分子生物学1
分子生物学第一章绪 论

Avery 在1944年更精密的实验设计
• 提取可能的转化因子:DNA、RNA、蛋白质、荚膜进行试 验
• 分别用降解DNA、RNA、蛋白质的酶作用于S型菌细胞抽 提物
• 组分提纯试验结果:DNA组分纯度越高,转化效率越高。
结论:使R型菌变为S型菌的物质是S型菌的DNA
• Avery在1944年的报告中这样写道:当溶 液中酒精的体积达到9/10时,有纤维状物 质析出;如稍加搅动,这种物质便会像棉 线绕在线轴上一样绕在硬棒上,溶液中的 其他成分则以颗粒状沉淀留在下面。溶解 纤维状物质并重复沉淀数次,可提高其纯 度。这一物质具有很强的生物学活性,初 步实验证实它很可能就是DNA。
4.假基因 不能合成出功能蛋白质的失活基因 。
5.重叠基因 不同基因的核苷酸序列有时是可以共用的 即重叠 的。
1983年,McClintock由于在50年代提出并发 现了可移动遗传因子(jumping gene或称 mobile element)而获得Nobel奖。
Barbra McClintock
• 阐明这些复杂的结构及结构与功能的关系是分子生 物学的主要任务。
一、基因的发展
1. Mendel的遗传因子阶段 2. 摩尔根的基因阶段 3. 顺反子阶段 4. 现代基因阶段
Mendel的遗传因子阶段
• Mendel提出:生物的某种 性状是由遗传因子负责传 递的。是颗粒性的,体细 胞内成双存在,生殖细胞 内成单存在。遗传因子是 决定性状的抽象符号。
T2噬菌体感染试验 (1952年,Hershey & Chase)
病毒重建试验
杂种病毒的感染 特征和蛋白质外 壳的特性是由其 中的RNA决定的, 而不是蛋白质决
定的
结论
分子生物学习题1

习题1一、名词解释或概念比较1. DNA 复制. 2. 前导链和后滞链3. DNA 聚合酶III 的核心酶和全酶4 DNA 突变. 5. 点突变和移码突变6. 复制子7. 复制起始点8同源重组和位点特异性重组二、in Fill the blank(填空题)1. 中心法则是Crick 于1956年提出的,其内容可概括为DNA 转录得到RNA ,RNA 翻译得到蛋白质。
2. 所有冈畸片段的延伸都是按5’→3’方向进行的。
3. 每个冈畸片段是借助于连在它的5’末端上的一小段RNA 为引物而合成的。
4. 前导链的合成是连续的,其合成方向与复制叉移动的方向一致;后随链的合成是不连续的,其合成方向与复制叉移动方向相反。
5. 在一系列特殊的起始子蛋白作用下,大肠杆菌静止的复制起点转化为复制中心。
6. 核外DNA 主要有原核细胞中的质粒、真核细胞中的线粒体、叶绿体和病毒的RNA 。
7. 引物酶与转录中的RNA 聚合酶之间的差别在于它对利福平不敏感,并可以dNTP 作为底物。
8. DNA 聚合酶Ⅰ的催化功能有3’→5’方向核酸外切酶活性、、和。
9. DNA gyrase (DNA 促旋酶)又叫,它的功能是。
10. 细菌的环状DNA 通常在一个开始复制,而真核生物染色体中的线形DNA 可以在起始复制。
11. 大肠杆菌DNA 聚合酶Ⅲ的活性使之具有功能,极大地提高了DNA 复制的保真度。
12. 大肠杆菌中已发现种DNA 聚合酶,其中负责DNA 复制,负责DNA 损伤修复。
13. DNA 切除修复需要的酶有、、和。
14. 14. DNA DNA 合成时,先由引物酶合成,再由在其3’端合成DNA 链,然后由切除引物并填补空隙,最后由连接成完整的链。
15. 真核细胞中编码蛋白质的基因多为。
编码的序列还被保留在成熟mRNA 中的是,编码的序列在前体分子转录后加工中被切除的是。
在基因中____________被被__________分隔,而成熟的分隔,而成熟的mRNA 中外显子转录的序列被拼接起来。
分子生物学PPT课件

04 蛋白质的结构与功能
蛋白质的化学组成与结构
蛋白质的基本组成单 位
氨基酸,具有氨基和羧
基的有机化合物。
氨基酸的种类
20种常见氨基酸,根据 侧链R基的不同进行分 类。
蛋白质的一级结构
氨基酸的线性排列顺序 ,包括肽键和二硫键的 连接。
蛋白质的高级结构
二级结构(α-螺旋、β折叠等)、三级结构和 四级结构。
01
其他RNA
如miRNA、snRNA等,在基因表达调控、 RNA加工等方面发挥作用。
04
03
RNA的合成与加工
01
02
03
转录
以DNA为模板,通过RNA 聚合酶的作用,合成RNA 的过程。
加工
新合成的RNA需要经过一 系列加工过程,如剪接、 修饰等,才能成为成熟的 RNA分子。
转录后调控
通过RNA干扰、RNA编辑 等方式对RNA进行转录后 水平的调控,影响基因的 表达。
03
DNA连接酶的种类和应用
04
重组DNA分子的构建和筛选
PCR技术及其应用
01
PCR技术的原理及步骤
02
03
04
引物的设计与优化
PCR反应体系的组成及优化
PCR技术的应用举例
基因克隆与基因工程
基因克隆的定义和原理 基因表达载体的构建和选择
基因工程的基本步骤 基因工程的应用举例
分子生物学在医学、农业等领域的应用
医学领域的应用
基因诊断、基因治疗、药物研 发等
工业领域的应用
酶工程、发酵工程、生物制药 等
农业领域的应用
转基因作物、基因编辑育种、 农业生物技术等
环境领域的应用
环境监测、污染治理、生态修 复等
分子生物学习题1(包含答案和提示)

第一章基因的结构与功能自测题(一)选择题A型题1. 关于基因的说法错误..的是A. 基因是贮存遗传信息的单位B. 基因的一级结构信息存在于碱基序列中C. 为蛋白质编码的结构基因中不包含翻译调控序列D. 基因的基本结构单位是一磷酸核苷E. 基因中存在调控转录和翻译的序列2. 基因是指A. 有功能的DNA片段B. 有功能的RNA片段C. 蛋白质的编码序列及翻译调控序列D. RNA的编码序列及转录调控序列E. 以上都不对3. 结构基因的编码产物不.包括A. snRNAB. hnRNAC. 启动子D. 转录因子E. 核酶4. 已知双链DNA的结构基因中,信息链的部分序列是5'AGGCTGACC3',其编码的RNA相应序列是A. 5'AGGCTGACC3'B. 5'UCCGACUGG3'C. 5'AGGCUGACC3'D. 5'GGUCAGCCU3'E. 5'CCAGUCGGA3'5. 已知某mRNA的部分密码子的编号如下:127 128 129 130 131 132 133GCG UAG CUC UAA CGG UGA AGC以此mRNA为模板,经翻译生成多肽链含有的氨基酸数目为A.127B.128C.129D.130E.1316. 真核生物基因的特点是A. 编码区连续B. 多顺反子RNAC. 内含子不转录D. 断裂基因E. 外显子数目=内含子数目-17. 关于外显子说法正确的是A. 外显子的数量是描述基因结构的重要特征B. 外显子转录后的序列出现在hnRNA中C. 外显子转录后的序列出现在成熟mRNAD. 外显子的遗传信息可以转换为蛋白质的序列信息E. 以上都对8. 断裂基因的叙述正确的是A. 结构基因中的DNA序列是断裂的B. 外显子与内含子的划分不是绝对的C. 转录产物无需剪接加工D. 全部结构基因序列均保留在成熟的mRNA分子中E. 原核和真核生物基因的共同结构特点9. 原核生物的基因不.包括A. 内含子B. 操纵子C. 启动子D. 起始密码子E. 终止子10. 原核和真核生物的基因都具有A. 操纵元件B. 顺式作用元件C. 反式作用因子D. 内含子E. RNA聚合酶结合位点11. 原核生物不.具有以下哪种转录调控序列A. 增强子B. 终止子C. 启动子D. 操纵元件E. 正调控蛋白结合位点12. 原核和真核生物共有的转录调控序列是A. poly (A) 信号B. 启动子C. 操纵子D. 终止子E. 增强子13. 哪种不.属于真核生物的转录调控序列A. 反式作用因子的结合位点B. RNA聚合酶的结合位点C. 阻遏蛋白的结合位点D. 信息分子受体的结合位点E. 转录因子的结合位点14. 关于启动子叙述错误..的是A. 原核和真核生物均有B. 调控转录起始C. 与RNA聚合酶结合D. 都不能被转录E. 位于转录起始点附近15. 关于终止子叙述错误..的是A. 具有终止转录的作用B. 是富含GC的反向重复序列C. 转录后在RNA分子中形成茎环结构D. 原核和真核生物中的一段DNA序列E. 位于结构基因的3' 端16. 关于操纵元件叙述错误..的是A. 一段DNA序列B. 发挥正调控作用C. 位于启动子下游,通常与启动子有部分重叠D. 原核生物所特有E. 具有回文结构17. 转录激活蛋白的作用是A. 识别和结合启动子B. 激活结构基因的转录C. 原核和真核生物均有D. 与RNA聚合酶结合起始转录E. 属于负调控的转录因子18. 顺式作用元件主要在什么水平发挥调控作用A. 转录水平B. 转录后加工C. 翻译水平D. 翻译后加工E. mRNA水平19. 能够与顺式作用元件发生相互作用的是A. 一小段DNA序列B. 一小段mRNA序列C. 一小段rRNA序列D. 一小段tRNA序列E. 某些蛋白质因子20. 顺式作用元件的本质是A. 蛋白质B. DNAC. mRNAD. rRNAE. tRNA21. 真核生物的启动子A. 与RNA聚合酶的σ因子结合B. tRNA基因的启动子序列可以被转录C. 位于转录起始点上游D. II类启动子调控rRNA编码基因的转录E. 起始转录不需要转录因子参与22. II类启动子调控的基因是A. U6 snRNAB. 28S rRNAC. mRNAD. tRNAE. 5S rRNA23. I类启动子调控的基因不.包括A. 5S rRNAB. 5.8S rRNAC. 18S rRNAD. 28S rRNAE. 45S rRNA24. 若I类启动子突变,哪种基因的转录不.受影响A. 16S rRNAB. 5.8S rRNAC. 18S rRNAD. 28S rRNAE. 以上都不对25. I类启动子突变可影响合成A. 核糖体30S亚基B. 核糖体40S亚基C. 核糖体50S亚基D. 70S核糖体E. 以上都不对26. 不.属于真核生物启动子特点的是A. 分为I、II、III类B. 与之结合的RNA聚合酶不只一种C. 转录因子辅助启动子与RNA聚合酶相结合D. 5S rRNA编码基因的转录由I类启动子控制E. II类启动子可调控大部分snRNA编码基因的转录27. 原核生物的启动子A. 根据所调控基因的不同分为I、II、III类B. 与RNA聚合酶全酶中的σ因子结合C. 不具有方向性D. 涉及转录因子-DNA的相互作用E. 涉及不同转录因子之间的相互作用28. 原核生物和真核生物启动子的共同特点是A. 需要反式作用因子辅助作用B. 本身不被转录C. 与RNA聚合酶I、II、III相结合D. 转录起始位点由RNA聚合酶的σ因子辨认E. 涉及DNA-蛋白质的相互作用29. 真核生物与原核生物的启动子的显著区别是A. 具有方向性B. 启动子自身被转录C. 需要转录因子参与作用D. 位于转录起始点上游E. 与RNA聚合酶相互作用30. 真核生物的启动子不.能控制哪个基因的转录A. snRNAB. hnRNAC. 5S rRNAD. 16S rRNAE. U6 snRNA31. I类启动子叙述错误..的是A. 不能调控5.8S rRNA结构基因的转录B. 与RNA聚合酶I的亲和力弱C. 与TF IA、IB、IC等相互作用D. 富含GCE. 包括核心元件和上游调控元件32. 启动子位于A. 结构基因B. DNAC. mRNAD. rRNAE. tRNA33. 关于TATA盒叙述错误..的是A. 看家基因不具有TATA盒结构B. 是II类启动子的组成部分C. 受阻遏蛋白调控D. 与转录的精确起始有关E. 位于转录起始点上游34. 关于II类启动子说法错误..的是A. 调控mRNA编码基因的转录B. 调控大部分snRNA编码基因的转录C. 不一定含有TATA盒D. 包含转录起始位点E. 可以被转录35. TATA盒存在于下列哪种结构中A. 增强子B. 启动子C. 反应元件D. 沉默子E. 终止子36. III类启动子的叙述不.正确的是A. 调控真核生物5S rRNA编码基因的转录B. 调控U6 snRNA编码基因的转录C. 调控tRNA编码基因的转录D. 位于转录起始点下游E. 启动子自身不一定被转录37. III类启动子不.具有以下特点A. 调控III类基因的表达B. III类启动子突变会影响核糖体40S亚基的装配C. 与RNA聚合酶III结合D. 需要TF IIIA、IIIB、IIIC参与作用E. 真核生物所特有38. 上游启动子元件是A. 一段核酸序列B. TATA盒的组成部分C. 位于转录起始点下游D. 不一定被转录E. 转录后可以被剪接加工39. 哪项不.是上游启动子元件的特点A. 位于TATA盒上游B. 与TATA盒共同组成启动子C. 提供转录后加工的信号D. 包括CAAT盒、CACA盒、GC盒等E. 可以与反式作用因子发生相互作用40. 增强子是A. 一段可转录的DNA序列B. 一段可翻译的mRNA序列C. 一段具有转录调控作用的DNA序列D. 一段具有翻译调控作用的mRNA序列E. 一种具有调节作用的蛋白质因子41. 关于增强子叙述错误..的是A. 位置不固定B. 可以增强或者抑制转录C. 真核生物所特有D. 能够与反式作用因子结合E. 与核酸序列发生相互作用42. 与增强子发生相互作用的是A. 蛋白质B. snRNAC. 顺反子D. 核酶E. TATA盒43. 反应元件能够结合A. 激素B. 信息分子的受体C. 蛋白激酶D. 阻遏蛋白E. 操纵基因44. 反应元件属于A. 反式作用因子B. 内含子C. 转录因子D. 上游启动子元件E. 转录调控序列45. poly (A) 加尾信号存在于A. I类结构基因及其调控序列B. II类结构基因及其调控序列C. III类结构基因及其调控序列D. 调节基因E. 操纵基因46. 关于加尾信号叙述错误..的是A. 真核生物mRNA的转录调控方式B. 位于结构基因的3' 端外显子中C. 是一段保守的AATAAA序列D. 转录进行到AATAAA序列时终止E. 与加poly (A) 尾有关47. poly (A) 尾的加入时机是A. 转录终止后在AAUAAA序列下游切断RNA、并加尾B. 在转录过程中同时加入C. 转录出AAUAAA序列时终止、并加入其后D. 转录出富含GU(或U)序列时终止、并加入其后E. 以上都不对48. 能编码多肽链的最小DNA单位是A. 内含子B. 复制子C. 转录子D. 启动子E. 操纵子49. 与顺反子化学本质相同的是A. 核酶B. 反应元件C. 5' 端帽子结构D. 转录因子E. DNA酶50. 关于顺反子叙述错误..的是A. 原核生物基因的转录产物主要是多顺反子RNAB. 真核生物基因的转录产物不含有多顺反子RNAC. 顺反子是DNA水平的概念D. 多顺反子RNA可能由操纵子转录而来E. 以上都不对51. 转录产物可能是多顺反子RNA的是A. 真核生物mRNA的结构基因B. 真核生物tRNA的结构基因C. 真核生物snRNA的结构基因D. 真核生物rRNA的结构基因E. 以上都不对52. 有关mRNA的叙述正确的是A. hnRNA中只含有基因编码区转录的序列B. 在3' 端具有SD序列C. mRNA的遗传密码方向是5' → 3'D. 在细胞内总RNA含量中所占比例很大E. mRNA碱基序列与DNA双链中的反义链一致53. 关于开放读框叙述正确的是A. 是mRNA的组成部分B. 内部有间隔序列C. 真核生物的开放读框往往串联在一起D. 内部靠近5' 端含有翻译起始调控序列E. 由三联体反密码子连续排列而成54. 开放读框存在于A. DNAB. hnRNAC. mRNAD. rRNAE. tRNA55. 原核生物的mRNA中含有A. 内含子转录的序列B. 帽子C. poly (A)D. 核糖体结合位点E. 以上都不对56. 关于帽子结构说法错误..的是A. 真核生物mRNA的特点B. 位于5' 端C. 与翻译起始有关D. 常含有甲基化修饰E. 形成3',5'-磷酸二酯键57. hnRNA和成熟mRNA的关系是A. 前者长度往往长于后者B. 二者长度相当C. 二者均不含有由内含子转录的序列D. 二者的碱基序列互补E. 前者的转录产物是后者58. 真核细胞mRNA的合成不.涉及A. 生成较多的稀有碱基B. 3' 端加poly (A) 尾巴C. 5' 端加帽子D. 去除非结构信息部分E. 选择性剪接59. 真核生物mRNA的5' 端帽子结构为A . pppmGB. GpppGC. mGpppGD. GpppmGE. pppmGG60. 有关遗传密码的叙述正确的是A. 一个碱基的取代一定造成它所决定的氨基酸的改变B. 终止密码是UAA、UAG和UGAC. 连续插入三个碱基会引起密码子移位D. 遗传密码存在于tRNA中E. 真核生物的起始密码编码甲酰化蛋氨酸61. 密码子是哪一水平的概念A. DNAB. rRNAC. tRNAD. mRNAE. snRNA62. poly (A) 尾的功能包括A. 与翻译起始因子结合B. 形成特殊结构终止转录C. 与核糖体RNA结合D. 使RNA聚合酶从模板链上脱离E. 增加mRNA稳定性63. 除AUG外,原核生物的起始密码子还可能是A. UCGB. UGCC. GUGD. GCGE. GUC64. 下列哪个密码子为终止密码子A.GUAB.UGGC.UGAD.AUGE.UAC65. 不能编码氨基酸的密码子是A.UAGB.AUGC.UUGD.GUGE.UGC66. 下列哪种氨基酸的密码子可作为起始密码子A.S-腺苷蛋氨酸B.甲硫氨酸C.酪氨酸A.B.苏氨酸C.异亮氨酸67. 原核生物未经修饰的新生多肽链的N端是A.fMetB.LeuC.PheD.AspE.His68. 真核生物合成初始出现在多肽链N端的氨基酸是A. methionineB. valineC. N-formylmethionineD. leucineE. isoleucine69. tRNA的分子结构特征是A. 密码环和5' 端CCAB. 密码环和3' 端CCAC. 反密码环和5' 端CCAD. 反密码环和3' 端CCAE. 三级结构呈三叶草形70. 稀有核苷酸含量最高的核酸是A.rRNAB.mRNAC.tRNAD.DNAE.snRNA71. 已知某tRNA的反密码子为ICU,它识别的密码子为A.AGGB.GGAC.UGAD.AGCE.TGA72. 遗传密码的摆动性常发生在A. 反密码子的第1位碱基B. 反密码子的第2位碱基C. 反密码子的第3位碱基D. A+CE. A+B+C73. 关于起始tRNA叙述错误..的是A. 起始tRNA在蛋白质合成的延伸阶段继续转运蛋氨酸B. 原核生物的起始tRNA携带N-甲酰蛋氨酸C. 真核生物的起始tRNA携带甲硫氨酸D. 起始蛋氨酰-tRNA结合到核糖体的P位E. 以上都不对74. 下列哪个不.是tRNA的特点A. 稀有碱基含量多B. 活化的氨基酸连接于5' 端CCAC. 与密码子之间的碱基配对不严格D. 分子量小E. 反密码环和氨基酸臂分别暴露于倒L形的两端75. tRNA携带活化的氨基酸的部位是A. 反密码环B. TψC环C. DHU环D. 额外环E. CCA76. 哺乳动物核糖体大亚基的沉降常数是A.30SB.40SC.50SD.60SE.70S77. 原核和真核生物共有的rRNA为A.5SB. 5.8SC.16SD.18SE.23S78. 真核生物的核糖体中不.包含A.5S rRNAB. 5.8S rRNAC.16S rRNAD.18S rRNAE.28S rRNA79.关于核糖体叙述错误..的是A. 30S亚基由16S rRNA和21种蛋白质组成B. 40S亚基由18S rRNA和33种蛋白质组成C. 50S亚基由5S rRNA、23S rRNA和34种蛋白质组成D. 60S亚基由5S rRNA、5.8S rRNA、28S rRNA和45种蛋白质组成E. 以上都不对80. 关于rRNA的叙述错误..的是A. 分子量相对较大B. 与核糖体蛋白结合C. 5S rRNA的结构基因属于III类基因D. 真核生物rRNA结构基因转录的产物均为单顺反子RNAE. 与mRNA、tRNA均可发生相互作用81. 有关snRNA的叙述错误..的是A. 真核细胞所特有B. 富含尿嘧啶C. 位于细胞质内D. 与mRNA的剪接加工有关E. 与蛋白质结合形成snRNP82. 信号识别颗粒的成分包括A. snRNAB. 7SL RNAC. snRNPD. SRP受体E. ribozyme83. 反义RNA的作用主要是A. 抑制转录B. 降解DNAC. 降解mRNAD. 封闭DNAE. 封闭mRNA84. 关于核酶叙述正确的是A. 化学本质是RNAB. 分为DNA酶和RNA酶C. 属于核酸酶D. 底物只能是DNAE. 由核酸和蛋白质组成85. 如果基因突变导致其编码的蛋白质分子中一个氨基酸残基发生变异,出现的结果是A. 二级结构一定改变B. 二级结构一定不变C. 三级结构一定改变D. 功能一定改变E. 以上都不对86. 下列哪种物质不是核酸与蛋白质的复合物A. 核糖体B. snRNPC. SRPD. 核酶E. 端粒酶87. 结构基因的突变可能导致A. 同义突变B. 错义突变C. 无义突变D. 移码突变E. 以上都包括88. 点突变是指A. 一个碱基对替换一个碱基对B. 插入一个碱基对C. 缺少一个碱基对D. 改变一个氨基酸残基E. 以上都包括89. 如果转录调控序列发生突变,则可能出现A. 蛋白质一级结构改变B. 蛋白质空间结构改变C. 蛋白质的比活性改变D. 蛋白质的总活性改变E. 蛋白质的功能改变90. 关于基因突变说法正确的是A. 由点突变引起的错义突变能够使蛋白质序列变短B. 产生同义突变的原因是密码子具有简并性C. 插入或者缺失碱基必定改变开放阅读框D. 嘌呤和嘧啶互相替代的点突变称为转换E. 结构基因的突变导致蛋白质表达量改变91. 哪种情况会导致移码突变A. 倒位B. 颠换C. 插入一个碱基D. 连续缺失三个碱基E. 以上都不对92. 基因突变致病的可能机制是A. 所编码蛋白质的结构改变,导致其功能增强B. 所编码蛋白质的结构改变,导致其功能减弱C. 所编码蛋白质的结构虽不变,但其表达量过多D. 所编码蛋白质的结构虽不变,但其表达量过少E. 以上都包括B型题A. DNAB. mRNAC. rRNAD. tRNAE. 蛋白质93. 顺式作用元件的化学本质是94. 反式作用因子的化学本质是95. 终止子的化学本质是96. 启动子的化学本质是97. 操纵子的化学本质是A. mRNAB. 5S rRNAC. 16S rRNAD. 18S rRNAE. 23S rRNA98. I类启动子调控的结构基因编码99. II类启动子调控的结构基因编码100. III类启动子调控的结构基因编码A. 增强子B. 单顺反子RNAC. 多顺反子RNAD. 内含子E. 操纵元件101. 原核生物的基因含有102. 原核生物结构基因转录的产物通常是103. 真核生物的结构基因含有104. 真核生物结构基因转录的产物通常是105. 调控原核生物基因转录的是106. 调控真核生物基因转录的是A. DNA聚合酶B. RNA聚合酶C. 信息分子的受体D. 阻遏蛋白E. 信号识别颗粒107. 与启动子相互作用的是108. 与操纵元件相互作用的是109. 与反应元件相互作用的是A. pGTCGAB. pAGCTGC. pGUCGAD. pTCGACE. pAGCUG已知DNA双链中,模板链的部分碱基序列为pCAGCT,问:110. 编码链的相应碱基序列是111. 转录出的相应mRNA序列是A. CCAB. 帽子C. poly (A)D. 反密码子E. SD序列112. 真核生物mRNA的3' 端结构包含113. 原核生物mRNA的5' 端结构包含114. 原核生物tRNA的3' 端结构包含A. 剪接加工B. 携带活化的氨基酸C. 翻译的模板D. 识别信号肽E. 蛋白质合成的场所115. mRNA的功能是116. tRNA的功能是117. rRNA的功能是A. 甲硫氨酸B. 异亮氨酸C. 脯氨酸D. 甲酰蛋氨酸E. 色氨酸118. 真核生物未经修饰的新生多肽链的N端为119. 原核生物未经修饰的新生多肽链的N端为A. DNAB. cDNAC. mRNAD. rRNAE. tRNA120. 密码子位于121. 反密码子位于A. 5S rRNAB. 16S rRNAC. 18S rRNAD. 23S rRNAE. 28S rRNA122. 原核生物的核糖体小亚基含有123. 真核生物的核糖体小亚基含有X型题124. 关于基因的说法正确的是A. 基因是DNA或者RNAB. mRNA的遗传密码信息只可能来自DNAC. 基因包含结构基因和转录调控序列两部分D. 结构基因中贮存着RNA和蛋白质的编码信息E. 转录调控序列中包含调控结构基因表达的所有信息125. 结构基因的特点是A. 病毒的结构基因是连续的B. 病毒的结构基因由于含有内含子而间断C. 原核生物的结构基因转录后无需剪接加工D. 病毒的结构基因与其侵染的宿主无关E. 真核生物的结构基因由外显子和内含子构成126. 内含子是指A. 通常具有转录调控作用的核酸序列B. 往往是非编码的DNA序列C. 一般在成熟mRNA中不存在相应的序列D. 与RNA的剪接加工相关E. 部分内含子可能变为外显子127. 真核生物的转录调控序列包括A. 启动子B. 上游启动子元件C. 操纵元件D. poly (A) 信号E. 反应元件128. 原核生物的基因可以与哪些蛋白质发生相互作用A. RNA聚合酶B. 转录激活蛋白C. 阻遏蛋白D. 反式作用因子E. 转录因子129. 真核生物基因转录时所需的蛋白质包括A. 转录因子B. 阻遏蛋白C. TATA因子D. CAP蛋白E. RNA聚合酶130. 大肠杆菌基因转录的启动子包括A. 转录起始位点B. -10 bp区C. -40 bp区D. -35 bp区E. + 20 bp区131. 顺式作用元件是A. 调控基因转录的蛋白质因子B. 结构基因的一部分C. 核酸片段D. 具有调控基因转录的作用E. 真核生物所特有132. 基因的结构包括A. 操纵子B. 顺式作用元件C. 反式作用因子D. 复制子E. 转录子133. 顺式作用元件发挥调控作用不.涉及A. DNA-DNA相互作用B. DNA-RNA相互作用C. RNA-蛋白质相互作用D. DNA-蛋白质相互作用E. 蛋白质-蛋白质相互作用134. I类启动子调控的基因包括A. 5.8S rRNAB. 16S rRNAC. 18S rRNAD. 23S rRNAE. 28S rRNA135. 若I类启动子突变,受影响的是A. 核糖体30S亚基B. 核糖体40S亚基C. 核糖体50S亚基D. 核糖体60S亚基E. 以上都包括136. 能够与启动子结合的是A. 转录因子B. RNA聚合酶C. 阻遏蛋白D. CAP蛋白E. 操纵元件137. 真核生物的结构基因包括A. 内含子B. 外显子C. 开放读框D. 非翻译区E. 转录调控序列138. 上游启动子元件的调控机制包括A. 与转录激活蛋白相互作用B. 调节转录因子与TATA盒的结合C. 调节RNA聚合酶与启动子的结合D. 控制转录起始复合物形成E. 与TATA盒共同调控转录起始139. 与增强子化学本质相同的是A. 转录因子B. 复制子C. 核酶D. 顺反子E. 内含子140. 关于类固醇激素诱导基因转录,说法正确的是A. 类固醇激素的受体是转录因子B. 调节阻遏蛋白与操纵元件的结合C. 类固醇激素受体与激素形成复合体后被活化D. 活化的激素受体与类固醇激素反应元件相互作用E. 在转录水平调控基因表达141. 原核生物基因的启动子一般不.包括以下组分A. 转录起始位点B. 增强子C. -10 bp区D. 基因内启动子E. -35 bp区142. 关于真核生物mRNA的加尾修饰,说法正确的是A. 不需要模板B. 转录最初生成的mRNA 3' 末端长于成熟mRNA 3' 末端C. 加尾可以增加mRNA的稳定性D. poly (A) 加在转录终止处E. 转录后需切去一小段mRNA序列才能加尾143. 真核生物的成熟mRNA中不.包含A. 内含子转录的序列B. 外显子转录的序列C. SD序列D. 帽子结构E. poly (A) 尾144. 原核生物和真核生物的mRNA都具有A. 非翻译区B. SD序列C. poly (A) 尾D. 密码子E. 开放读框145. 有关帽子结构说法正确的是A. 核内hnRNA中没有帽子结构B. 含有甲基化鸟嘌呤C. 形成5',5'-磷酸二酯键D. 分为0型、1型和2型E. 原核生物含有与真核生物类似的帽子结构146. hnRNA和mRNA共同含有的结构是A. 内含子转录的序列B. 外显子转录的序列C. 启动子D. SD序列E. 帽子结构147. 密码子可能存在于A. intronB. tRNAC. mRNAD. UTRE. ORF148. 可作为原核生物起始密码子的是A. AUGB. GUGC. GCGD. UCGE. UUG149. 大肠杆菌的核糖体大亚基包含A. 5S rRNAB. 5.8S rRNAC. 16S rRNAD. 18S rRNAE. 23S rRNA150. 核糖体60S亚基不.包含A. 5S rRNAB. 5.8S rRNAC. 18S rRNAD. 23S rRNAE. 28S rRNA151. 可能导致移码突变的基因突变是A. 转换B. 颠换C. 缺失D. 插入E. 倒位152. 属于转换的点突变是A. A →GB. T → CC. G→ TD. A →TE. G →C(二)名词解释1. 基因(gene)2. 结构基因(structural gene)3. 断裂基因(split gene)4. 外显子(exon)5. 内含子(intron)6. 多顺反子RNA(polycistronic/multicistronic RNA)7. 单顺反子RNA(monocistronic RNA)8. 核不均一RNA(heterogeneous nuclear RNA, hnRNA)9. 开放阅读框(open reading frame, ORF)10. 密码子(codon)11. 反密码子(anticodon)12. 顺式作用元件(cis-acting element)13. 启动子(promoter)14. 增强子(enhancer)15. 核酶(ribozyme)16. 核内小分子RNA(small nuclear RNA, snRNA)17. 信号识别颗粒(signal recognition particle, SRP)18. 上游启动子元件(upstream promoter element)19. 同义突变(same sense mutation)20. 错义突变(missense mutation)21. 无义突变(nonsense mutation)22. 移码突变(frame-shifting mutation)23. 转换(transition)24. 颠换(transversion)(三)简答题1. 顺式作用元件如何发挥转录调控作用?2. 比较原核细胞和真核细胞mRNA的异同。
分子生物学前沿(一)2024

分子生物学前沿(一)引言概述:分子生物学是研究生物体内生物大分子如DNA、RNA和蛋白质以及其相互作用的学科领域。
近年来,随着技术的不断进步和新的研究方法的出现,分子生物学进入了一个前所未有的前沿阶段。
本文将探讨分子生物学的五个前沿领域,包括基因组编辑、表观遗传学、蛋白质组学、CRISPR技术以及单细胞测序。
一、基因组编辑1. CRISPR-Cas9系统的原理和应用2. TALEN和ZFN技术的优势与局限性3. 基因编辑在疾病治疗中的潜力4. 基因修饰在农业领域的应用5. 基因组编辑的道德和伦理问题二、表观遗传学1. DNA甲基化和染色质重塑2. 表观遗传修饰对基因表达的调控3. 表观遗传学在疾病治疗中的作用4. 可逆性表观遗传变化的研究进展5. 表观遗传学与环境因素的关联研究三、蛋白质组学1. 蛋白质组学的研究方法和技术2. 大规模蛋白质互作网络的构建与分析3. 蛋白质定量与定位的新方法4. 蛋白质组学在疾病研究中的应用5. 蛋白质药物研发的新进展四、CRISPR技术1. CRISPR在基因治疗中的应用2. CRISPR用于疾病模型建立的优势3. CRISPR修饰哺乳动物基因组的技术挑战4. CRISPR技术的新进展和改进5. CRISPR应用的道德和安全性问题五、单细胞测序1. 单细胞测序技术的原理和方法2. 单细胞测序在发育生物学中的应用3. 单细胞测序揭示人体组织和器官的异质性4. 单细胞测序在肿瘤研究中的突破5. 单细胞测序的数据分析方法和挑战总结:分子生物学在基因组编辑、表观遗传学、蛋白质组学、CRISPR 技术以及单细胞测序等前沿领域取得了重要突破。
这些研究对于理解生命的基本机制、疾病的发生发展以及药物研发具有重要意义。
然而,这些领域仍面临着许多挑战,包括伦理道德问题、技术和方法的改进以及数据分析的挑战等。
随着进一步的研究和发展,分子生物学前沿领域将不断拓展我们对生物的认识和应用。
分子生物学 (1)

分子生物学1.名词解释(5题,每题3分,共15分),3个中文,2个英文。
2.不定向选择题(10题,每题2分,共20分),注意仔细审题,有单选也有多选。
3.判断题(10题,每题1分,共10分)4.简答题(5题,每题5分,共25分)5.论述题(2题,每题15分,共30分)信号肽(signal peptide):在起始密码子后有一段编码疏水性氨基酸序列的RNA区域,该氨基酸序列就被称为信号肽序列,它负责把蛋白质导引到细胞含不同膜结构的亚细胞器内。
后随链(lagging strand):在DNA复制过程中,与复制叉运动方向相反的方向不连续延伸的DNA链被称为后随链或滞后链。
操纵子(operon):是指原核生物中包括结构基因及其上游的启动基因、操纵基因以及其他转录翻译调控元件组成的DNA片段,是转录的功能单位。
冈崎片断(Okazaki fragment):是在DNA半不连续复制中产生的长度为1000~2000个碱基的短的DNA片段,能被连接形成一条完整的DNA链。
复制叉(replication origin):复制时,双链DNA要解开成两股链分别进行DNA合成,所以,复制起点呈叉子形式,被称为复制叉。
编码链(coding strand):指DNA双链中与mRNA序列(除T/U替换外)和方向相同的那条 DNA链,又称有意义链(sense strand)。
反义RNA:是指与mRNA互补的RNA分子,也包括与其他RNA互补的RNA分子。
由于核糖体不能翻译双链的RNA,所以反义RNA与mRNA特异性的互补结合,即抑制了该mRNA 的翻译。
通过反义RNA控制mRNA的翻译是原核生物基因表达调控的一种方式。
半保留复制(semiconservative replication):DNA在复制过程中,每条链分别作为模板合成新链,产生互补的两条链。
这样新形成的两个DNA分子与原来的DNA分子的碱基顺序完全一样。
因此,每个子代分子的一条链来自亲代DNA,另一条链则是新合成的,这种复制方式被称为DNA的半保留复制。
分子生物学(1)

第一章(绪论)1.目前临床分子生物学检验最常用的分子靶标是( )(本题1分)A.基因组DNAB.cDNAC.RNAD.蛋白质E.代谢物[解析]正确答案:A2. 某DNA片段与5'-ATCGT的互补片段是( )(本题1分)A.5'-TAGCAB.5'-ACGATC.5'-ACGAUD.5'-UAGCAE.5'-ATCGT[解析]正确答案:B3.真核mRNA的特点不包括( )(本题1分)A.有5'-m7GpppG帽B.有3'-polyA尾C.含量多,更新慢D.包含有遗传密码E.为单顺反子结构[解析]正确答案:C4.关于microRNA(miRNA)的特征描述不正确的是( )(本题1分)A.大小长约20~25ntB.主要发挥基因录后水平的调控C.在血清中稳定存在D.不具有组织特异性E.初始产物具有帽子结构和多聚腺苷酸尾巴[解析]正确答案:D5. 下列关于原核生物基因结构的说法错误的是( )(本题1分)A.一般以操纵子形式存在B.由编码区和非编码区组成成C.编码区可能含多种蛋白遗传信息D.编码区通常是不连续的,分外显子和内含子E.启动子、终止子、操纵元件均位于非编码区[解析] 正确答案:D6. 下列关于真核生物基因结构的描述,不正确的是( )(本题1分)A.真核生物的基因大多数是由非编码序列隔开的断裂基因B.编码区能够转录为相应的RNA,经加工参与蛋白质的生物合成C.非编码区对基因的表达起调控作用D.启动子、侧翼序列均位于非编码区E.只有内含子序列是不能编码蛋白质的序列[解析]正确答案:E7. 下列哪种情况不属于表观遗传现象?( )(本题1分)A.DNA插入/缺失突变B.组蛋白乙酰化修饰C.DNA甲基化修饰D.RNA干扰E.miRNA调控[解析] 正确答案:A8. 在人类基因组DNA序列中,DNA甲基化主要发生在( )(本题1分)A.腺嘌呤的N-6位B.胞嘧啶的N-4位C.鸟嘌呤的N-7位D.胞嘧啶的C-5位E.鸟嘌呤的C-5位[解析] 正确答案:D9.下列不属于原核生物基因组结构特点的是( )(本题1分)A.基因组相对较小,基因数目少B.结构基因多以操纵子形式存在,不含内含子C.转录产物为多顺反子D.具有编码同工酶的基因E.基因组序列不可移动[解析]正确答案:E10. 下列哪项不能被列入可移动基因的范畴( )(本题1分)A.插入序列B.质粒C.染色体DNAD.转座子E.可转座噬菌体[解析]正确答案:C11. 病毒的遗传物质是( )(本题1分)A.DNAB.DNA和蛋白质C.RNA和蛋白质D.RNA和DNAE.DNA或RNA[解析] 正确答案:E12. 在人类基因组中指导蛋白质合成的结构基因大多数为( )(本题1分)A.单一序列B.散在重复序列C.串联重复序列D.多基因家族成员E.回文结构[解析] 正确答案:A第二章1. 一种标记核酸与另一种核酸单链进行配对形成异源核酸分子双链,这一过程称为( )(本题1分)A.变性B.复性C.复杂性D.杂交E.探针[解析]正确答案:D2.硝酸纤维素膜的最大优点是( )(本题1分)A.脆性大B.本底低C.共价键结合D.非共价键结合E.吸附核酸能力强[解析]正确答案:B3.以等位基因特异的寡核苷酸探针杂交法诊断某常染色体隐性遗传病时,若能与突变探针及正常探针结合,则该样本为( )(本题1分)A.正常人B.杂合体患者C.纯合体患者D.携带者E.不能确定[解析]正确答案:D4.最常用的DNA探针标记方法是( )(本题1分)A.随机引物标记B.DNA缺口平移标记C.全程RNA探针标记D.PCR法标记E.末端标记[解析]正确答案:A5.下列关于Southern印迹杂交的描述正确的是( )(本题1分)A.不仅可以检测DNA样品中是否存在某一特定基因,而且还可以获得基因片段大小及酶切位点的分布信息B.检测目标是RNAC.常用于基因定位分析D.可用于阳性菌落的筛选E.可用于蛋白水平的检测[解析]正确答案:A6.荧光原位杂交可以用于( )(本题1分)A.快速确定是否存在目的基因B.检测目标是RNAC.常用于基因定位分析D.常用于阳性菌落的筛选E.常用于蛋白水平的检测[解析]正确答案:C7.下列关于核酸探针的描述正确的是( )(多选题)A.可以是DNAB.可以是RNAC.可用放射性标记D.可用非放射性标记E.必须是单链核酸[解析]正确答案:A,B,C,D8. 关于RNA探针的优点描述正确的是( )(本题1分)A.制备方法简便B.不易被降解C.标记方法比较成熟D.杂交效率和杂交体的稳定性高E.非特异性杂交较少[解析]正确答案:D,E9. DNA分子中A-T含量越高,Tm值越高。
分子生物学基础第一章绪论 第二节分子生物学发展简史

第二节 分子生物学发展简史
4.生物分类学与分子生物学
分类和进化研究是生物学中最古老的领域,它们同样由于分子生物 学的渗透而获得了新生。过去研究分类和进化,主要依靠生物体的形态, 并辅以生理特征,来探讨生物间亲缘关系的远近。现在,反映不同生命 活动中更为本质的核酸、蛋白质序列间的比较,已被大量用于分类和进 化的研究。由于核酸技术的进步,科学家已经可能从已灭绝的化石里提 取极为微量的DNA分子,并进行深入的研究,以此确证这些生物在进化 树上的地位。
从学科范畴上讲,分子生物学包括生物化学;从研究的 基本内容讲,遗传信息从DNA到蛋白质的过程,其许多内容 又属于生物化学的范畴。
第二节 分子生物学发展简史
2.分子生物学与细胞生物学 细胞生物学是在细胞、细胞超微结构和分子水平等不同 层次上,以研究细胞结构、功能及生命活动为主的基础学科。 分子生物学是细胞生物学的主要发展方向,也就是说,在分 子水平上探索细胞的基本生命规律,把细胞看成是物质、能 量、信息过程的结合,而且着重研究细胞中的遗传物质的结 构、功能以及遗传信息的传递和调节等过程。 3.遗传学与分子生物学 遗传学是分子生物学发展以来受影响最大的学科。孟德 尔著名的皱皮豌豆和圆粒豌豆子代分离实验以及由此得到的 遗传规律,纷纷在近20年内得到分子水平上的解释。越来越 多的遗传学原理正在被分子水平的实验所证实或摈弃,许多 遗传病已经得到控制或矫正,许多经典遗传学无法解决的问 题和无法破译的奥秘,也相继被攻克,分子遗传学已成为人 类了解、阐明和改造自然界的重要武器。
第二节 分子生物学发Hale Waihona Puke 简史三、分子生物学的现状与展望
1.功能基因组学 2.蛋白质组学 3.生物信息学
分子生物学基础
第一章 绪 论
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢ 多基因疾病机理复杂,涉及到的基因数目较多, 每个基因对疾病的影响程度不同,加上环境因素 的作用,病因研究变得十分复杂 。
➢ 通过构建SNP图谱进行全基因组关联性研究来寻 找疾病相关基因 ,
➢ 一些SNP位点本身不会改变氨基酸的编码和蛋白 的结构,不会引起表现型的改变,但在染色体上 可能与某些疾病相关基因的突变位点紧密连锁,
糖尿病并发症: ➢ 糖尿酮症酸中毒
感染和糖尿病治疗中断,饮食不当,手术创 伤等。 加入小剂量胰岛素治疗。
➢ 慢性并发症: 大血管病变:动脉硬化,冠心病,肾动脉硬 化,肢体动脉硬化等。
其中冠心病和脑血管病造成较高的死亡率
➢ 糖尿病肾病:
以尿蛋白为标志,逐渐出现肾功能不全, 是1型糖尿病死亡的标志。
➢ 目前的研究热点是:
➢ 先找出所有的易感基因,再搞清其参与 作用的多基因作用网络和网络中每个节点 (或基因)的功能和调控机制,最后分析、 评估多基因网络作用对糖尿病的易感程度。
➢ 经比对发现,在不同地域和不同种族间, 其易感基因谱是有区别的。这提示,不同 地域由于环境因素差异,不同种族由于遗 传背景不同,造成了糖尿病易感基因谱的 差异。
➢ 1基因启动子 C p G岛的甲基化改变往往发 生在明显的恶性 型出现之前, 是肿瘤发生 中的早期事件。
➢ 2基因组的低 甲 基化以及 c p G岛的高甲 基化都可以作为 H c c重要的预后判断 指标。
➢ 甲基化的生物信息学研究:
➢ 甲基化的预测:
➢ Methylator ( http://bio. dfci . harvard. edu/ Methyl ator/index.h t m1 ) 是目前唯一的预 测单个 CpG双核苷酸甲 基化状态的工具[该 工具基于Meth DB数据库中人的2839个 DNA甲基化模式数据,以CpG位点周围3 9 bp的序列模式为特征,采用支持向量机的 方法可得到8 7 %的正确率.
➢ 肥胖:通常是糖尿病的早期状态,特别是 中型肥胖者
➢ 饮食:饮食特别是高糖、高脂类的食物
➢ 体力活动减少:
➢ 整天端坐不动,上班自动化,业余看电视 等
➢ 应激状态:
人长期处于紧张、心理波动和压力大的情 况下
➢ 胰岛素抵抗和胰岛分泌缺陷是II型糖尿病两 个发病基本环节。
➢ 长期的高血糖和胰腺胰腺-β细胞 是糖尿病 加重的标志。
➢ 胰岛作用遗传缺陷:
➢ 胰岛素受体缺陷,导致胰岛素敏感性降低。
➢ 胰腺外分泌疾病:如胰腺炎导致的持续高 血糖状态。
SNP :全称Single Nucleotide Polymorphisms,
➢ 是指在基因组上单个核苷酸的变异,形成 的遗传标记,其数量很多,多态性丰富。
➢ 基因组上单个核苷酸的变异,包括置换、颠 换、缺失和插入--??
➢ 有多基因决定的患某种多基因遗传病的风 险,就称为易感性。
2 发病阈值:
➢ 当个体的易患性到一定程度,就要患病, 这个程度就是发病阈值。
➢ 因此在人群中带有致病基因的人就分为两 种,大部分是正常人,小部分为患者。
发病特点:
➢ 家族聚集倾向:无明显的遗传方式,包括 孟德尔遗传定律,显隐性遗传规律,也不 符合X连锁遗传。
成 5 -甲基胞嘧啶 。
➢ DNA甲基化与肿瘤的发生
➢ 基因组整体甲基化水平降低,导致遗 传不 稳定性增加 ,组织特异性基因的启动子区 域出现从头甲基化 ;
➢ 癌基因多为低甲基化,导 致重新开放或异 常表达 ;抑癌基因多为过度甲 基化 ,从而 表达受抑制。
➢ DNA甲基化与肿瘤的无创性早期诊断
➢ 与D NA 变异相比,基因甲基化改变常是细 胞癌变过程中更为早期 的事 件 ,因此可能 在肿瘤早期诊断中具有更大的价 值。
糖尿病分为4种类型:
➢ I性糖尿病 发病急,有酮症倾向,主要是青 少年,胰腺-β细胞 破坏胰岛量绝对减少。
本病发病机理是:
遗传易感基因:
➢ 组织相容性抗原基因(HLA), 1型糖尿 病综合征易感性有60%归因于HLA基因 (位 于 6号染色体 ,其余 40%则与非 HLA基因
➢ 调节T细胞的叉头3 基因
➢ 1 外周血甲基化分析
➢ 肿瘤患者的 外周血循环DNA含有坏死 或凋亡的肿瘤细胞 、 微转移灶或循环肿瘤 细胞的裂解以及增值旺盛 的肿瘤细胞所释 放的D N A。
➢ MGMT、p16、RASSF1A、DAPK和
➢ R AR — beta 基因甲基化诊断肺癌的敏感 度和特异 度分别为4 9 . 5 %和8 5 %
➢ 糖尿病性神经病变:
周围圣经病变最为常见 ,最常见的微神经 末梢炎,感觉异常:分布如袜子或手套状, 感觉麻木
植物神经病变:腹泻,多汗等。
另外还有糖尿病足,足部供血不足和细菌感 染引起。
糖尿病的分子诊断研究进展:
➢ 也可称普通糖尿病均多系基因病,参与的 每个基因对于糖尿病易感性来说必不可少,
➢ 但其贡献率都不太大,故糖尿病基因多为 为易感基因。
糖代谢紊乱、肾脏血流动力学的改变、多 种细胞因子以及遗传背景均起非常重要的 作用。
➢ 糖尿病性视网膜病变:
10年以上的糖尿病人,会发生成度不等的 视网膜病变,往往与肾病并存。
第一个适体药物:即使治疗视网膜血管增 生抗VEGF适体。
➢ 糖尿病心脏病 主要是血管病变和心肌代谢紊乱引起的 表现为心律衰竭,心律失常
➢ 分布相当广泛 :近来的研究表明在人类基 因组中每300碱基对就出现一次 ;
➢ 数量多,约有2000万SNP。使人们有机会 发现与各种疾病,包括肿瘤相关的基因组 突变;
➢ 通过SNP发现疾病相关基因突变要比通过 家系来得容易;有些SNP并不直接导致疾 病基因的表达,但由于它与某些疾病基因 相邻,而成为重要的标记。
➢ 淋巴细胞特异性磷酸酶基因
淋巴细胞特异性磷酸酶基因的多态性与 1型 糖尿病、 风湿性关节炎、 红斑狼疮等多种 自身免疫性疾病相关。
➢ 胰岛素基因 胰岛素基因的多态性也与 1型 糖尿病的易感性有关。
➢ 环境因素:
病毒感染:先天性风疹是目前已明确的致病因子 , 其感染与 1 型糖尿病的相关性超过
20%;肠道类病毒感染的证据来自于感染后发生 抗 胰岛的免疫反应,病毒迅速大量进入胰岛 β细 胞而破坏β细胞。
➢ 大肠癌的早期诊断:
➢ 粪便DNA甲基化分析由于大肠癌组织 持 续脱 落细胞 到粪便 中,且能在其 中稳定 存 在 ,因此检测粪便中大肠癌相关基因的 甲基化 状态有可能成为一条结大肠癌无创 早期诊断的 新途径。
ห้องสมุดไป่ตู้
➢ 肿瘤预后分析:
➢ ( 1 ) 甲基化改变与肿瘤分级、 分期有明显的相关 性。
➢ ( 2 ) D N A异常甲基化可促进肿瘤的侵袭和转移。
➢ 染色质重塑是指在能量驱动下核小体的置 换或重新排列,
➢ 染色质重塑的发生和组蛋白N端尾巴修饰密 切相关,尤其是对组蛋白h3和h4的修饰.
➢ 水解ATP提供能量
➢ ERC 基因(雌激素受体DNA结合区)
➢ Cerebro-Oculo-Facio-Skeletal综合征和 Cockayne综合征
➢ 不是单纯由单基因突变或染色体异常所引 起的疾病,是由多个基因的累加效应引起 的遗传性状,一般与环境因素共同作用;
➢ 有遗传因素在内,故发病呈家族倾向,但 不符合孟德尔遗传规律。
常见的多基因遗传病: ➢ 原发性高血压 ➢ 糖尿病 ➢ 冠状动脉病 ➢ 精神分裂症 ➢ 哮喘
1 易感性
➢ 由于微效基因的累加性,使有致病基因的 个体有遗传基础。
➢ ( 3 ) 甲基化可作为肿瘤复发的独立预测 因子。
➢ ( 4 ) 甲基化 影响生存期。膀胱癌中 A P C, G S T P I和 T I G 1基 因发生异常 甲基化时, 患者存 活时间明显缩短。
➢ DNA甲基化在肝细胞中的研究 ➢ (1)细胞周期调节相关基因 ➢ (2)细胞转移和黏附相关基因 ➢ (3)D N A修复基 因
分子生物学
华侨大学 分子药物所 硕士课程
第一章 基因与疾病
1
概述
2 单基因疾病与多基因疾病
3 SNP与疾病易感性
4 表观遗传学与人类疾病
基因与基因异常疾病
➢ 基因:是指携带有遗传信息的DNA序列,是控制性状的
基本遗传单位。它通过指导蛋白质的合成来表达自己所携 带的遗传信息,从而控制生物个体的性状表现。
➢ 一般认为是由遗传因素和环境共同决定的。
➢ 全球已有1.9亿人患糖尿病,全世界人数最 多的为印度,其次为中国,再次为美国。 发病率最高的是南太平洋岛国瑙鲁,50岁 以上的人每两个就有一个。
➢ 糖尿病已经成为继肿瘤、心脑血管病之后 第三位严重危害人类健康的慢性疾病。据 最新发布的研究显示,中国20岁以上糖 尿病发病率已达到9.7%,即每10个人当中 就有一人患糖尿病 。
➢ β细胞可被细胞毒性 T细胞、 细胞因子或自 由基损伤 ,而且部分β细胞的死亡是凋亡过 程。
II型糖尿病
➢ 病状轻,起病慢,肥胖者较多,特别是腹 部肥胖。
➢ 主要是胰岛素抵抗和胰岛素分泌缺陷造成。 少发生酮症酸中毒,有较强的遗传易感性。
➢ 发病原因以遗传因素为主: ➢ 有家族史的发病率要高3-40倍 ➢ 遗传倾向强,特别是双亲有糖尿病 环境因素:
➢ 前者表现为出生后发育异常 ,神经退行性 变, 进行性关节挛缩、 夭折
➢ 后者表现出紫外线敏感 骨骼畸形 侏儒 神经 退行性变等症状 。
➢ 这两种病对紫外诱导的DNA损伤缺乏修复 能力 。
➢ 组蛋白乙酰化 和去乙酰化与人类疾病: ➢ 组蛋白乙酰化与基因活化以及DNA复制 ➢ 相关组蛋白的去乙酰化和基因的失活相关 .
自身抗体造成胰岛素代谢紊乱,谷氨酸脱羧酶 ( glutamic acid decarboxylase, GAD)、 胰岛细胞 抗体 512结合抗原和胰岛素。