2016年考研数学三考试大纲原文

合集下载

2016年全国硕士研究生入学统一考试数学三考研真题答案凯程首发

2016年全国硕士研究生入学统一考试数学三考研真题答案凯程首发

2016年全国硕士研究生入学统一考试数学三考研真题答案凯程首发下面凯程老师把2016年的真题答案全面展示给大家,供大家估分使用,以及2017年考研的同学使用,本试题凯程首发,转载注明出处。

一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设函数()y f x =在(,)-∞+∞内连续,其导数如图所示,则( ) (A )函数有2个极值点,曲线()y f x =有2个拐点 (B )函数有2个极值点,曲线()y f x =有3个拐点 (C )函数有3个极值点,曲线()y f x =有1个拐点 (D )函数有3个极值点,曲线()y f x =有2个拐点 【答案】(B )xy【解析】【解析】由图像易知选B2、已知函数(,)x e f x y x y=-,则(A )''0x y f f -= (B )''0x y f f += (C )''x y f f f -= (D )''x y f f f += 【答案】(D ) 【解析】()2(1)'x x e x y f x y --=- ()2'xy e f x y =-,所以''x y f f f +=(3)设(i ,,)ii D T x y d x d y =-=⎰⎰3123,其中{}(,),D x y x y =≤≤≤≤10101,{}{}(,),,(,),D x y x y x D x y x x y =≤≤≤≤=≤≤≤≤223010011,则(A )T T T <<123 (B )T T T <<312 (C )T T T <<231 (D )T T T <<213【答案】B【解析】由积分区域的性质易知选B. (4)级数为sin()n n k n n ∞=⎛⎫-+ ⎪+⎝⎭∑1111,(K 为常数) (A )绝对收敛(B )条件收敛 (C )发散(D )收敛性与K 有关 【答案】A【解析】由题目可得,sin()sin()sin()()n n n n n n k n k n k n n n n n n n n ∞∞∞===+-+⎛⎫-+=+= ⎪+++++⎝⎭∑∑∑1111111111 因为sin()()()n k n n n n n n n n n n+≤≤++++++111111,由正项级数的比较判别法得,该级数绝对收敛。

数三2016考研大纲

数三2016考研大纲

考试形式和试卷结构试卷内容结构:微积分约,线性代数约,概率论与数理统计约试卷题型结构单项选择题选题小题,每小题分,共分填空题小题,每小题分,共分解答题(包括证明题)小题,共分微积分一、函数、极限、连续考试内容函数地概念及表示法函数地有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数地性质及其图形初等函数函数关系地建立.文档来自于网络搜索数列极限与函数极限地定义及其性质函数地左极限和右极限;无穷小量和无穷大量地概念及其关系无穷小量地性质及无穷小量地比较;极限地四则运算极限存在地两个准则:单调有界准则和夹逼定理两个重要极限.文档来自于网络搜索函数连续地概念;函数间断点地类型;初等函数地连续性;闭区间上连续函数地性质考试要求、理解函数地概念,掌握函数地表示法,会建立应用问题地函数关系、了解函数地有界性、单调性、周期性和奇偶性、理解复合函数及分段函数地概念,了解反函数及隐函数地概念、掌握基本初等函数地性质及其图形,了解初等函数地概念、了解数列极限和函数极限(包括左极限与右极限)地概念、了解极限地性质与极限存在地两个准则,掌握极限地四则运算法则,掌握利用两个重要极限求极限地方法、理解无穷小量地概念和基本性质,掌握无穷小量地比较方法.了解无穷大量地概念及其与无穷小量地关系、理解函数连续性地概念(含左连续与右连续),会判别函数间断点地类型、了解连续函数地性质和初等函数地连续性,理解闭区间上连续函数地性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质文档来自于网络搜索二、一元函数微分学考试内容导数和微分地概念;导数地几何意义和经济意义;函数地可导性与连续性之间地关系;平面曲线地切线与法线;导数和微分地四则运算;基本初等函数地导数;复合函数、反函数和隐函数地微分法高阶导数;一阶微分形式地不变性;微分中值定理;洛必达(')法则;函数单调性地判别;函数地极值;函数图形地凹凸性、拐点及渐近线函数图形地描绘;函数地最大值与最小值文档来自于网络搜索考试要求、理解导数地概念及可导性与连续性之间地关系,了解导数地几何意义与经济意义(含边际与弹性地概念),会求平面曲线地切线方程和法线方程文档来自于网络搜索、掌握基本初等函数地导数公式、导数地四则运算法则及复合函数地求导法则,会求分段函数地导数,会求反函数与隐函数地导数文档来自于网络搜索、了解高阶导数地概念,会求简单函数地高阶导数、了解微分地概念、导数与微分之间地关系以及一阶微分形式地不变性,会求函数地微分、理解罗尔()定理、拉格朗日()中值定理,了解泰勒()定理、柯西()中值定理,掌握这四个定理地简单应用文档来自于网络搜索、会用洛必达法则求极限、掌握函数单调性地判别方法,了解函数极值地概念,掌握函数极值、最大值和最小值地求法及其应用、会用导数判断函数图形地凹凸性(注:在区间内,设函数具有二阶导数.当时,地图形是凹地;当时,地图形是凸地),会求函数图形地拐点和渐近线文档来自于网络搜索、会描述简单函数地图形三、一元函数积分学考试内容原函数和不定积分地概念;不定积分地基本性质;基本积分公式;定积分地概念和基本性质;定积分中值;定理积分上限地函数及其导数;牛顿莱布尼茨()公式;不定积分和定积分地换元积分法与分部积分法;反常(广义)积分;定积分地应用.文档来自于网络搜索考试要求、理解原函数与不定积分地概念,掌握不定积分地基本性质和基本积分公式,掌握不定积分地换元积分法与分部积分法文档来自于网络搜索、了解定积分地概念和基本性质,了解定积分中值定理,理解积分上限地函数并会求它地导数,掌握牛顿莱布尼茨公式以及定积分地换元积分法和分部积分法文档来自于网络搜索、会利用定积分计算平面图形地面积、旋转体地体积和函数地平均值,会利用定积分求解简单地经济应用问题、了解反常积分地概念,会计算反常积分四、多元函数微积分学考试内容多元函数地概念;二元函数地几何意义;二元函数地极限与连续地概念;有界闭区域上二元连续函数地性质;多元函数偏导数地概念;计算多元复合函数地求导法;隐函数求导法;二阶偏导数全微分;多元函数地极值和条件极值、最大值和最小值;二重积分地概念、基本性质和计算无界区域上简单地反常二重积分.文档来自于网络搜索考试要求、了解多元函数地概念,了解二元函数地几何意义、了解二元函数地极限与连续地概念,了解有界闭区域上二元连续函数地性质、了解多元函数偏导数与全微分地概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数地偏导数文档来自于网络搜索、了解多元函数极值和条件极值地概念,掌握多元函数极值存在地必要条件,了解二元函数极值存在地充分条件,会求二元函数地极值,会用拉格朗日乘数法求条件极值,会求简单多元函数地最大值和最小值,并会解决简单地应用问题文档来自于网络搜索、了解二重积分地概念与基本性质,掌握二重积分地计算方法(直角坐标、极坐标),了解无界区域上较简单地反常二重积分并会计算文档来自于网络搜索五、无穷级数考试内容常数项级数地收敛与发散地概念;收敛级数地和地概念;级数地基本性质与收敛地必要条件;几何级数与级数及其收敛性;正项级数收敛性地判别法;任意项级数地绝对收敛与条件收敛;交错级数与莱布尼茨定理;幂级数及其收敛半径、收敛区间(指开区间)和收敛域;幂级数地和函数;幂级数在其收敛区间内地基本性质;简单幂级数地和函数地求法;初等函数地幂级数展开式.文档来自于网络搜索考试要求、了解级数地收敛与发散、收敛级数地和地概念、了解级数地基本性质及级数收敛地必要条件,掌握几何级数及级数地收敛与发散地条件,掌握正项级数收敛性地比较判别法和比值判别法文档来自于网络搜索、了解任意项级数绝对收敛与条件收敛地概念以及绝对收敛与收敛地关系,了解交错级数地莱布尼茨判别法、会求幂级数地收敛半径、收敛区间及收敛域、了解幂级数在其收敛区间内地基本性质(和函数地连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内地和函数文档来自于网络搜索、了解,,,及地麦克劳林()展开式六、常微分方程与差分方程考试内容常微分方程地基本概念;变量可分离地微分方程;齐次微分方程;一阶线性微分方程;线性微分方程解地性质及解地结构定理;二阶常系数齐次线性微分方程及简单地非齐次线性微分方程;差分与差分方程地概念;差分方程地通解与特解;一阶常系数线性差分方程;微分方程地简单应用.文档来自于网络搜索考试要求、了解微分方程及其阶、解、通解、初始条件和特解等概念、掌握变量可分离地微分方程、齐次微分方程和一阶线性微分方程地求解方法、会解二阶常系数齐次线性微分方程、了解线性微分方程解地性质及解地结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数地二阶常系数非齐次线性微分方程文档来自于网络搜索、了解差分与差分方程及其通解与特解等概念、了解一阶常系数线性差分方程地求解方法、会用微分方程求解简单地经济应用问题线性代数一、行列式考试内容行列式地概念和基本性质行列式按行(列)展开定理考试要求、了解行列式地概念,掌握行列式地性质、会应用行列式地性质和行列式按行(列)展开定理计算行列式二、矩阵考试内容矩阵地概念矩阵地线性运算矩阵地乘法方阵地幂方阵乘积地行列式矩阵地转置逆矩阵地概念和性质矩阵可逆地充分必要条件伴随矩阵矩阵地初等变换初等矩阵矩阵地秩矩阵地等价分块矩阵及其运算文档来自于网络搜索考试要求、理解矩阵地概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵地定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等地定义和性质文档来自于网络搜索、掌握矩阵地线性运算、乘法、转置以及它们地运算规律,了解方阵地幂与方阵乘积地行列式地性质、理解逆矩阵地概念,掌握逆矩阵地性质以及矩阵可逆地充分必要条件,理解伴随矩阵地概念,会用伴随矩阵求逆矩阵文档来自于网络搜索、了解矩阵地初等变换和初等矩阵及矩阵等价地概念,理解矩阵地秩地概念,掌握用初等变换求矩阵地逆矩阵和秩地方法文档来自于网络搜索、了解分块矩阵地概念,掌握分块矩阵地运算法则三、向量考试内容向量地概念向量地线性组合与线性表示向量组地线性相关与线性无关向量组地极大线性无关组等价向量组向量组地秩向量组地秩与矩阵地秩之间地关系向量地内积线性无关向量组地正交规范化方法文档来自于网络搜索考试要求、了解向量地概念,掌握向量地加法和数乘运算法则、理解向量地线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关地有关性质及判别法文档来自于网络搜索、理解向量组地极大线性无关组地概念,会求向量组地极大线性无关组及秩、理解向量组等价地概念,理解矩阵地秩与其行(列)向量组地秩之间地关系、了解内积地概念.掌握线性无关向量组正交规范化地施密特()方法四、线性方程组考试内容线性方程组地克拉默()法则线性方程组有解和无解地判定齐次线性方程组地基础解系和通解非齐次线性方程组地解与相应地齐次线性方程组(导出组)地解之间地关系非齐次线性方程组地通解文档来自于网络搜索考试要求、会用克拉默法则解线性方程组、掌握非齐次线性方程组有解和无解地判定方法、理解齐次线性方程组地基础解系地概念,掌握齐次线性方程组地基础解系和通解地求法、理解非齐次线性方程组解地结构及通解地概念、掌握用初等行变换求解线性方程组地方法五、矩阵地特征值和特征向量考试内容矩阵地特征值和特征向量地概念、性质相似矩阵地概念及性质矩阵可相似对角化地充分必要条件及相似对角矩阵实对称矩阵地特征值和特征向量及相似对角矩阵文档来自于网络搜索考试要求、理解矩阵地特征值、特征向量地概念,掌握矩阵特征值地性质,掌握求矩阵特征值和特征向量地方法、理解矩阵相似地概念,掌握相似矩阵地性质,了解矩阵可相似对角化地充分必要条件,掌握将矩阵化为相似对角矩阵地方法文档来自于网络搜索六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型地秩惯性定理二次型地标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵地正定性文档来自于网络搜索考试要求、了解二次型地概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵地概念、了解二次型地秩地概念,了解二次型地标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形文档来自于网络搜索、理解正定二次型、正定矩阵地概念,并掌握其判别法概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件地关系与运算完备事件组概率地概念概率地基本性质古典型概率几何型概率条件概率概率地基本公式事件地独立性独立重复试验文档来自于网络搜索考试要求、了解样本空间(基本事件空间)地概念,理解随机事件地概念,掌握事件地关系及运算、理解概率、条件概率地概念,掌握概率地基本性质,会计算古典型概率和几何型概率,掌握概率地加法公式、减法公式、乘法公式、全概率公式以及贝叶斯()公式等文档来自于网络搜索、理解事件地独立性地概念,掌握用事件独立性进行概率计算;理解独立重复试验地概念,掌握计算有关事件概率地方法文档来自于网络搜索二、随机变量及其分布考试内容随机变量随机变量分布函数地概念及其性质离散型随机变量地概率分布连续型随机变量地概率密度常见随机变量地分布随机变量函数地分布文档来自于网络搜索考试要求、理解分布函数地概念及性质,会计算与随机变量相联系地事件地概率、理解离散型随机变量及其概率分布地概念,掌握-分布、二项分布、几何分布、超几何分布、泊松()分布及其应用文档来自于网络搜索、掌握泊松定理地结论和应用条件,会用泊松分布近似表示二项分布、理解连续型随机变量及其概率密度地概念,掌握均匀分布、正态分布、指数分布及其应用、会求随机变量函数地分布三、多维随机变量地分布考试内容多维随机变量及其分布函数二维离散型随机变量地概率分布、边缘分布和条件分布二维连续型随机变量地概率密度、边缘概率密度和条件密度随机变量地独立性和不相关性常见二维随机变量地分布两个及两个以上随机变量简单函数地分布文档来自于网络搜索考试要求、理解多维随机变量地分布函数地概念和基本性质、理解二维离散型随机变量地概率分布和二维连续型随机变量地概率密度,掌握二维随机变量地边缘分布和条件分布文档来自于网络搜索、理解随机变量地独立性和不相关性地概念,掌握随机变量相互独立地条件,理解随机变量地不相关性与独立性地关系文档来自于网络搜索、掌握二维均匀分布和二维正态分布,理解其中参数地概率意义、会根据两个随机变量地联合分布求其函数地分布,会根据多个相互独立随机变量地联合分布求其简单函数地分布文档来自于网络搜索四、随机变量地数字特征考试内容随机变量地数学期望(均值)、方差、标准差及其性质随机变量函数地数学期望切比雪夫()不等式矩、协方差、相关系数及其性质文档来自于网络搜索考试要求、理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)地概念,会运用数字特征地基本性质,并掌握常用分布地数字特征文档来自于网络搜索、会求随机变量函数地数学期望、了解切比雪夫不等式五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利()大数定律辛钦()大数定律棣莫弗拉普拉斯(-)定理列维林德伯格(-)定理文档来自于网络搜索考试要求、了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列地大数定律)、了解棣莫弗拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维林德伯格中心极限定理(独立同分布随机变量序列地中心极限定理),并会用相关定理近似计算有关随机事件地概率.文档来自于网络搜索六、数理统计地基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩分布分布分布分位数正态总体地常用抽样分布文档来自于网络搜索考试要求、了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩地概念、了解产生变量、变量和变量地典型模式;了解标准正态分布、分布、分布和分布地上侧分位数,会查相应地数值表文档来自于网络搜索、掌握正态总体地样本均值、样本方差、样本矩地抽样分布、了解经验分布函数地概念和性质七、参数估计考试内容点估计地概念估计量和估计值矩估计法最大似然估计法考试要求、了解参数地点估计、估计量与估计值地概念、掌握矩估计法(一阶矩、二阶矩)和最大似然估计法。

2016数学三考试大纲

2016数学三考试大纲

2016数学三考试大纲2016年的数学三考试大纲主要针对的是中国大陆地区高考数学科目的第三部分,即高等数学部分。

这一部分通常包含微积分、线性代数和概率论等高等数学的基础知识。

以下是2016年数学三考试大纲的详细内容:# 一、微积分1. 函数、极限与连续性- 函数的概念、性质- 极限的定义、性质和运算- 无穷小量与无穷大量的概念- 函数的连续性与间断点2. 导数与微分- 导数的定义、几何意义、物理意义- 基本初等函数的求导公式- 高阶导数- 复合函数、反函数、隐函数以及参数方程所确定的函数的导数- 微分的概念和运算3. 微分中值定理与导数的应用- 罗尔定理、拉格朗日中值定理、柯西中值定理- 泰勒公式- 函数的单调性、极值与最值- 曲线的凹凸性与拐点- 函数图形的描绘4. 不定积分- 不定积分的概念与性质- 换元积分法- 分部积分法- 有理函数与三角函数的积分5. 定积分- 定积分的概念与性质- 微积分基本定理- 定积分的换元积分法与分部积分法- 定积分在几何、物理中的应用6. 无穷级数- 数列的极限- 无穷级数的收敛性- 正项级数的收敛性判别法- 幂级数与函数的泰勒展开# 二、线性代数1. 向量空间- 向量的概念、线性组合、基与维数- 向量空间的定义与性质2. 矩阵- 矩阵的概念、运算- 矩阵的秩、逆矩阵- 特殊矩阵(如对角矩阵、单位矩阵等)3. 线性方程组- 线性方程组的解法- 高斯消元法、克拉默法则- 线性方程组解的存在性与唯一性4. 特征值与特征向量- 特征值与特征向量的概念- 特征多项式- 矩阵的对角化# 三、概率论与数理统计1. 随机事件与概率- 随机事件的概念、运算- 概率的定义、性质- 条件概率、全概率公式与贝叶斯公式2. 随机变量及其分布- 离散型随机变量及其分布列- 连续型随机变量及其概率密度函数- 常见分布(如均匀分布、正态分布等)3. 多维随机变量及其分布- 多维随机变量的联合分布- 边缘分布、条件分布4. 数理统计基础- 数理统计的基本概念- 样本均值、方差、标准差- 参数估计(点估计与区间估计)- 假设检验# 四、综合应用- 微积分、线性代数、概率论在实际问题中的应用- 解决实际问题时的数学建模能力- 数学软件在数学问题求解中的应用2016年的数学三考试大纲强调了对高等数学基础知识的掌握和应用能力,要求考生不仅要理解数学概念和定理,还要能够灵活运用这些知识解决实际问题。

考研数学三历年真题答案与解析-模拟试题

考研数学三历年真题答案与解析-模拟试题

考研数学三历年真题答案与解析|模拟试题展开全文第一部分历年真题及详解2008年全国硕士研究生入学统一考试考研数学三真题及详解2009年全国硕士研究生入学统一考试考研数学三真题及详解2010年全国硕士研究生入学统一考试考研数学三真题及详解2011年全国硕士研究生入学统一考试考研数学三真题及详解详解2013年全国硕士研究生入学统一考试考研数学三真题及详解2014年全国硕士研究生入学统一考试考研数学三真题及详解2015年全国硕士研究生招生考试考研数学三真题及详解2016年全国硕士研究生招生考试考研数学三真题及详解2017年全国硕士研究生招生考试考研数学三真题及详解2018年全国硕士研究生招生考试考研数学三真题及详解2019年全国硕士研究生招生考试考研数学三真题及详解(2)模拟试题及详解部分:精选了3套模拟试题,且附有详尽解析。

考生可通过模拟试题部分的练习,掌握最新考试动态,提前感受考场实战。

第二部分模拟试题及详解全国硕士研究生招生考试考研数学三模拟试题及详解(一)全国硕士研究生招生考试考研数学三模拟试题及详解(二)全国硕士研究生招生考试考研数学三模拟试题及详解(三)第一部分历年真题及详解解一、选择题(1~8小题,每小题4分,共32分。

下列每题给出的四个选项中,只有一个选项符合题目要求。

)1设函数f(x)在区间[-1,1]上连续,则x=0是函数的()。

A.跳跃间断点B.可去间断点C.无穷间断点D.振荡间断点【答案】B查看答案【考点】函数间断点的类型【解析】首先利用间断点的定义确定该点为间断点,然后利用如下的间断点的类型进行判断。

第一类间断点:x=x0为函数f(x)的间断点,且与均存在,则称x=x0为函数f(x)的第一类间断点,其中:①跳跃型间断点:②可去型间断点:第二类间断点:x=x0为函数f(x)的间断点,且与之中至少有一个不存在,则称x=x0为函数f(x)的第二类间断点,其中:①无穷型间断点:与至少有一个为∞;②振荡型间断点:或为振荡型,极限不存在。

2016考研数学大纲原文汇总

2016考研数学大纲原文汇总
您好很抱歉我们暂时无法为您提供服务如需帮助请留言我们将尽快联系并解决您的问题
2016考研数学大纲原文汇总
要考研的童鞋们注意啦!考研大纲是重要的复习依据,是我们的考研备考指南,请大家好好利用他们!为大家带来2016考研数学大纲原文汇总,敬请各位关注和查看。
科目
2016年考研数学大纲汇总
点击查看
数学一
2016考研数学一大纲原文
点击查看详情
数学二
20研数学三大纲原文
点击查看详情
科目
2016年考研大纲
详情
政治
2016考研政治大纲及解析专题
点击查看
英语
2016考研英语大纲及解析专题
点击查看
数学
2016考研数学大纲及解析专题
点击查看
考研专业课
2016考研专业课大纲及解析专题
点击查看

2016年考研数学三真题及解析

2016年考研数学三真题及解析

2016年考研数学三真题及解析2016年考研数学(三)真题一、 填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上.(1)()11lim ______.nn n n-→∞+⎛⎫= ⎪⎝⎭(2)设函数()f x 在2x =的某邻域内可导,且()()e f xf x '=,()21f =,则()2____.f '''=(3)设函数()f u 可微,且()102f '=,则()224z f xy =-在点(1,2)处的全微分()1,2d _____.z =(4)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E=+,则=B .(5)设随机变量X Y 与相互独立,且均服从区间[]0,3上的均匀分布,则{}{}max ,1P X Y ≤=_______. (6)设总体X 的概率密度为()()121,,,,2xnf x ex X X X -=-∞<<+∞L为总体X 的简单随机样本,其样本方差为2S ,则2____.ES=二、选择题:7-14小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在点0x 处的增量,d y y ∆与分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A) 0d y y<<∆. (B)0d y y<∆<.(C) d 0y y ∆<<. (D)d 0y y <∆< .[ ](8)设函数()f x 在0x =处连续,且()22lim1h f h h →=,则(A) ()()000f f -'=且存在 (B)()()010f f -'=且存在(C)()()000f f +'=且存在(D)()()010f f +'=且存在 [ ] (9)若级数1n n a ∞=∑收敛,则级数(A) 1nn a ∞=∑收敛 . (B )1(1)nnn a ∞=-∑收敛.(C) 11n n n a a ∞+=∑收敛. (D) 112nn n aa ∞+=+∑收敛.[ ](10)设非齐次线性微分方程()()y P x y Q x '+=有两个不同的解12(),(),y x y x C为任意常数,则该方程的通解是(A)[]12()()C y x y x -. (B)[]112()()()y x C y x y x +-. (C)[]12()()C y x y x +. (D)[]112()()()y x C y x y x ++[ ](11)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0yx y ϕ'≠,已知0(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A) 若0(,)0xf x y '=,则0(,)0yf x y '=.(B) 若0(,)0xf x y '=,则0(,)0yf x y '≠.(C) 若0(,)0xf x y '≠,则0(,)0yf x y '=.(D)若00(,)0x f x y '≠,则00(,)0y f x y '≠.[ ](12)设12,,,sαααL 均为n 维列向量,A 为m n ⨯矩阵,下列选项正确的是 (A) 若12,,,sαααL 线性相关,则12,,,sA A A αααL 线性相关.(B)若12,,,sαααL 线性相关,则12,,,sA A A αααL 线性无关.(C) 若12,,,sαααL 线性无关,则12,,,sA A A αααL 线性相关. (D) 若12,,,sαααL 线性无关,则12,,,sA A A αααL 线性无关.[ ](13)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的1-倍加到第2列得C ,记110010001P ⎛⎫ ⎪= ⎪⎪⎝⎭,则(A)1C PAP-=. (B)1C PAP -=.(C)TC P AP=. (D)TC PAP =. [ ](14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且{}{}1211P X P Y μμ-<>-<则必有(A) 12σσ< (B) 12σσ>(C)12μμ< (D) 12μμ>[ ]三 、解答题:15-23小题,共94分. 解答应写出文字说明、证明过程或演算步骤. (15)(本题满分7分)设()1sin,,0,01arctan xy y yf x y x y xy xπ-=->>+,求(Ⅰ) ()()lim ,y g x f x y →+∞=;(Ⅱ)()0lim x g x +→.(16)(本题满分7分)计算二重积分d Dx y,其中D 是由直线,1,0y x y x ===所围成的平面区域. (17)(本题满分10分) 证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a aππ++>++.(18)(本题满分8分)在xOy 坐标平面上,连续曲线L 过点()1,0M ,其上任意点()(),0P x y x ≠处的切线斜率与直线OP 的斜率之差等于ax(常数>0a ). (Ⅰ) 求L 的方程;(Ⅱ) 当L 与直线y ax =所围成平面图形的面积为83时,确定a 的值.(19)(本题满分10分)求幂级数()()1211121n n n x n n -+∞=--∑的收敛域及和函数()s x .(20)(本题满分13分)设4维向量组()()()TTT1231,1,1,1,2,2,2,2,3,3,3,3,a a a ααα=+=+=+()T44,4,4,4a α=+,问a 为何值时1234,,,αααα线性相关?当1234,,,αααα线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出. (21)(本题满分13分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()TT121,2,1,0,1,1αα=--=-是线性方程组0Ax =的两个解.(Ⅰ)求A 的特征值与特征向量; (Ⅱ)求正交矩阵Q 和对角矩阵Λ,使得TQ AQ =Λ;(Ⅲ)求A 及632A E ⎛⎫-⎪⎝⎭,其中E 为3阶单位矩阵.(22)(本题满分13分)设随机变量X 的概率密度为()1,1021,0240,X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩ 其他,令()2,,Y XF x y =为二维随机变量(,)X Y 的分布函数.(Ⅰ)求Y 的概率密度()Yf y ; (Ⅱ)Cov(,)X Y ;(Ⅲ)1,42F ⎛⎫- ⎪⎝⎭. (23)(本题满分13分)设总体X 的概率密度为(),01,;1,12,0,x f x x θθθ<<⎧⎪=-≤<⎨⎪⎩其他,其中θ是未知参数()01θ<<,12n,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,nx x x 中小于1的个数.(Ⅰ)求θ的矩估计; (Ⅱ)求θ的最大似然估计2006年考研数学(三)真题解析二、 填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上.(1)()11lim 1.nn n n-→∞+⎛⎫= ⎪⎝⎭【分析】将其对数恒等化ln e NN =求解. 【详解】()(1)111ln lim (1)ln 1lim lim eennn n n n n n n n n n -→∞-++⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭→∞→∞+⎛⎫== ⎪⎝⎭,而数列{}(1)n -有界,1lim ln 0n n n →∞+⎛⎫= ⎪⎝⎭,所以1lim(1)ln 0n n n n →∞+⎛⎫-= ⎪⎝⎭. 故()101lim e 1nn n n -→∞+⎛⎫== ⎪⎝⎭.(2)设函数()f x 在2x =的某邻域内可导,且()()e f xf x '=,()21f =,则()322e .f '''=【分析】利用复合函数求导即可.【详解】由题设知,()()e f xf x '=,两边对x 求导得()()()2e()ef x f x f x f x '''==,两边再对x 求导得()()23()2e()2ef x f x f x f x ''''==,又()21f =,故 ()323(2)2e2e f f '''==.(3)设函数()f u 可微,且()102f '=,则()224z f xy =-在点(1,2)处的全微分()1,2d 4d 2d .z x y =-【分析】利用二元函数的全微分公式或微分形式不变性计算.【详解】方法一:因为22(1,2)(1,2)(4)84z f x y xx∂'=-⋅=∂,()22(1,2)(1,2)(4)22z f x y y y∂'=-⋅-=-∂,所以()()()1,21,21,2d d d 4d 2d z z zx y x y xy⎡⎤∂∂=+=-⎢⎥∂∂⎣⎦.方法二:对()224z f x y =-微分得()222222d (4)d(4)(4)8d 2d z f x y x y f x y x x y y ''=--=--,故 ()()1,2d (0)8d 2d 4d 2d zf x y x y'=-=-.(4)设矩阵2112A ⎛⎫=⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E=+,则=B 2 .【分析】 将矩阵方程改写为AX B XA B AXB C ===或或的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有 ()2B A E E -=于是有4B A E -=,而11211A E -==-,所以2B =.(5)设随机变量X Y 与相互独立,且均服从区间[]0,3上的均匀分布,则{}{}max ,1P X Y ≤=19. 【分析】 利用X Y 与的独立性及分布计算. 【详解】 由题设知,X Y 与具有相同的概率密度1,3()30,x f x ⎧≤≤⎪=⎨⎪⎩ 0 其他.则 {}{}{}max ,11,1P X Y P X Y ≤=≤≤{}{}11P X P Y =≤≤{}()2120111d 39P X x ⎛⎫=≤== ⎪⎝⎭⎰.【评注】 本题属几何概型,也可如下计算,如下图:则 {}{}{}1max ,11,19S P X Y P X Y S≤=≤≤==阴.(6)设总体X 的概率密度为()()121,,,,2xnf x ex X X X -=-∞<<+∞L为总体X 的简单随机样本,其样本方差为2S ,则22.ES =【分析】利用样本方差的性质2ES DX=即可.【详解】因为()d e d 02xx EX xf x x x +∞+∞--∞-∞===⎰⎰,22222000()d e d e d e 2e d 2xx xx x EX x f x x x x x x x x+∞+∞+∞+∞---+∞--∞-∞====-+⎰⎰⎰⎰2e 2e d 2e 2xx xx x +∞-+∞--+∞=-+=-=⎰,所以()22202DX EX EX =-=-=,又因2S 是DX 的无偏估计量,所以22ES DX ==.二、选择题:7-14小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在点0x 处的增量,d y y ∆与分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A) 0d y y<<∆.(B)0d y y<∆<.(C)d 0y y ∆<<. (D)d 0y y <∆< . [ A ]【分析】 题设条件有明显的几何意义,用图示法求解.【详解】 由()0,()0f x f x '''>>知,函数()f x 单调增加,曲线()y f x =凹向,作函数()y f x =的图形如右图所示,显然当x ∆>时,00d ()d ()0y y f x x f x x ''∆>==∆>,故应选(A).(8)设函数()f x 在0x =处连续,且()22lim 1h f h h →=,则(A) ()()000f f -'=且存在 (B) ()()010f f -'=且存在(C)()()000f f +'=且存在 (D)()()010f f +'=且存在[ C ] 【分析】从()220lim1h f h h→=入手计算(0)f ,利用导数的左右导数定义判定(0),(0)f f -+''的存在性.【详解】由()22lim 1h f h h→=知,()2lim 0h f h →=.又因为()f x 在0x =处连续,则()20(0)lim ()lim 0x h f f x f h →→===.令2t h =,则()()220(0)1limlim (0)h t f h f t f f h t++→→-'===.所以(0)f +'存在,故本题选(C ).(9)若级数1n n a ∞=∑收敛,则级数(A) 1nn a ∞=∑收敛 . (B )1(1)nnn a ∞=-∑收敛.(C) 11n n n a a ∞+=∑收敛. (D) 112nn n aa ∞+=+∑收敛.[ D ]【分析】 可以通过举反例及级数的性质来判定. 【详解】 由1nn a ∞=∑收敛知11n n a ∞+=∑收敛,所以级数112nn n aa ∞+=+∑收敛,故应选(D). 或利用排除法: 取1(1)nna n=-,则可排除选项(A),(B);取(1)nna =-.故(D)项正确.(10)设非齐次线性微分方程()()y P x y Q x '+=有两个不同的解12(),(),y x y x C为任意常数,则该方程的通解是(A)[]12()()C y x y x -. (B)[]112()()()y x C y x y x +-.(C)[]12()()C y x y x +. (D)[]112()()()y x C y x y x ++ [ B ]【分析】 利用一阶线性非齐次微分方程解的结构即可.【详解】由于12()()y x y x -是对应齐次线性微分方程()0y P x y '+=的非零解,所以它的通解是[]12()()Y C y x y x =-,故原方程的通解为[]1112()()()()y y x Y y x C y x y x =+=+-,故应选(B).【评注】本题属基本题型,考查一阶线性非齐次微分方程解的结构:*y y Y=+.其中*y 是所给一阶线性微分方程的特解,Y 是对应齐次微分方程的通解.(11)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0yx y ϕ'≠,已知0(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A) 若0(,)0xf x y '=,则0(,)0yf x y '=.(B) 若0(,)0xf x y '=,则0(,)0yf x y '≠.(C) 若0(,)0xf x y '≠,则0(,)0yf x y '=.(D)若00(,)0x f x y '≠,则00(,)0y f x y '≠.[ D ]【分析】 利用拉格朗日函数(,,)(,)(,)F x y f x y x y λλϕ=+在000(,,)x y λ(0λ是对应0,x y 的参数λ的值)取到极值的必要条件即可.【详解】 作拉格朗日函数(,,)(,)(,)F x y f x y x y λλϕ=+,并记对应0,x y 的参数λ的值为0λ,则000000(,,)0(,,)0x y F x y F x y λλ⎧'=⎪⎨'=⎪⎩, 即0000000000(,)(,)0(,)(,)0x x y y f x y x y f x y x y λϕλϕ⎧''+=⎪⎨''+=⎪⎩ .消去0λ,得(,)(,)(,)(,)0xyyxf x y x y f x y x y ϕϕ''''-=,整理得000000001(,)(,)(,)(,)x y x y f x y f x y x y x y ϕϕ'''='.(因为(,)0yx y ϕ'≠),若0(,)0xf x y '≠,则0(,)0yf x y '≠.故选(D).(12)设12,,,sαααL 均为n 维列向量,A 为m n ⨯矩阵,下列选项正确的是 (A)若12,,,sαααL 线性相关,则12,,,sA A A αααL 线性相关.(B) 若12,,,sαααL 线性相关,则12,,,sA A A αααL 线性无关.(C) 若12,,,sαααL 线性无关,则12,,,sA A A αααL 线性相关. (D) 若12,,,sαααL 线性无关,则12,,,sA A A αααL 线性无关.[ A ]【分析】 本题考查向量组的线性相关性问题,利用定义或性质进行判定.【详解】 记12(,,,)sB ααα=L ,则12(,,,)sA A A AB ααα=L .所以,若向量组12,,,sαααL 线性相关,则()r B s <,从而()()r AB r B s≤<,向量组12,,,sA A A αααL 也线性相关,故应选(A).(13)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的1-倍加到第2列得C ,记110010001P ⎛⎫ ⎪= ⎪⎪⎝⎭,则(A)1C P AP-=. (B)1C PAP -=.(C)TC PAP=. (D)TC PAP =. [ B ]【分析】利用矩阵的初等变换与初等矩阵的关系以及初等矩阵的性质可得. 【详解】由题设可得110110*********,010010010001001001001B A C B A --⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ,而1110010001P --⎛⎫ ⎪= ⎪⎪⎝⎭,则有1C PAP -=.故应选(B).(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且{}{}1211P X P Y μμ-<>-<则必有(A) 12σσ< (B) 12σσ>(C)12μμ< (D) 12μμ>[ A ]【分析】 利用标准正态分布密度曲线的几何意义可得.【详解】 由题设可得12112211X Y P P μμσσσσ⎧-⎫⎧-⎫<><⎨⎬⎨⎬⎩⎭⎩⎭,则12112121σσ⎛⎫⎛⎫Φ->Φ- ⎪ ⎪⎝⎭⎝⎭,即1211σσ⎛⎫⎛⎫Φ>Φ ⎪ ⎪⎝⎭⎝⎭. 其中()x Φ是标准正态分布的分布函数. 又()x Φ是单调不减函数,则1211σσ>,即12σσ<.故选(A).三 、解答题:15-23小题,共94分. 解答应写出文字说明、证明过程或演算步骤.(15)(本题满分7分)设()1sin,,0,01arctan xy y yf x y x y xy xπ-=->>+,求(Ⅰ) ()()lim ,y g x f x y →+∞=;(Ⅱ)()0lim x g x +→.【分析】第(Ⅰ)问求极限时注意将x 作为常量求解,此问中含,0∞⋅∞∞型未定式极限;第(Ⅱ)问需利用第(Ⅰ)问的结果,含∞-∞未定式极限. 【详解】(Ⅰ)()()1sin lim ,lim 1arctan y y x y y y g x f x y xy x π→+∞→∞⎛⎫- ⎪⎪==-+ ⎪⎪⎝⎭sin 11111lim 1arctan arctan y x yx y x x x x y ππ→∞⎛⎫⎪ ⎪-⎪⎪-=-=-⎪ ⎪+ ⎪ ⎪ ⎪⎝⎭.(Ⅱ)()200011arctan lim lim lim arctan arctan x x x x x x x g x x x x xππ+++→→→--+⎛⎫=-= ⎪⎝⎭ (通分)22222000112arctan 2(1)1lim lim lim 22x x x x x x x x x x x x x xππππ+++→→→-+-+-+++====(16)(本题满分7分)计算二重积分d Dx y,其中D 是由直线,1,0y x y x ===所围成的平面区域.【分析】画出积分域,将二重积分化为累次积分即可.【详解】积分区域如右图.因为根号下的函数为关于x 的一次函数,“先x 后y”积分较容易,所以1220d d d d yDy xy x y y y xy x-=-⎰⎰⎰⎰()311222002122d d 339y y xy y y y y=--==⎰⎰(17)(本题满分10分) 证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a aππ++>++.【分析】 利用“参数变易法”构造辅助函数,再利用函数的单调性证明.【详解】令()sin 2cos sin 2cos ,0f x x x x x a a a a a x b πππ=++---<≤≤<, 则 ()sin cos 2sin cos sin f x x x x x x x x ππ'=+-+=-+,且()0f π'=.又()cos sin cos sin 0f x x x x x x x ''=--=-<,(0,sin 0x x x π<<>时),故当0a x b π<≤≤<时,()f x '单调减少,即()()0f x f π''>=,则()f x 单调增加,于是()()0f b f a >=,即sin 2cos sin 2cos b b b b a a a aππ++>++.(18)(本题满分8分)在xOy 坐标平面上,连续曲线L 过点()1,0M ,其上任意点()(),0P x y x ≠处的切线斜率与直线OP 的斜率之差等于ax (常数>0a ). (Ⅰ) 求L 的方程;(Ⅱ) 当L 与直线y ax =所围成平面图形的面积为83时,确定a 的值.【分析】(Ⅰ)利用导数的几何意义建立微分方程,并求解;(Ⅱ)利用定积分计算平面图形的面积,确定参数.【详解】(Ⅰ) 设曲线L 的方程为()y f x =,则由题设可得yy ax x'-=,这是一阶线性微分方程,其中1(),()P x Q x axx=-=,代入通解公式得()11d d 2e e d x x x x y ax x C x ax C ax Cx -⎛⎫⎰⎰=+=+=+ ⎪⎝⎭⎰,又(1)0f =,所以C a =-. 故曲线L 的方程为2y ax ax =-(0)x ≠.(Ⅱ) L 与直线y ax =(>0a )所围成平面图形如右图所示. 所以 ()22d D ax ax ax x ⎡⎤=--⎣⎦⎰()220482d 33a x x x a =-==⎰,故2a =.(19)(本题满分10分)求幂级数()()1211121n n n x n n -+∞=--∑的收敛域及和函数()s x .【分析】因为幂级数缺项,按函数项级数收敛域的求法计算;利用逐项求导或积分并结合已知函数的幂级数展开式计算和函数. 【详解】记121(1)()(21)n n n x u x n n -+-=-,则 2321121(1)()(1)(21)lim lim (1)()(21)n n n n n n n nx u x n n x x u x n n ++-+→∞→∞-++==--.所以当21,1xx <<即时,所给幂级数收敛;当1x >时,所给幂级数发散;当1x =±时,所给幂级数为1(1)(1),(21)(21)n nn n n n -----,均收敛,故所给幂级数的收敛域为[]1,1- 在()1,1-内,()12112111(1)(1)()22()(21)(21)2n n n nn n x x s x x xs x n n n n -+-∞∞==--===--∑∑,而12112211211(1)1(),()(1)211n n n n n n x s x s x x n x --∞∞--==-'''==-=-+∑∑,所以 111201()(0)()d d arctan 1xxs x s s t t t x t ''''-===+⎰⎰,又1(0)0s '=,于是1()arctan s x x'=.同理1110()(0)()d arctan d xxs x s s t t t t'-==⎰⎰()20201arctan d arctan ln 112xx t t t t x x x t =-=-++⎰,又 1(0)0s =,所以()211()arctan ln 12s x x x x =-+.故()22()2arctan ln 1s x x x x x =-+.()1,1x ∈-.由于所给幂级数在1x =±处都收敛,且()22()2arctan ln 1s x x x x x =-+在1x =± 处都连续,所以()s x 在1x =±成立,即()22()2arctan ln 1s x x x x x =-+,[]1,1x ∈-.(20)(本题满分13分) 设4维向量组()()()TTT1231,1,1,1,2,2,2,2,3,3,3,3,a a a ααα=+=+=+()T44,4,4,4a α=+,问a 为何值时1234,,,αααα线性相关?当1234,,,αααα线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出.【分析】因为向量组中的向量个数和向量维数相同,所以用以向量为列向量的矩阵的行列式为零来确定参数a ;用初等变换求极大线性无关组.【详解】记以1234,,,αααα为列向量的矩阵为A ,则312341234(10)12341234a a A a a a a++==+++.于是当0,010A a a ===-即或时,1234,,,αααα线性相关.当0a =时,显然1α是一个极大线性无关组,且2131412,3,4αααααα===;当10a =-时,1α 2α 3α 4α9234183412741236A -⎛⎫ ⎪-⎪= ⎪- ⎪-⎝⎭,由于此时A 有三阶非零行列式9231834000127--=-≠-,所以123,,ααα为极大线性无关组,且123441230αααααααα+++==---,即.(21)(本题满分13分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()TT121,2,1,0,1,1αα=--=-是线性方程组0Ax =的两个解.(Ⅰ) 求A 的特征值与特征向量; (Ⅱ) 求正交矩阵Q 和对角矩阵Λ,使得TQ AQ =Λ;(Ⅲ)求A 及632A E ⎛⎫-⎪⎝⎭,其中E 为3阶单位矩阵.【分析】 由矩阵A 的各行元素之和均为3及矩阵乘法可得矩阵A 的一个特征值和对应的特征向量;由齐次线性方程组0Ax =有非零解可知A 必有零特征值,其非零解是0特征值所对应的特征向量.将A 的线性无关的特征向量正交化可得正交矩阵Q ;由TQAQ =Λ可得到A 和632A E ⎛⎫-⎪⎝⎭.【详解】 (Ⅰ) 因为矩阵A 的各行元素之和均为3,所以1311331131A ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则由特征值和特征向量的定义知,3λ=是矩阵A 的特征值,T(1,1,1)α=是对应的特征向量.对应3λ=的全部特征向量为k α,其中k 为不为零的常数. 又由题设知 120,0A A αα==,即11220,0A A αααα=⋅=⋅,而且12,αα线性无关,所以0λ=是矩阵A 的二重特征值,12,αα是其对应的特征向量,对应0λ=的全部特征向量为 1122k k αα+,其中12,k k 为不全为零的常数.(Ⅱ) 因为A 是实对称矩阵,所以α与12,αα正交,所以只需将12,αα正交.取 11βα=,()()21221111012,3120,61112αββαβββ⎛⎫-⎪-⎛⎫⎛⎫⎪- ⎪ ⎪=-=--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪⎝⎭.再将12,,αββ单位化,得1212312,,0ββαηηηαββ⎛⎛⎪====== ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭,令 []123,,Q ηηη=,则1TQQ -=,由A 是实对称矩阵必可相似对角化,得T 300Q AQ ⎡⎤⎢⎥==Λ⎢⎥⎢⎥⎣⎦. (Ⅲ)由(Ⅱ)知T 300Q AQ ⎡⎤⎢⎥==Λ⎢⎥⎢⎥⎣⎦,所以T 31110011101110A Q Q ⎛⎫⎪⎪⎛⎫⎛⎫⎪ ⎪ ⎪=Λ==⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎝⎭⎝⎭⎪ ⎪ ⎪⎪⎝⎭⎭.666T T T 333222Q A E Q Q A E Q Q AQ E ⎡⎤⎛⎫⎛⎫⎛⎫-=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦6666633223333022203322E ⎛⎫⎛⎫⎡⎤⎛⎫ ⎪ ⎪⎢⎥ ⎪⎝⎭ ⎪⎛⎫⎢⎥ ⎪ ⎪⎛⎫⎛⎫ ⎪⎢⎥ ⎪ ⎪=-== ⎪ ⎪ ⎪⎢⎥ ⎪ ⎪⎝⎭⎝⎭ ⎪⎢⎥ ⎪ ⎪⎝⎭⎢⎥ ⎪⎛⎫ ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎪⎝⎭⎝⎭,则666T 333222A E Q EQ E⎛⎫⎛⎫⎛⎫-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(22)(本题满分13分)设随机变量X 的概率密度为()1,1021,0240,X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩ 其他,令()2,,Y X F x y =为二维随机变量(,)X Y 的分布函数.(Ⅰ) 求Y 的概率密度()Yf y ;(Ⅱ) Cov(,)X Y ; (Ⅲ)1,42F ⎛⎫- ⎪⎝⎭.【分析】 求一维随机变量函数的概率密度一般先求分布,然后求导得相应的概率密度或利用公式计算. 【详解】 (I ) 设Y 的分布函数为()YF y ,即2()()()Y F y P Y y P X y =≤=≤,则1) 当0y <时,()0YF y =;2) 当01y ≤<时,(2()()YF y P X y P X =<=<<001d 4x x =+=⎰3) 当14y ≤<时,(2()()1YF y P X y P X =<=-<<010111d d 242x x -=+=⎰. 4) 当4y ≥,()1YF y =.所以1()()40,Y Y y f y F y y <<⎪'==≤<⎪⎩其他.(II ) 22232Cov(,)Cov(,)()()X Y X X E X EX X EX EX EXEX ==--=-,而2101d d 244x x EX x x -=+=⎰⎰,2222105d d 246x x EX x x -=+=⎰⎰,33023107d d 248x x EX x x -=+=⎰⎰, 所以 7152Cov(,)8463X Y =-⋅=.(Ⅲ)1,42F ⎛⎫- ⎪⎝⎭211,4,422P X Y P X X ⎛⎫⎛⎫=≤-≤=≤-≤ ⎪ ⎪⎝⎭⎝⎭11,22222P X X P X ⎛⎫⎛⎫=≤--≤≤=-≤≤- ⎪ ⎪⎝⎭⎝⎭12111d 24x --==⎰.2016年考研各科目专用题库复习和考试软件说明:本人已于2015年顺利通过了考研。

2016年考研(数学三)真题试卷(题后含答案及解析)

2016年考研(数学三)真题试卷(题后含答案及解析)

2016年考研(数学三)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设函数f(x)在(一∞,+∞)内连续,其导函数的图形如图所示,则__________.A.函数f(x)有2个极值点,曲线y=f(x)有2个拐点B.函数f(x)有2个极值点,曲线y=f(x)有3个拐点C.函数f(x)有3个极值点,曲线y=f(x)有1个拐点D.函数f(x)有3个极值点,曲线y=f(x)有2个拐点正确答案:B2.已知函数f(x,y)=,则_________.A.=0B.=0C.=fD.=f正确答案:D3.设(i=1,2,3),其中D1={(x,y)|0≤x≤1,0≤y≤1},D2={(x,y)|0≤x≤1,0≤y≤},D3={(x,y)|0≤x≤1,x2≤y≤1},则_________.A.J1sin(n+k)(走为常数)________.A.绝对收敛B.条件收敛C.发散D.收敛性与k有关正确答案:A5.设A,B是可逆矩阵,且A与B相似,则下列结论错误的是__________.A.AT与BT相似B.A-1与B-1相似C.A+AT与B+BT相似D.A+A-1与B+B-1相似正确答案:C6.设二次型F(x1,x2,x3)=a()+2x1x2+2x2x3+2x1x3的正、负惯性指数分别为1,2,则_______.A.a&gt;1B.a&lt;一2C.一2&lt;a&lt;lD.a=1或a=一2正确答案:C7.设A,B为两个随机事件,且0&lt;P(A)&lt;1,0&lt;P(B)&lt;1,如果P(A|B)=1,则__________.A.P=1B.P=0C.P[A∪B]=1D.P(B|A)=1正确答案:A8.设随机变量X与Y相互独立,且X~N(1,2),Y~N(1,4),则D(XY)=__________.A.6B.8C.14D.15正确答案:C填空题9.已知函数f(x)满足___________.正确答案:610.极限=__________.正确答案:sinl—cosl11.设函数f(u,υ)可微,z=z(x,y)由方程(x+1)z一y2=x2f(x一z,y)确定,则dz|(0.1)=___________.正确答案:一dx+2dy12.设D={(x,y)||x|≤y≤1,一1≤x≤1},则[*101]dxdy__________.正确答案:13.行列式=____________.正确答案:λ4+λ3+2λ2+3λ+414.设袋中有红、白、黑球各1个,从中有放回地取球,每次取1个,直到三种颜色的球都取到时停止,则取球次数恰好为4的概率为___________.正确答案:解答题解答应写出文字说明、证明过程或演算步骤。

2016年考研数学(一、二、三)真题与答案解析

2016年考研数学(一、二、三)真题与答案解析

2016考研数学(一)真题及答案解析考研复习最重要的就是真题,所以跨考教育数学教研室为考生提供2016考研数学一的真题、答案及部分解析,希望考生能够在最后冲刺阶段通过真题查漏补缺,快速有效的备考。

一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设{}n x 是数列下列命题中不正确的是( ) (A )若lim n n x a →∞=,则221lim lim n n n n x x a +→∞→∞==(B )若221lim lim n n n n x x a +→∞→∞==,则lim n n x a →∞=(C )若lim n n x a →∞=,则321lim lim n n n n x x a -→∞→∞==(D )若331lim lim n n n n x x a -→∞→∞==,则lim n n x a →∞=【答案】(D )(2)设211()23x x y e x e =+-是二阶常系数非齐次线性微分方程x y ay by ce '''++=的一个特解,则 (A )3,2,1a b c =-==-(B )3,2,1a b c ===- (C )3,2,1a b c =-== (D )3,2,1a b c === 【答案】(A )【解析】将特解代入微分方程,利用待定系数法,得出3,2,1a b c =-==-。

故选A 。

(3)若级数1nn n a x∞=∑在2x =处条件收敛,则x =3x =依次为幂级数1(1)n n n na x ∞=-∑的( )(A )收敛点,收敛点 (B )收敛点,发散点 (C )发散点,收敛点 (D )发散点,发散点 【答案】(A ) 【解析】因为级数1nn n a x∞=∑在2x =处条件收敛,所以2R =,有幂级数的性质,1(1)nnn na x ∞=-∑的收敛半径也为2R =,即13x -<,收敛区间为13x -<<,则收敛域为13x -<≤,进而x =3x =依次为幂级数1(1)nnn na x ∞=-∑的收敛点,收敛点,故选A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年考研数学三考试大纲原文2016年考研数学三考试大纲原文考试科目:微积分、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟二、答题方式答题方式为闭卷、笔试三、试卷内容结构微积分约56%线性代数约22%概率论与数理统计约22%四、试卷题型结构单项选择题选题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1、理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系2、了解函数的有界性、单调性、周期性和奇偶性3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念4、掌握基本初等函数的性质及其图形,了解初等函数的概念5、了解数列极限和函数极限(包括左极限与右极限)的概念6、了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法7、理解无穷小量的概念和基本性质,掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系8、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型9、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1、理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程2、掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数3、了解高阶导数的概念,会求简单函数的高阶导数4、了解微分的概念、导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分5、理解罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理,了解泰勒(Taylor)定理、柯西(Cauchy)中值定理,掌握这四个定理的简单应用6、会用洛必达法则求极限7、掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用8、会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线9、会描述简单函数的图形三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1、理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法与分部积分法2、了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式以及定积分的换元积分法和分部积分法3、会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题4、了解反常积分的概念,会计算反常积分四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算无界区域上简单的反常二重积分考试要求1、了解多元函数的概念,了解二元函数的几何意义2、了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质3、了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数4、了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题5、了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标),了解无界区域上较简单的反常二重积分并会计算五、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1、了解级数的收敛与发散、收敛级数的和的概念2、了解级数的基本性质及级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法3、了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法4、会求幂级数的收敛半径、收敛区间及收敛域5、了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数6、了解,,,及的麦克劳林(Maclaurin)展开式六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1、了解微分方程及其阶、解、通解、初始条件和特解等概念2、掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法3、会解二阶常系数齐次线性微分方程4、了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程5、了解差分与差分方程及其通解与特解等概念6、了解一阶常系数线性差分方程的求解方法7、会用微分方程求解简单的经济应用问题线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1、了解行列式的概念,掌握行列式的性质2、会应用行列式的性质和行列式按行(列)展开定理计算行列式二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质2、掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质3、理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵4、了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法5、了解分块矩阵的概念,掌握分块矩阵的运算法则三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1、了解向量的概念,掌握向量的加法和数乘运算法则2、理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法3、理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩4、理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系5、了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法四、线性方程组考试内容线性方程组的克拉默(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1、会用克拉默法则解线性方程组2、掌握非齐次线性方程组有解和无解的判定方法3、理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法4、理解非齐次线性方程组解的结构及通解的概念5、掌握用初等行变换求解线性方程组的方法五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1、理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法2、理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法3、六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1、了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念2、了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形3、理解正定二次型、正定矩阵的概念,并掌握其判别法概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1、了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算2、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等3、理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1、理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率2、理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用3、掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布4、理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用5、会求随机变量函数的分布三、多维随机变量的分布考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1、理解多维随机变量的分布函数的概念和基本性质2、理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度,掌握二维随机变量的边缘分布和条件分布3、理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系4、掌握二维均匀分布和二维正态分布,理解其中参数的概率意义5、会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其简单函数的分布四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1、理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征2、会求随机变量函数的数学期望3、了解切比雪夫不等式五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(DeMoivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理考试要求1、了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)2、了解棣莫弗-拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维-林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1、了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念2、了解产生变量、变量和变量的典型模式;了解标准正态分布、分布、分布和分布的上侧分位数,会查相应的数值表3、掌握正态总体的样本均值、样本方差、样本矩的抽样分布4、了解经验分布函数的概念和性质七、参数估计考试内容点估计的概念估计量和估计值矩估计法最大似然估计法考试要求1、了解参数的点估计、估计量与估计值的概念2、掌握矩估计法(一阶矩、二阶矩)和最大似然估计法2016考研大纲原文及解析下载汇总(全)最新2016政治考研大纲原文及解析汇总2016英语考研大纲原文及解析汇总最全2016数学考研大纲原文及解析汇总2016考研统考专业课大纲原文及解析汇总推荐2016年考研大纲解析专题2016考研择校、择专业指导。

相关文档
最新文档