有问题。 2)运行ccs程序 先实验箱上电,然后启动ccs,此时仿真器上的“绿色小灯”应点亮,并且ccs正常启 动,表明系统连接正常;否则仿真器的连接、jtag接口或ccs相关设置存在问题,掉电,检 查仿真器的连接、jtag接口连接,或检查ccs相关设置是否正确。 四、实验步骤与内容 1、实验使用资源 实验通过实验箱上的xf指示灯观察程序运行结果 2、实验过程 启动ccs 2.0,并加载“exp01.out”;加载完毕后,单击“run”运行程序; 五、实验结果 可见xf灯以一定频率闪烁;单击“halt”暂停程序运行,则xf灯停止闪烁,如再单击 “run”,则“xf”灯又开始闪烁; 关闭所有窗口,本实验完毕。 六、源程序代码及注释流程图: 实验二资料存储实验 一、实验目的 掌握tms320c54的程序空间的分配;掌握tms320c54的数据空间的分配;熟悉操作 tms320c54数据空间的指令。 二、实验设备 计算机,ccs3.3版软件,dsp仿真器,实验箱。 三、实验系统相关资源介绍 本实验指导书是以tms32ovc5410为例,介绍相关的内部和外部内存资源。对于其它类型 的cpu请参考查阅相关的资料手册。下面给出tms32ovc5410的内存分配表: 对于存储空间而言,映像表相对固定。值得注意的是内部寄存器与存储空间的映像关系。 因此在编程应用时这些特定的空间不能作其它用途。对于篇二:31北邮dsp软件实验报告北京邮电大学 dsp软件

2015年北邮数字信号处理软件实验报告

数字信号处理软件实验 MATLAB 仿真 2015年12月16日

实验一:数字信号的 FFT 分析 ● 实验目的 通过本次实验,应该掌握: (a) 用傅立叶变换进行信号分析时基本参数的选择。 (b) 经过离散时间傅立叶变换(DTFT )和有限长度离散傅立叶变换(DFT )后信号频谱上的区别,前者 DTFT 时间域是离散信号,频率域还是连续的,而 DFT 在两个域中都是离散的。 (c) 离散傅立叶变换的基本原理、特性,以及经典的快速算法(基2时间抽选法),体会快速算法的效率。 (d) 获得一个高密度频谱和高分辨率频谱的概念和方法,建立频率分辨率和时间分辨率的概念,为将来进一步进行时频分析(例如小波)的学习和研究打下基础。 (e) 建立 DFT 从整体上可看成是由窄带相邻滤波器组成的滤波器组的概念,此概念的一个典型应用是数字音频压缩中的分析滤波器,例如 DVD AC3 和MPEG Audio 。 ● 实验内容及要求 ? 离散信号的频谱分析 设信号 此信号的0.3pi 和 0.302pi 两根谱线相距很近,谱线 0.45pi 的幅度很小,请选择合适的序列长度 N 和窗函数,用 DFT 分析其频谱,要求得到清楚的三根谱线。 ? DTMF 信号频谱分析 用计算机声卡采用一段通信系统中电话双音多频(DTMF )拨号数字 0~9的数据,采用快速傅立叶变换(FFT )分析这10个号码DTMF 拨号时的频谱。 00010450303024().*cos(.)sin(.)cos(.)x n n n n ππππ=+--

●MATLAB代码及结果 ?离散信号的频谱分析 clf; close all; N=1000; n=1:1:N; x=0.001*cos(0.45*n*pi)+sin(0.3*n*pi)-cos(0.302*n*pi-pi/4); y=fft(x,N); mag=abs(y); w=2*pi/N*[0:1:N-1]; stem(w/pi,mag); axis([0.25 0.5 0 2]); xlabel('频率'); ylabel('X(k)'); grid on;

DSP实验报告2解读

DSP实验报告 院系:哈尔滨理工大学荣成校区 专业:电子信息工程 学号: 1230160101 姓名:董小天 日期: 2015年6月16日

实验二有限冲击响应滤波器(FIR)算法实验 一、实验目的 1.掌握用窗函数发设计FIR数字滤波器的原理和方法; 2.熟悉线性相位FIR数字滤波器特性; 3.了解各种窗函数对滤波特性的影响; 二、实验设备 1.计算机,CCS 3.1版软件,实验箱,DSP仿真器,连接线。 三、实验原理 1.有限冲击响应数字滤波器的基础理论; 2.模拟滤波器原理(巴特沃斯滤波器、且比学府滤波器、贝塞尔滤波器); 3.数字滤波器系数的确定方法。 四、实验步骤 1、复习如何设计FIR数字滤波;阅读本实验原理,掌握设计步骤; 2、阅读本实验所提供的样例子程序; 3、运行CCS软件,对样例程序进行跟踪,分析结果; 4、填写实验报告。 5、样例程序实验操作说明 A.实验前准备: ①实验箱和CPU配置:SW2的2、4置ON,1、3置OFF;S2全置ON,S23置ON,JP3拨码开关的3、6位置ON,其余置OFF;S2全部置OFF. ②用到西安连接“信号源”2号孔“信号源1”和“A/D单元”2号孔“ADIN1”; B.实验 启动CCS 3.1,打开文件Exp_fir.pjt工程文件;在i=0处设置断点;打开VIEW/GRAPH/TIME/FREQUENCY打开窗口,进行如下改动(参照图片),其中x,y分别表示经A/D转换后的输入混叠信号(输入信号)和对该信号进行FIR滤波的结果; 五、成果展示及代码

单击“Animate”运行程序,在实验箱上调整观察窗口并观察滤波的效果(滤波效果明显);

数字信号处理实验(吴镇扬)答案-4

实验四 有限长单位脉冲响应滤波器设计 朱方方 0806020433 通信四班 (1) 设计一个线性相位FIR 高通滤波器,通带边界频率为0.6π,阻带边界频率为0.4π,阻 带衰减不小于40dB 。要求给出h(n)的解析式,并用MATLAB 绘出时域波形和幅频特性。 解: (1) 求数字边界频率: 0.6 , .c r ωπωπ== (2) 求理想滤波器的边界频率: 0.5n ωπ= (3) 求理想单位脉冲响应: []d s i n ()s i n [()] () ()1n n n n n n h n n παωαα παωα π?-- -≠??-=? ? -=?? (4) 选择窗函数。阻带最小衰减为-40dB ,因此选择海明窗(其阻带最小衰减为-44dB);滤 波器的过渡带宽为0.6π-0.4π=0.2π,因此 6.21 0.231 , 152 N N N ππα-=?=== (5) 求FIR 滤波器的单位脉冲响应h(n): []31d sin (15)sin[0.5(15)] 1cos ()15()()()15(15)1 15 n n n R n n h n w n h n n n ππππ?---????-? ?≠? ???==-???? ? ?=? 程序: clear; N=31; n=0:N-1; hd=(sin(pi*(n-15))-sin(0.5*pi*(n-15)))./(pi *(n-15)); hd(16)=0.5; win=hanning(N); h=win'.*hd; figure; stem(n,h); xlabel('n'); ylabel('h(n)'); grid; title('FIR 高通滤波单位脉冲响应h(n)'); [H,w]=freqz(h,1); H=20*log10(abs(H)); figure;3 plot(w/pi,H); axis([0 1 -100 10]); xlabel('\omega/\pi'); ylabel('幅度/dB'); grid; title('FIR 高通滤波器,hanning 窗,N=31');

DSP运行实验报告

DSP运行实验报告 一、实验目的 熟悉CCS软件仿真下,DSP程序的下载和运行;熟悉借助单片机的DSP程序下载和运行; 熟悉借助仿真器的DSP程序下载和运行;熟悉与DSP程序下载运行相关的CCS编程环境。 二、实验原理 CCS软件仿真下,借用计算机的资源仿真DSP的内部结构,可以模拟DSP程序的下载和运行。 如果要让程序在实验板的DSP中运行、调试和仿真,可以用仿真器进行DSP程序下载和运行。初学者也可以不用仿真器来使用这款实验板,只是不能进行程序调试和仿真。 在本实验板的作用中,单片机既是串口下载程序的载体,又是充当DSP 的片外存储器(相对于FLASH),用于固化程序。 三、实验设备、仪器及材料 安装有WINDOWS XP操作系统和CCS3.3的计算机。 四、实验步骤(按照实际操作过程) 1、CCS软件仿真下,DSP程序的下载和运行。 第一步:安装CCS,如果不使用仿真器,CCS 的运行环境要设置成一个模拟仿真器(软仿真)。

第二步:运行CCS,进入CCS 开发环境。 第三步:打开一个工程。 将实验目录下的EXP01目录拷到D:\shiyan下(目录路径不能有中文),用[Project]\[Open]菜单打开工程,在“Project Open”对话框中选 EXP01\CPUtimer\CpuTimer.pjt,选“打开”, 第四步:编译工程。 在[Project]菜单中选“Rebuild All”,生成CpuTimer.out文件。 第五步:装载程序。 用[File]\[Load Program]菜单装载第四步生成CpuTimer.out文件,在当前工程目录中的Debug 文件夹中找到CpuTimer.out文件,选中,鼠标左键单击“打开”。

数字信处理上机实验答案全

数字信处理上机实验答 案全 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

第十章 上机实验 数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。 实验一系统响应及系统稳定性。 实验二时域采样与频域采样。 实验三用FFT对信号作频谱分析。 实验四 IIR数字滤波器设计及软件实现。 实验五 FIR数字滤波器设计与软件实现 实验六应用实验——数字信号处理在双音多频拨号系统中的应用 任课教师根据教学进度,安排学生上机进行实验。建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR数字滤波器设计及软件实现在。学习完第六章进行;实验五在学习完第七章后进行。实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。 实验一: 系统响应及系统稳定性 1.实验目的 (1)掌握求系统响应的方法。 (2)掌握时域离散系统的时域特性。 (3)分析、观察及检验系统的稳定性。 2.实验原理与方法 在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB语言的工具箱函数filter函数。也可以用MATLAB语言的工具箱函数conv函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。 系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。 系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。或者系统的单位脉冲响应满足绝对可和的条件。系统的稳定性由其差分方程的系数决定。 实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件。可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的[19]。系统的稳态输出是指当∞ n时,系统的输出。如果系统稳定,信号加入 → 系统后,系统输出的开始一段称为暂态效应,随n的加大,幅度趋于稳定,达到稳态输出。 注意在以下实验中均假设系统的初始状态为零。 3.实验内容及步骤

北邮dsp软件matlab仿真实验报告

题目: 数字信号处理MATLAB仿真实验 姓名 学院 专业 班级 学号 班内序号

实验一:数字信号的 FFT 分析 1、实验内容及要求 (1) 离散信号的频谱分析: 设信号 此信号的0.3pi 和 0.302pi 两根谱线相距很近,谱线 0.45pi 的幅度很小,请选择合适的序列长度 N 和窗函数,用 DFT 分析其频谱,要求得到清楚的三根谱线。 (2) DTMF 信号频谱分析 用计算机声卡采用一段通信系统中电话双音多频(DTMF )拨号数字 0~9的数据,采用快速傅立叶变换(FFT )分析这10个号码DTMF 拨号时的频谱。 2、实验目的 通过本次实验,应该掌握: (a) 用傅立叶变换进行信号分析时基本参数的选择。 (b) 经过离散时间傅立叶变换(DTFT )和有限长度离散傅立叶变换(DFT ) 后信号频谱上的区别,前者 DTFT 时间域是离散信号,频率域还是连续的,而 DFT 在两个域中都是离散的。 (c) 离散傅立叶变换的基本原理、特性,以及经典的快速算法(基2时间抽选法),体会快速算法的效率。 (d) 获得一个高密度频谱和高分辨率频谱的概念和方法,建立频率分辨率和时间分辨率的概念,为将来进一步进行时频分析(例如小波)的学习和研究打下基础。 (e) 建立 DFT 从整体上可看成是由窄带相邻滤波器组成的滤波器组的概念,此概念的一个典型应用是数字音频压缩中的分析滤波器,例如 DVD AC3 和MPEG Audio 。 3、程序代码 (1) N=5000; n=1:1:N; x=0.001*cos(0.45*pi*n)+sin(0.3*pi*n)-cos(0.302*pi*n-pi/4); y=fft(x,N); magy=abs(y(1:1:N/2+1)); k=0:1:N/2; w=2*pi/N*k; stem(w/pi,magy) axis([0.25,0.5,0,50]) (2) column=[1209,1336,1477,1633]; line=[697,770,852,941]; fs=10000; N=1024; 00010450303024().*cos(.)sin(.)cos(.)x n n n n ππππ=+--

相关文档
最新文档