分子生物学常用技术(1)
常用分子生物学技术的原理及其应用

分子生物学技术是生物学领域中的重要工具,广泛应用于基础研究、医学诊断、药物研发等领域。
以下是常用的分子生物学技术及其原理和应用:1. PCR技术:PCR(聚合酶链式反应)是一种体外扩增DNA的方法,基本原理是通过DNA聚合酶酶在体外模拟DNA的复制过程,从而快速扩增目标DNA片段。
PCR技术在基因克隆、基因检测、DNA指纹分析等领域有着广泛的应用。
2. 基因克隆技术:基因克隆是将感兴趣的DNA片段插入到载体DNA 中,构建重组DNA分子的过程。
通过基因克隆技术可以获得大量目的基因的DNA序列,用于研究基因功能、表达调控等方面。
3. 蛋白质表达与纯化技术:蛋白质表达技术是将外源基因导入宿主细胞中,使其表达目的蛋白质的过程。
通过蛋白质表达与纯化技术,可以获得大量纯净的蛋白质样品,用于研究蛋白质结构、功能等。
4. 基因编辑技术:基因编辑技术包括CRISPR-Cas9系统、TALENs和ZFNs等,可以实现对基因组特定区域的精准编辑。
基因编辑技术在疾病治疗、植物育种等领域有着巨大的潜力。
5. RNA干扰技术:RNA干扰是一种通过RNA介导的基因沉默机制,可使目标基因的mRNA水平下降,从而抑制基因表达。
RNA干扰技术在基因功能研究、疾病治疗等方面具有重要应用价值。
6. 蛋白质亲和纯化技术:蛋白质亲和纯化技术利用蛋白质与其结合物质之间的特异性相互作用,实现对目标蛋白质的选择性富集和纯化。
该技术在药物筛选、蛋白质相互作用研究等领域有着广泛应用。
7. 基因芯片技术:基因芯片是一种高通量的生物芯片技术,可同时检测上千个基因的表达水平。
基因芯片技术广泛应用于基因表达谱分析、疾病诊断、药物研发等领域。
8. 蛋白质组学技术:蛋白质组学技术主要包括蛋白质质谱分析、蛋白质组芯片等,用于研究蛋白质在生物体内的表达水平、翻译后修饰等。
蛋白质组学技术在疾病诊断、药物靶点鉴定等方面有着重要应用。
以上是常用的分子生物学技术及其原理和应用。
分子生物学常用技术

HRP-链霉亲和素(100ul,37oC,20min) 基质液(100ul,37oC, 10min)
2mol/LH2SO450ul终止反应
490nm测定光密度值(以未加PCR产物 的空白为阴性对照,CUT OFF值为0.1)
三. 结果
人血清高密度脂蛋白亚类免疫印迹检测法
吴新伟,傅明德等(中国动脉硬化杂志 1999;7(3):253)
纯化PCR产物与T-vector连接 重组质粒转化JM109大肠杆菌 增殖克隆株 提取质粒
PCR产物30ul
100oC变性5分钟,冰浴5分钟
单链PCR产物30ul加入100ul杂交液 单链PCR产物与预杂交微孔板上 特异DNA片段杂交42oC,1小时
洗涤 1min×5次
(酶切特异片段)
变性成单链 包被微孔板 洗涤 1min×4次 预杂交42oC,1小时
切点数目,但是不能排列出这些片段在DNA分子中的相对 位置。采用酶两两组合进行彻底降解,比较双酶和单一酶解 产物,可以确定酶切点的相对位置。
AJPI DNA的分子量为9.0兆道尔顿(≈13.6kb),有一
个XhoⅠ和一个PstⅠ切口,两个EcoRⅠ切口。它们的单酶 和双酶解结果示于下表。
AJPI DNA的三种酶单解和双解产物分析
三. DNA序列测定的策略
1. 鸟枪法
2. 套式缺失法
3. 引物延伸法
四. 自动测序
五. 应用举例
聚合酶链反应-微孔板杂交法检测结核杆菌的临床应用及其评价
杨正林,傅明德等(华西医大学报 2001;32(1):136-139)
一. 原理
利用PCR扩增、分子克隆、核酸杂交以及生物素-
亲合素酶联检测技术,灵敏、特异地检测结核杆菌。
分子生物学常用技术一 核酸分子杂交技术

核酸杂交常用几种膜的性能比较
(2)Southern印迹的常用方法 印迹的常用方法 A.毛细管虹吸印迹法 毛细管虹吸印迹法 利用浓盐转移缓冲液的推动作用, 利用浓盐转移缓冲液的推动作用,将凝胶中 转移到固相支持物上。 的DNA转移到固相支持物上。 其基本原理是: 转移到固相支持物上 其基本原理是: 容器中的转移缓冲液含有高浓度的NaCl和柠檬 和柠檬 容器中的转移缓冲液含有高浓度的 酸钠,上层吸水纸的虹吸作用使缓冲液通过滤 酸钠, 纸桥、滤纸、凝胶、硝酸纤维素滤膜向上运动, 纸桥、滤纸、凝胶、硝酸纤维素滤膜向上运动, 同时带动凝胶中的DNA片段垂直向上运动,凝 片段垂直向上运动, 同时带动凝胶中的 片段垂直向上运动 胶中的DNA片段移出凝胶而滞留在膜上 胶中的 片段移出凝胶而滞留在膜上
第四部分
分Hale Waihona Puke 生物学常用技术第一节 核酸分子杂交技术
一、核酸分子杂交的基本原理 • 具有互补序列两条单链核酸分子在一定条件下 按碱基互补配对原则退火形成双链的过程。 按碱基互补配对原则退火形成双链的过程。 • 杂交的双方是待测核酸和已知核酸序列,已知 杂交的双方是待测核酸和已知核酸序列, 核酸序列称探针。 核酸序列称探针。 • 杂交有固液相杂交和液相杂交。 杂交有固液相杂交和液相杂交。 固液相杂交 杂交
(2)复性过程 ) A.单链分子间碰撞形成局部双链 单链分子间碰撞形成局部双链 B.局部双链周围的碱基如不配对时,双链重新解离 局部双链周围的碱基如不配对时, 局部双链周围的碱基如不配对时 C.局部双链周围的碱基如配对,则形成中心序列 局部双链周围的碱基如配对, 局部双链周围的碱基如配对 D.形成完整的双链分子 形成完整的双链分子
2、待测DNA样品的电泳分离 、待测 样品的电泳分离 (1)琼脂糖浓度:分离大片段用低浓度胶 )琼脂糖浓度: 分离小片段用高浓度胶 (2)凝胶电泳:凝胶具有分子筛效应,大分子 )凝胶电泳:凝胶具有分子筛效应, DNA泳动慢 小分子 泳动慢,小分子 泳动快, 泳动慢 小分子DNA泳动快, 泳动快 大小 相同的分子处于同一条带 消化的λDNA,杂 (3)分子量标准:经HindⅢ消化的 )分子量标准: , 交所用分子量标准可用核素标记
分子生物学常用实验技术

一CTAB 法微量提取植物总DNA1. CTAB(十六烷基三甲基溴化铵)的作用:CTAB是一种阳离子去污剂,具有从低离子强度的溶液中沉淀核酸和酸性多聚糖的特性,在这种条件下,蛋白质和中性多聚糖仍留在溶液里,在高离子强度的溶液里,CTAB 与蛋白质和大多数酸性多聚糖以外的多聚糖形成复合物,只是不能沉淀核酸。
因此,CTAB可以用于从大量产生粘多糖的有机体如植物以及某些革兰氏阴性菌(包括E.coli的某些株)中制备纯化DNA 。
2. β-巯基乙醇的作用:巯基乙醇是抗氧化剂,有效地防止酚氧化成醌,避免褐变,使酚轻易去除基因组DNA。
巯基乙醇有消泡的作用。
3. EDAT(乙二胺四乙酸)的作用:是一种重要的络合剂,抑制某些金属蛋白酶的活性,防止DNA被DNase 酶解。
4. 为什么用无水乙醇沉淀DNA?用无水乙醇沉淀DNA,这是实验中最常用的沉淀DNA的方法。
乙醇的优点是可以任意比和水相混溶,乙醇与核酸不会起任何化学反应,对DNA 很安全,因此是理想的沉淀剂。
DNA溶液是DNA以水合状态稳定存在,当加入乙醇时,乙醇会夺去DNA 周围的水分子,使DNA失水而易于聚合。
一般实验中,是加2倍体积的无水乙醇与DNA相混合,其乙醇的最终含量占67%左右。
因而也可改用95%乙醇来替代无水乙醇(因为无水乙醇的价格远远比95%乙醇昂贵)。
但是加95%的乙醇使总体积增大,而DNA在溶液中有一定程度的溶解,因而DNA损失也增大,尤其用多次乙醇沉淀时,就会影响收得率。
折中的做法是初次沉淀DNA时可用95%乙醇代替无水乙酵,最后的沉淀步骤要使用无水乙醇。
也可以用0.6倍体积的异丙醇选择性沉淀DNA。
一般在室温下放置15-30分钟即可。
2.在用乙醇沉淀DNA时,为什么一定要加NaAc或NaCl至最终浓度达0.1~0.25mol/L?在pH为8左右的溶液中,DNA分子是带负电荷的,加一定浓度的NaAc 或NaCl,使Na+中和DNA分子上的负电荷,减少DNA分子之间的同性电荷相斥力,易于互相聚合而形成DNA钠盐沉淀,当加入的盐溶液浓度太低时,只有部分DNA形成DNA钠盐而聚合,这样就造成DNA沉淀不完全,当加入的盐溶液浓度太高时,其效果也不好。
分子生物学常用检测技术

二、核酸分子杂交
根据核酸变性和复性 的原理,不同来源的 变性单链核酸分子在 合适的条件下,通过 碱基互补形成双链杂 交体的过程称为核酸
分子杂交
(molecular hybridization)。
核酸分子杂交的临床应用
• • • • •
1、遗传病的诊断 2、病原体的鉴定 3、癌基因突变的检测 4、组织配型 5、亲子鉴定
或
2+
和
dCTP dGTP dTTP dATP 模板 引物
PCR的种类
• 荧光定量PCR
• 通PCR • 原位PCR
• 免疫PCR
• ……
荧光定量PCR
TaqMan探针
forward primer
R
5' 3'
probe
Q
3' 5' 3' 5'
5'
三、基因芯片技术
• 基质材料分, 有尼龙膜、玻 璃片、塑料、 硅胶晶片、微 型磁珠等。
用点样法固定 在玻璃板上的DNA 探针阵列
原位合成法在玻璃等 硬质表面上直接合成 的寡核苷酸探针阵列
基因芯片技术的应用
1、药物筛选和新药开发 2、疾病诊断 3、环境保护 4、司法 5、现代农业
四、测序技术
(一)一代测序技术
平台期
指数增长期 循环数Cycle Number
CT = - k logN0 + b
PCR的临床应用
对病原微生物核酸进行快速检测
弥补免疫检测的缺陷 缩短诊断的窗口期(如HBV,HIV) 用于药物疗效监测和评估 用于肿瘤基因表达方面的研究
用于遗传病的诊断
样本采集要求
项目
分子生物学常用技术

切除所有结合与不 结合蛋白质的DNA 带,并用六氢吡啶 切割甲基化的G残 基
缺失的DNA带表 结合带 非结合带 明相应G残基的重 要意义,它得到 结合蛋白质的保 护
甲基化干扰实验
4、体内足迹实验
完整的细胞 × G G
DMS
裸露的DNA G G
× G
me
G
分离DNA并用 六氢吡啶切割
Me Me
G
G
PCR扩增 凝胶分析
1× 29× 1×
*This cycle is normally included in a PCR assay in order to allow any “unfinished” product from previous amplification to achieve its full length
PCR 反应的每一个温度循环周期都是由DNA变性、引 物退火和反应延伸三个步骤完成的。图中设定的反 应参数是94℃变性1min, 60 ℃退火1min, 72 ℃ 延伸1.5min。如此周而复始,重复进行,直至扩增 产物的数量满足实验需求为止。
Reaction Condition for a Typical PCR Assay
2、诺赛恩RNA印迹技术(Northern blotting)
1979年,J.C.Alwine等人发展而来,是将RNA分子从电泳凝 胶转移到硝酸纤维素滤膜或其他化学修饰的活性滤纸上,进行 核酸杂交的一种实验方法。由于这种方法与萨瑟恩DNA印迹杂交 技术十分类似,所以叫做诺赛恩RNA印迹技术(Northern blotting)。 而将蛋白质从电泳凝胶中转移到硝酸纤维素滤膜上,然后 同放射性同位素125I标记的特定蛋白质之抗体进行反应,这种技 术叫做韦斯顿蛋白质杂交技术(Western blotting)。
中医药研究常用分子生物学技术1

1、重组DNA技术的建立和发展 这时期基因工程的迅速进步得益于许多分 子生物学新技术的不断涌现。 1975-1977年Sanger、Maxam和Gilbert 先后发明了三种DNA序列的快速测定法; 1985年Cetus公司Mullis等发明的聚合酶 链式反应(PCR)的特定核酸序列扩增技 术; 90年代全自动核酸序列测定仪的问世。
二十一世纪生物学的新热点及领域
结构生物学(Structural Biology) 生物大分子的高级三维结构与功能的统一 生物大分子之间的互作 → 基因的社会学 分子发育生物学(Molecular Developing Biology)
(三)初步认识生命本质并开始改造生命的深入 发展阶段
70年代后,以基因工程技术的出现作为新的里程 碑,标志着人类深入认识生命本质并能动改造生 命的新时期开始。其间的重大成就包括:
1967-1970年R.Yuan和H.O.Smith等发现的限制性 核酸内切酶为基因工程提供了有力的工具; 1972年Berg等将SV-40病毒DNA与噬菌体P22DNA在 体外重组成功,转化大肠杆菌,使本来在真核细 胞中合成的蛋白质能在细菌中合成,打破了种属界 限;
2、分子生物学技术的应用和发展 基因动物 ⑹人类基因治疗 ⑺基因工程抗体技术的建立和发展 ⑻DNA芯片技术(基因芯片、生物芯片)
3、基因组研究的发展 1977年Sanger测定了Φ X174-DNA全部 5375个核苷酸的序列; 1978年Fiers等测出SV-40DNA全部5224对 碱基序列; 20世纪80年代λ 噬菌体DNA全部48,502碱 基对的序列全部测出; 1996年底许多科学家共同努力测出了大肠 杆菌基因组DNA的全序列长4x106碱基对。 1990~2003年人类基因组计划 (HumanGenomeProject)实施并基本完 成。
分子生物学常用实验技术(精)

分子生物学常用实验技术第一章质粒 DNA 的分离、纯化和鉴定第二章 DNA酶切及凝胶电泳第三章大肠杆菌感受态细胞的制备和转化第四章 RNA的提取和 cDNA 合成第五章重组质粒的连接、转化及筛选第六章基因组 DNA 的提取第七章 RFLP和 RAPD 技术第八章聚合酶链式反应 (PCR扩增和扩增产物克隆第九章分子杂交技术第十章测序技术第一章质粒 DNA 的分离、纯化和鉴定第一节概述把一个有用的目的 DNA 片段通过重组 DNA 技术 , 送进受体细胞中去进行繁殖和表达的工具叫载体 (Vector。
细菌质粒是重组 DNA 技术中常用的载体。
质粒 (Plasmid是一种染色体外的稳定遗传因子 , 大小从 1-200kb 不等 , 为双链、闭环的 DNA 分子 , 并以超螺旋状态存在于宿主细胞中。
质粒主要发现于细菌、放线菌和真菌细胞中,它具有自主复制和转录能力 , 能在子代细胞中保持恒定的拷贝数 , 并表达所携带的遗传信息。
质粒的复制和转录要依赖于宿主细胞编码的某些酶和蛋白质,如离开宿主细胞则不能存活 , 而宿主即使没有它们也可以正常存活。
质粒的存在使宿主具有一些额外的特性 , 如对抗生素的抗性等。
F 质粒 (又称F 因子或性质粒、 R 质粒 (抗药性因子和 Col 质粒 (产大肠杆菌素因子等都是常见的天然质粒。
质粒在细胞内的复制一般有两种类型 :紧密控制型 (Stringent control和松驰控制型 (Relaxed control 。
前者只在细胞周期的一定阶段进行复制 , 当染色体不复制时 , 它也不能复制 , 通常每个细胞内只含有 1个或几个质粒分子 , 如 F 因子。
后者的质粒在整个细胞周期中随时可以复制 , 在每个细胞中有许多拷贝 , 一般在 20个以上 , 如 Col E1质粒。
在使用蛋白质合成抑制剂 -氯霉素时 , 细胞内蛋白质合成、染色体 DNA 复制和细胞分裂均受到抑制 , 紧密型质粒复制停止 , 而松驰型质粒继续复制 , 质粒拷贝数可由原来 20多个扩增至 1000-3000个 , 此时质粒 DNA 占总DNA 的含量可由原来的 2%增加至 40-50%。