材料合成与制备方法复习.
材料合成

材料合成期末复习总结第一章(选择题一道自己去看)第二章:(低温固相反应)1、固相反应(solidstatereaction)广义地讲,凡是有固相参与的化学反应都可称为固相反应。
例如:固体的热分解(thermaldecomposition)、氧化(oxidation);固体与固体之间的化学反应;固体与液体(liquid)之间的化学反应等。
狭义地讲,固相反应常指固体与固体间发生化学反应生成新的固体产物的过程。
2、固相反应类型(classification)按温度分:1)低温固相反应,又叫室温固相反应。
反应在室温或接近室温的条件下进行,通常指≤100oC2)中温固相反应。
介于高温和低温固相反应之间,如水热合成法、前体合成法等。
3)高温固相反应。
反应温度高于600oC,传统的固相反应均指高温固相反应。
1)高热固相反应:反应温度高于600℃。
传统固相反应通常是指高温固相反应。
2)中热固相反应:由于一些只能在较低温度下稳定存在而在高温下分解的介稳化合物,在中热固相反应中可使产物保留反应物的结构特征,由此而发展起来的前体合成法、熔化合成法、水热合成法的研究特别活跃。
3)低热固相反应:反应温度降至室温或接近室温。
因而,低热固相反应又叫室温固相反应,指的是在室温或近室温(≤100℃)的条件下,固相化合物之间所进行的化学反应。
(以上两个基本一样,随便记一个)3、三步反应机理:phaserebuilding)phasetransformation)crystaldisintrationordetachement)4、低热固相反应过程特点:(1)潜伏期(2)无化学平衡(3)拓扑化学控制原理(4)分步反应(5)嵌入反应5、无化学平衡的判断:根据热力学知识,若反应发生微小变化,则引起反应体系吉布斯函数改变为若反应时在等温等压下进行的,则,从而的该反应的摩尔吉布斯函数改为简单的说就是通过公式看出吉布斯函数的值一直在变化不等于零,所以没有化学平衡。
材料合成与制备方法

A.晶核形成的热力学势垒 要大,液体大
C.在粘度与温度关系相似的条件下, 或液相温度要低
D.原子要实现较大的重新分配,达到共晶点附近的组成。
2)结构模型
A.微晶模型:基本思想是:大多数原子与其最近邻原子的相对位置与晶体情形完全相同,这些原子组成一纳米至几十纳米的晶粒,长程有序性消失主要是因为这些微晶取向散乱、无规的原因。
答:B—S法的构思是在一个温度梯度场内生长单晶,在单—固——液界面上成核。待结晶的材料通常放在一个圆柱形的坩埚内,坩埚可垂直或水平放置,使坩埚下降通过一个温度梯度,或使加热器沿坩埚上升。
第二章、
1.试说明非晶态的概念与特性
答:1)概念:非晶体物质是介于晶体和液体之间有序度的一种聚集态,其在小于几个原子间距的小区间内(1~1.5nm),仍然保持形貌和组分的某些有序特征而具有短程有序但长程无序的特殊物质状态。
2.试推导液固生长系统的相变驱动力。
解:设晶体流体的界面面积为A,垂直于界面的位移为∆X,系统的吉布斯自由能的降低为∆G,界面上单位面积的驱动力为f;驱动力做功:f·A·∆X=—∆G
f=-∆G·A·∆X=-∆G·∆V
生长驱动力在数值上等于生长单位体积的晶体所引起的系统吉布斯自由能的变化,负号表示界面向流体中位移引起系统自由能降低。
2)特性: a.高强度、高韧性b.抗腐蚀性c.软磁特性d.超导电性e.光学性质:光吸收、光电导、光致发射f.其它性质:室温电阻率高,负的电阻温度系数。
2.试说明常见非晶态的分类
答: 1)非晶态合金
2)非晶态半导体材料
3)非晶态超导体
4)非晶态高分子材料
5)非晶态玻璃
3.试说明非晶态材料的形成条件和结构模型
6.说明影响CVD的参数
材料化学合成与制备复习题

材料化学合成与制备复习题1.名词解释a.沉淀法: 液相沉淀法是向水溶液中投加某种化学物质,使它与水中的溶解物质发生化学反应,生成难溶于水的沉淀物。
b.直接沉淀法:在金属盐溶液中直接加入沉淀剂,在一定条件下生成沉淀析出,沉淀经洗涤、热分解等处理工艺后得到超细产物。
c.共沉淀法:在含有多种阳离子的溶液中加入沉淀剂,在各成分均一混合后,使金属离子完全沉淀,得到沉淀物再经热分解而制得微小粉体的方法。
d.均匀沉淀:一般沉淀过程是不平衡的,但如果控制溶液中沉淀剂的浓度,使之缓慢增加,则使溶液中的沉淀处于平衡状态,且沉淀能在整个溶液中均匀出现,这种方法称为均相沉淀。
e.水热法:水热法又称热液法,属液相化学法的范畴。
是指在密封的压力容器中,以水为溶剂,在高温高压的条件下进行的化学反应。
水热反应依据反应类型的不同可分为水热氧化、水热还原、水热沉淀、水热合成、水热水解、水热结晶等。
其中水热结晶用得最多。
f.均匀形核:均匀形核就是不在杂质或者器壁结晶,而是直接通过液体本身的相起伏产生临街晶核从而生长晶体的结晶过程。
g.非均匀形核:非均匀形核就是依靠液体中的固体杂质或器壁的表面能进行的结晶。
通常,非均匀晶核比均匀形核容易进行。
h.溶度积原则:即在一定条件下,在含有难溶盐MnNn(固体)的饱和溶液中,各种离子浓度的乘积为一常数,称为溶度积常数,记为LMnNn MmNn == mM n+ + nNm-溶度积常数 LMmNn=[Mn+]m•[Nm-]ni.软团聚:软团聚主要是由颗粒间的范德华力和库仑力所致,所以通过一些化学的作用或施加机械能的方式,就可以使其大部分消除.j.硬团聚:一般是指颗粒之间通过化学键力或氢键作用力等强作用力连接形成的团聚体。
k.水热;l.溶剂热:将水热法中的水换成有机溶剂或非水溶媒(例如:有机胺、醇、氨、四氯化碳或苯等),采用类似于水热法的原理,以制备在水溶液中无法长成,易氧化、易水解或对水敏感的材料。
材料合成与制备方法

材料合成与制备方法材料合成是材料科学领域中的关键环节,合成方法的选择直接影响到材料的性能和应用。
本文将介绍几种常见的材料合成方法和制备技术,包括化学合成、物理合成和生物合成等。
一、化学合成化学合成是一种通过化学反应来制备新材料的方法。
通常需要原料物质在特定条件下进行反应,生成目标产物。
常见的化学合成方法包括溶液法、气相法和固相法等。
1. 溶液法溶液法是一种将原料物质溶解在适当的溶剂中,通过溶液中物质的扩散、固相沉淀和晶体生长等过程,制备出所需的材料的方法。
这种方法操作简单,适用于多种材料的合成。
2. 气相法气相法是一种将原料物质气化或溶解在惰性气体中,通过气相反应生成目标产物的方法。
这种方法通常用于制备高纯度、高质量的材料,适用于一些高温、高真空条件下的合成。
3. 固相法固相法是一种将原料物质混合均匀后,在高温条件下进行反应生成目标产物的方法。
这种方法适用于高温烧结、固相反应等制备过程。
二、物理合成物理合成是一种利用物理方法实现材料合成的方式。
常见的物理合成方法包括熔融法、机械合成和溅射法等。
1. 熔融法熔融法是一种将原料物质加热至熔化状态后冷却凝固成材料的方法。
这种方法通常用于金属材料、陶瓷材料等的制备,具有制备工艺简单、成本低廉的优点。
2. 机械合成机械合成是一种通过机械力对原料物质进行机械混合、压缩、研磨等过程,实现材料合成的方法。
这种方法适用于一些不容易发生化学反应的材料,可以制备出高性能的复合材料。
3. 溅射法溅射法是一种利用高能粒子轰击靶材表面,使靶材表面原子或分子脱落并沉积在基底上形成薄膜的方法。
这种方法适用于制备薄膜、涂层等材料,广泛应用于电子、光电等领域。
三、生物合成生物合成是一种利用生物体或生物体系来合成材料的方法。
常见的生物合成方法包括生物体内合成、发酵法和生物模板法等。
1. 生物体内合成生物体内合成是一种利用生物体自身代谢过程中产生的物质合成材料的方法。
这种方法适用于生物体本身就能够合成目标产物的情况,具有环境友好、资源可再生的优点。
材料合成与制备复习资料

1.升华法:将固体在高温区升华,蒸气在温度梯度的作用下向低温区输运结晶的一种生长晶体的方法。
(硫化物,卤化物,Cds,ZnS,CdI2,HgI2)2.在晶体生长过程中始终维持其过饱和度的途径有:(1)根据溶解度曲线,改变温度;(2)采取各种方法(如蒸发,电解等)减少溶剂,改变溶液成分;(3)通过化学反应来控制过饱和度。
化学反应的速度和晶体生长的速度差别很大,凝胶扩散使反应缓慢进行;(4)用亚稳相来控制过饱和度。
3.根据晶体的溶解度与温度的关系,溶液中生长晶体的方法:降温法,流动法(温差法),蒸发法,凝胶法。
4.降温法适用于溶解度和温度系数都较大的物质,并需要一定的为温度区间。
5.蒸发法生长晶体的基本原理是将溶剂不断蒸发减少,从而使溶液保持在过饱和状态,晶体便不断生长。
适用于溶解度较大而溶解度温度系数较小或为负值的物质。
6.晶体的水热生长法是一种在高温高压下的过饱和和水溶液中进行结晶的方法。
7.水热法的优点:(1)由于存在相变(α石英)可能形成玻璃体(由于高粘滞度而结晶很慢的那些硅酸盐);在熔点时,不稳定的结晶相可以用水热法生长;(2)可以用来生长在接近熔点时蒸汽压高的材料(ZnO)或要分解的材料(VO 2)等;(3)适用用要求比熔体生长的晶体有较高完美性的优质大晶体或在理想配比困难时,要更好的控制成分的材料生长;(4)生长出得晶体热应力小,宏观缺陷少,均匀性和纯度也较高。
8.水热法的缺点:(1)需要特殊的高压釜和安全保护措施;(2)需要适当大小的优质籽晶,虽然质量在以后的生长中能够得到改善;(3)整个生长过程不能观察,生长一定尺寸的晶体,时间较长。
9.正常凝固法的特点是在晶体开始生长时,全部材料处于熔融态(引入的籽晶除外)。
在生长过程中,材料体系有晶体和熔体两部分组成,并且是以晶体的长大和熔体的减少而告终。
10.正常凝固法:晶体提拉法,坩埚移动法,晶体泡生法,弧熔法。
11.提拉法改进技术:(1)晶体直径的自动控制技术—ADC技术—不仅使生长过程的控制实现了自动化,而且提高了晶体的质量和成品率;(2)液相封盖和高压单晶炉—LEC技术—生长那些具有较高蒸气压或高离解压的材料;(3)磁场提拉法—MCZ技术—在提拉法中加一磁场,可以使单晶中得氧含量和电阻率分布得到控制和趋于均匀(单晶硅的成功制取);(4)倒膜法—EFG技术—可以按照所需要的形状和尺寸来生长晶体,晶体的均匀性也得到了改善。
材料合成与制备期末复习题

材料合成与制备期末复习题第零章绪论1.材料合成:材料合成是指促使原子或分子构成材料的化学或物理过程;2.材料制备:材料制备是指研究如何控制原子与分子使其构成有用的材料,但材料制备还包括在更为宏观的尺度上控制材料的结构,使其具备所需的性能和使用效能。
3.材料合成与制备的最终目标是:制造高性能、高质量的新材料以满足各种构件、物品或仪器等物件的日益发展的需求。
4.材料合成与制备的发展方向:材料的高性能化、复合化、功能化、低维化、低成本化、绿色化;5.影响热力学过程自发进行方向的因素:(1)能量因素;(2)系统的混乱度因素; 6.隔离系统总是自发的向着熵值增加的方向进行。
7.论述反应速率的影响因素:(1)浓度对反应速率的影响:对于可逆反应,增加反应物浓度可以使平衡向产物方向移动,因此,提高反应物浓度是提高产率的一个办法,但如果反应物成本很高,将反应物之一在生成后立即分离出去或转移到另一相中去,也是提高反应产率的一个很好的办法。
对于有气相的反应,如果反应前后气体物质的反应计量数不等,则增加压力会有利于反应向气体计量数小的方向进行。
另外,对于多个反应同时进行的反应,则应按主反应的情况来控制反应物的配比;(2)温度对反应速率的影响:对于一个可逆反应,正反应吸热,则逆反应就放热;如果正反应放热,则逆反应就吸热,升高温度有利于反应向吸热方向进行,不利于放热反应;对于放热反应,用冷水浴或冰浴使其降温的办法有利于反应的进行,但影响反应速率。
实际生产中,要综合考虑单位实际内的产量和转化率同时进行;(3)溶剂等对反应速率的影响:溶剂在反应中的作用:一是提供反应的场所,二是发生溶剂化效应。
溶剂最重要的物理效应即溶剂化作用,化学效应主要有溶剂分子的催化作用和容积分子作为反应物或产物参与了化学反应。
若溶剂分子与反应物生成不稳定的溶剂化物,可使反应的活化能降低,加快反应速率;若生成稳定的溶剂化物,则使反应活化能升高,降低反应速率;若生成物与溶剂分子生成溶剂化物,不论它是否稳定,都会使反应速率加快。
材料合成与制备 第1章 溶胶-凝胶法

溶胶凝胶化目前主要分为脱水凝胶化和碱性凝胶化两类。
脱水凝胶化过程中(加入强亲水性物质,例已醇),胶粒脱水,扩 散层中电解质溶解质浓度增加,凝胶化能垒降低。
碱性凝胶化过程中, Mn+ 可通过O2-、OH- 或An-(酸根离子)与配 体 简桥言联之,。体影系响加因入素有OHp-H,值胶、粒温表度面、正A电n-荷的减性少质,、能M(垒H2高O度)n+降的低浓。度等。
(3)溶剂化作用也能稳定溶胶。破坏胶粒之间的有序溶剂层, 使胶粒表层脱除溶剂并相互接触需要一定的溶剂化能量。这种 效应对于亲液溶胶更加明显。
反之,由溶胶制备凝胶的具体方法有以下几种: (1)使水、醇等分散介质挥发或冷却溶胶,使其成为过饱和 液,而形成冻胶。 (2)加入非溶剂,如在果胶水溶液中加入适量酒精后,即形 成凝胶。 (3)将适量的电解质加入胶粒亲水性较强的憎液型溶胶,即 可形成凝胶。 (4)利用化学反应产生不溶物,并控制反应条件可得凝胶。
前驱物溶液(溶 胶)由金属无机 化合物与添加剂 之间的反应形成
密集的粒子
粉末、薄 膜
有机聚合物 型Sol-Gel
过程
前驱物的控制 水解和缩聚
1.由前驱物得到的无机聚合物构 成凝胶网络 2.刚形成的凝胶体 积与前驱物溶液体积完全一样 3. 凝胶形成的参数--胶凝时间随着 过程中其它参数的变化 而变化 4.凝胶透明
3、 20纪80年代以后,广泛应用于功能材料、特种陶瓷材料、晶 体、薄膜材料 、超微粉体、有机-无机杂化材料的制备和应用。从 1981年开始,每二年举办一次溶胶-凝胶科学技术国际会议。溶胶-凝 胶科学已经成为材料科学与工程研究领域的一个重要分支。
三、溶胶-凝胶合成方法的原理
现代溶胶-凝胶技术一般是以金属有机醇盐或无机盐为原料, 溶解于一定的溶剂中形成金属化合物的溶液,然后进行水解、聚合 形成溶胶、凝胶。
材料合成制备考试复习资料终极版

材料合成制备考试复习资料终极版work Information Technology Company.2020YEAR材料合成:指把各种原子、分子结合起来制成材料所采用的各种化学方法和物理方法,一般不含工程方面的问题。
材料制备:制备一词不仅包含了合成的基本内涵,而且包含了把比原子、分子更高一级聚集状态结合起来制成材料所采用的化学方法和物理方法。
(一是新的制备方法以及新的制备方法中的科学问题,二是各种制备方法中遇到的工程技术问题)材料加工:是指对原子、分子以及更高一级聚集状态进行控制而获得所需要的性能和形状尺寸(以性能为主)所采用的方法(以物理方法为主).材料的分类:用途:结构材料,功能材料。
物理结构:晶体材料、非晶态材料和纳米材料。
几何形态:三维二维一维零维材料。
发展:传统材料,新材料。
按属性分:以金属健结合的金属材料,以离子键和共价键为主要键合的无机非金属材料,以共价健为主要键合的高分子材料,将上述三种材料进行复合,以界面特征为主的复合材料,钢铁、陶瓷、塑料和玻璃钢分别为这四种材料的典型代表。
新材料特点:品种多式样多,更新换代快,性能要求越来越功能化、极限化复合化、精细化。
新材料主要发展趋势:1结构材料的复合化2信息材料的多功能集成化3低维材料迅速发展4非平衡态(非稳定)材料日益受到重视。
单晶体的基本性质:均匀性;各向异性;自限性;对称性;最小内能和最大稳定性。
晶体生长类型:固相-固相平衡的晶体生长,液相-固相平衡的晶体生长,气相-固相平衡的晶体生长。
晶体生长可以分为成核和长大两个阶段。
成核过程主要考虑热力学条件。
长大过程则主要考虑动力学条件。
在晶体生长过程中,新相核的发生和长大称为成核过程。
成核过程可分为均匀成核和非均匀成核。
过冷度——每一种物质都有自己的平衡结晶温度或者称为理论结晶温度,但是,在实际结晶过程中,实际结晶温度总是低于理论结晶温度的,这种现象称为过冷现象,两者的温度差值被称为过冷度,它是晶体生长的驱动力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将处理的基底和溶胶相接触,在基底毛细孔产生的附加压力下,溶胶 倾向于进入基底孔隙,当其中介质水被吸入孔道内同时胶体粒子的流 动受阻在表面截留,增浓,缩合,聚结而成为一层凝胶膜。
3. 凝胶的产生途径有哪些?
① 改变温度:利用物质在同一种溶液中的不同温度时的溶解度不同, 通过升、降温度来实现胶凝,从而形成凝胶; ② 转换溶剂:用分散相溶解度较小的溶剂替换溶胶中原有的溶剂可以 ③ ④ 使体系胶凝,从而得到凝胶,如固体酒精的制备; 加电解质:溶液中加人含有相反电荷的大量电解质也可以引起胶凝 而得到凝胶,如在Fe(OH)3溶胶中加人电解质KCI可使其胶凝; 进行化学反应:使高分子溶液或溶胶发生交联反应产生胶凝而形成 凝胶,如硅酸凝胶、硅一铝凝胶的形成。 除去溶剂:使聚合产物的浓度增大,当存在一定程度的交联时,发 生溶胶-凝胶的转变,粘度突然增大。 用酸或碱催化以促进水解和缩聚反应的发生。
碱催化
5. 凝胶点是指流变性质的突然改变,即容器倾斜45º 时,溶胶不流动
简答与论述
1. 如何用溶胶凝胶法制备薄膜及涂层? 将溶液或溶胶通过适当方法在基板上形成液膜,经凝胶化后通过热处 理可转变成无定形态(或多晶态)膜或涂层
提拉浸渍法 旋转涂覆法 丝网印刷法 喷雾涂层法 电沉积法 细管涂镀技术
2. 溶胶凝胶法制备薄膜及涂层的成膜机理是什么?
聚和联接遭到破坏,从而使微粒自身在水热介质中溶解,以离子或离子团
的形式进入溶液,进而成核、结晶而形成晶粒。当水热介质中溶质的浓度 高于晶粒的成核所需要的过饱和度时,体系内发生晶粒的成核和生长,随 着结晶过程的进行,介质中用于结晶的物料浓度又变得低于前驱物的溶解 度,这使得前驱物的溶解继续进行。如此反复,只要反应时间足够长,前 驱物将完全溶解,生成相应的晶粒。 “原位结晶”机制当选用常温常压下不可溶的固体粉末,凝胶或沉淀为前驱 物时,如果前驱物和晶相的溶解度相差不是很大时,或者“溶解-结晶”的动 力学速度过慢,则前驱物可以经过脱去羟基(或脱水),原子原位重排而转
2. 凝胶(Gel)胶体颗粒或高聚物分子相互交联,空间网络状结构不断发展, 最终使得溶胶液逐步失去流动性,在网状结构的孔隙中充满液体的非流动半 固态的分散体系,它是含有亚微米孔和聚合链的相互连接的坚实的网络。 3. 溶胶-凝胶法:就是用含高化学活性组分的化合物作前驱体,在液相下将这 些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶 胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶 网络间充满了失去流动性的溶剂。 4. 双电层 溶胶体系中,静电引力使颗粒吸引反离子向其表面靠拢,并排斥同离子, 固体表面电荷与溶液中反电荷形成了双电层结构。
材料合成与制备方法 复习
重点:前四章
考试方式:闭卷 满分:100分 题型 一、填空题(1分×10空) 二、选择题(2分×10) 三、名词解释(5分×4) 四、简答题(6分×5) 五、论述题 (10分×2)(前四章)
1-溶胶-凝胶法
概念
1 . 溶胶(Sol) 又称胶体溶液。指在液体介质(主要是液体)中 分 散了1-100nm粒子(基本单元),且在分散体系中保持固体物质不沉淀的胶 体体系。溶胶也是指微小的固体颗粒悬浮分散在液相中,并且不停地进行 布朗运动的体系。 溶胶态分散系示例 分散相 液体 固体 气体 液体 固体 液体 气体 分散介质分散介质 气体 气体 液体 液体 液体 固体 固体 示例 雾 烟 泡沫 牛乳 胶态石墨 矿石中的液态夹杂物 矿CH3,C2H5)-ROH-H2O系统为例, 体系中最先发生水解反应:
(1)系统含水量比较低的情况下:反应产物一直受到水解速度的控制, 更倾向于形成链状结构:
(2)当加水量增大时:由于水解速度快,聚合反应主要或全部以失水缩聚 的方式进行,从而形成具有二维或三维结构的聚合物,其水解和缩聚反应可 表达为:
知识点
1. 溶胶不是物质而是一种“状态”。
2. 提高溶胶稳定性的三个基本途径 (1)使胶粒带表面电荷;(2) 利用空间位阻效应;(3)利用溶剂化效应。
3. 溶胶-凝胶过程,按照溶胶的形成原理分为胶体型无机、聚合物型、络合物 型
4. 溶胶形成过 程中催化剂的 影响
催化机理 酸催化
缩聚产物 交联度低, 呈链状生长 交联度高,结 构粒子
总的净反应为:
2-水热与溶剂热合成法
概念
1. 水热法在特制的密闭反应器(高压釜)中,采用水溶液作为反应
体系,通过对反应体系加热、加压(或自生蒸气压),创造一个 相对高温、高压的反应环境,使得通常难溶或不溶的物质溶解, 并且重结晶而进行无机合成与材料处理的一种有效方法。 2. 溶剂热法将水热法中的水换成有机溶剂或非水溶媒(例如:有机胺、 醇、氨、四氯化碳或苯等),采用类似于水热法的原理,以制备在水 溶液中无法长成,易氧化、易水解或对水敏感的材料
⑤
⑥
4. 溶胶形成过程中水解度的影响(加水量),并举例说明?
水解度R≥2,TEOS水解反应使大部分的-OR基团脱离,产生-OH基团,形成了部分水 解的带有-OH的硅烷,在这些部分水解的硅烷之间容易反应形成二聚体,这些二聚 体不再进行水解,而是发生交联反应形成三维网络结构,从而缩短了凝胶化时间. 水解度R≤2,水解反应则产生了部分水解的带有 -OH的硅烷,从而消耗掉大部分水, 缩聚反应较早发生,形成TEOS的二聚体,硅酸浓度减少,凝胶时间延长
10 变为结晶态。
水热条件下晶体生长包括哪几个步骤?
(1)营养料在水热介质里溶解,以离子、分子团的形式进入溶液(溶
解阶段); (2)由于体系中存在十分有效的热对流及溶解区和生长之间的浓度差,
3.水热与溶剂热合成的生产设备为高压釜,有不锈钢外壳和聚四氟乙 烯内衬构成
9
简答和论述
水热生长体系中的晶粒形成有哪三种机制? “均匀溶液饱和析出”机制由于水热反应温度和体系压力的升高, 溶质在溶液中溶解度降低并达到饱和,以某种化合物结晶态形式从 溶液中析出。 “溶解-结晶”机制所谓“溶解”是指水热反应初期,前驱物微粒之间的团