信号与系统笔记
奥本海姆《信号与系统》(第2版)笔记和课后习题(含考研真题)详解(上册)-第3章 周期信号的傅里叶级

则
(1)弼 x(t)为实函数时,由亍 x(t)=x*(t),傅里叶级数系数一定是共轭对称的,即
(2)若 x(t)为实偶函数,那么它的傅里叶级数系数也为实偶函数。 (3)若 x(t)为实奇函数,那么它的傅里叶级数系数为纯虚奇函数。 7.连续时间周期信号的帕斯瓦尔定理 (1)连续时间周期信号的帕斯瓦尔定理:
8.连续时间傅里叶级数性质列表 表 3-1 连续时间傅里叶级数性质
/ 106
圣才电子书 十万种考研考证电子书、题库规频学习平台
1.成谐波关系的复指数信号的线性组合 一般的周期序列的线性组合就有如下:
序列φk[n]只在 k 的 N 个相继值的匙间上是丌同的,因此上式的求和仅仅需要包括 N 项。 因此将求和限表示成 k=(N),即离散时间傅里叶级数为
三、傅里叶级数的收敛 连续时间信号的傅里叶级数收敛的条件——狄里赫利条件: 1.条件 1 在仸何周期内,x(t)必须绝对可积,即
这一条件保证了每一系数 ak 都是有限值。 2.条件 2 在仸意有限匙间内,x(t)具有有限个起伏发化;也就是说,在仸何单个周期内,x(t)的
最大值和最小值的数目有限。 3.条件 3 在 x(t)的仸何有限匙间内,只有有限个丌连续点,而丏在这些丌连续点上,函数是有限
则
(1)施加亍连续时间信号上的时间反转会导致其对应的傅里叶级数系数序列的时间反 转。
(2)若 x(t)为偶函数,则其傅里叶级数系数也为偶,若 x(t)为奇函数,则其傅里叶级 数系数也为奇。
4.时域尺度发换 时间尺度运算是直接加在 x(t)的每一次谐波分量上的,傅里叶系数仍是相同的。 x(αt)的傅里叶级数表示:
[笔记]信号与系统课程要点(吴大正)
![[笔记]信号与系统课程要点(吴大正)](https://img.taocdn.com/s3/m/0eabe0ffe109581b6bd97f19227916888586b953.png)
信号与系统第一章 信号与系统1.信号、系统的基本概念2.信号的分类,表示方法(表达式或波形)连续与离散;周期与非周期;实与复信号;能量信号与功率信号3.信号的基本运算:加、乘、反转和平移、尺度变换。
图解时方法多种,但注意仅对变量t 作变换,且结果可由值域的非零区间验证。
4.阶跃函数和冲激函数极限形式的定义;关系;冲激的Dirac 定义阶跃函数和冲激函数的导数与积分冲激函数的取样性质)()0()()(t f t t f δδ⋅=⋅;⎰∞∞-=⋅)0()()(f dt t t f δ)()()()(111t t t f t t t f -⋅=-⋅δδ;⎰∞∞-=-⋅)()()(11t f dt t t t f δ分段连续函数的导数计算知道一些常用的信号5.系统的描述方法数学模型的建立:微分或差分方程系统的时域框图,基本单元:乘法器,加法器,积分器(连),延时单元(离)由时域框图列方程的步骤。
6.系统的性质线性:齐次性和可加性;分解特性、零状态线性、零输入线性。
时不变性:常参量LTI 系统的数学模型:线性常系数微分(差分)方程(以后都针对LTI 系统)LTI 系统零状态响应的微积分特性因果性、稳定性第二章 连续系统的时域分析1. 微分方程的经典解法:齐次解+特解(代入初始条件求系数)自由响应、强迫响应、瞬态响应、稳态响应的概念0—~0+初值(由初始状态求初始条件):目的,方法(奇异函数系数平衡法)全响应=零输入响应+零状态响应;注意应用LTI 系统零状态响应的微积分特性2. 冲激响应)(t h定义,求解(经典法),注意应用LTI 系统零状态响应的微积分特性阶跃响应)(t g 与)(t h 的关系3. 卷积积分定义激励)(t f 、零状态响应)(t y f 、冲激响应)(t h 之间关系)()()(t h t f t y f *=卷积的图示解法:步骤、关键点、两个结论卷积的解析解法卷积的代数运算规则3个,物理意义函数与冲激函数的卷积(与乘积不同))()()(t f t t f =*δ;)()()(11t t f t t t f -=-*δ卷积的微分与积分复合系统冲激响应的求解第三章 离散系统的时域分析1.离散系统的响应差分方程的迭代法求解差分方程的经典法求解:齐次解+特解(代入初始条件求系数)全响应=零输入响应+ 零状态响应初始状态(是)()2(),1(N y y y --- ),而初始条件(指的是)1()1(),0(-N y y y )2.单位序列响应)(k h)(k δ的定义,)(k h 的定义,求解(经典法);若方程右侧是激励及其移位序列时,注意应用线性时不变性质求解阶跃响应)(k g 与)(k h 的关系4. 卷积和定义激励)(k f 、零状态响应)(k y f 、冲激响应)(k h 之间关系)()()(k h k f k y f *=卷积和的作图解法:步骤,注意问题。
郑君里《信号与系统》第3版笔记课后习题考研真题详解

郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解
攻重浩精研学习网提供资料
第1章绪论
1.1复习笔记
本章作为《信号与系统》的开篇章节,是整个信号与系统学习的基础。
本章介绍了有关信号与系统的基本概念和术语,给出几种典型的信号和系统的表现形式,讲述了各信号与系统的特点以及信号之间的运算和转换。
通过本章学习,读者应掌握:如何判断信号类型、不同信号之间的运算、信号的分解以及系统类型的判断。
一、信号概述
1信号的概念及分类(见表1-1-1)
表1-1-1信号的概念及分类
2典型的连续信号(见表1-1-2)
表1-1-2典型的信号及表示形式
3信号的运算(见表1-1-3)
表1-1-3信号的运算
4阶跃函数和冲激函数
阶跃信号和冲激信号是信号与系统中最基础的两种信号,许多复杂信号皆可由二者或二者的线性组合表示。
具体见表1-1-4及表1-1-5。
(1)单位阶跃信号u(t)
表1-1-4单位阶跃信号u(t)
(2)单位冲激信号δ(t)
表1-1-5单位冲激信号δ(t)表示形式及性质
5信号的分解
一个一般信号根据不同类型可分解为以下几种分量,具体见表1-1-6。
表1-1-6信号的分解
二、系统
1系统概念及分类(见表1-1-7)
表1-1-7系统的概念及分类
系统模型如下:
输入信号经过不同系统可得到不同输出信号,具体见表1-1-8。
表1-1-8不同系统特性。
信号与系统笔记pdf

信号与系统笔记一、基本概念信号:信号是运载信息的物理量,是消息的表现形式与传送载体。
它可以随时间或空间而变化。
常见的信号有:模拟信号和数字信号。
系统:系统是由一个或若干个相互关联的单元组成的具有特定功能的整体。
系统处理的内容可以是信号,也可以是信号的处理与变换。
二、信号的分类常见分类方式:按时间是否连续,信号可分为连续时间信号和离散时间信号;按幅度是否变化,信号可分为确知信号和随机信号。
信号的能量与功率:能量是指信号的幅度平方的积分,表示信号的总能量;功率是指单位时间内信号的能量,表示信号的平均功率。
三、基本信号变化线性变化:如果一个信号经过系统后,其输出仍然是输入的线性组合,则称该系统为线性系统。
线性系统具有叠加性和均匀性。
奇偶变化:如果一个信号在时间上关于原点对称,则称为奇对称信号;如果一个信号在时间上关于其最大或最小值点对称,则称为偶对称信号。
信号的运算:信号的加、减、乘运算对应于时间域的相加、相减、相乘运算。
此外,还包括信号的平移、反转、尺度变换等运算。
四、指数信号与正弦信号周期复指数信号:形如ejwt的信号,其中w为角频率,t为时间。
它是复数指数函数在时间域的表示。
一般的复指数信号:形如a*ejwt的信号,其中a为幅度,w为角频率,t为时间。
它是复数指数函数在时间域的表示。
五、系统分析方法时不变性:系统的行为不随时间而变,即系统的冲激响应不变。
线性时不变系统:满足叠加性和均匀性的系统。
其冲激响应h(t)和输入信号x(t)的卷积就是输出信号y(t)。
线性时不变系统的输出由输入和系统的冲激响应共同决定。
《信号与系统》考研奥本海姆版考研复习笔记资料

《信号与系统》考研奥本海姆版考研复习笔记资料第1章信号与系统1.1 复习笔记本章内容是信号与系统分析的基础。
主要介绍了信号的分类和基本运算,学完本章读者要重点掌握的内容有:(1)掌握信号的分类方法及其特点:连续/离散、周期/非周期、奇/偶、能量/功率。
(2)掌握冲激信号和阶跃信号的物理意义及性质。
(3)掌握常见连续/离散信号的波形及其表达式。
(4)掌握信号的时域运算和波形变换方法。
(5)掌握系统互连方法及其特点。
一、连续时间和离散时间信号1连续时间信号和离散时间信号(见表1-1-1)表1-1-1 信号的定义和表示方法图1-1-1 信号的图形表示(a)连续时间信号;(b)离散时间信号2信号能量与功率(见表1-1-2)表1-1-2 能量和功率的计算公式3能量信号和功率信号的特点(见表1-1-3)表1-1-3 能量信号和功率信号的特点二、自变量的变换1基本变换(见表1-1-4)表1-1-4 自变量的基本变换2周期信号与非周期信号(见表1-1-5)表1-1-5 周期信号与非周期信号的定义及特点3偶信号与奇信号(见表1-1-6)表1-1-6 偶信号与奇信号的定义及特点【注】任何信号=偶信号+奇信号,即x(t)=E v{x(t)}+O d{x(t)},其中E v{x (t)}=(1/2)[x(t)+x(-t)],O d{x(t)}=(1/2)[x(t)-x(-t)],E v{x (t)}为x(t)的偶部,O d{x(t)}为x(t)的奇部。
三、指数信号与正弦信号1连续时间复指数信号与正弦信号(见表1-1-7)表1-1-7 连续时间复指数信号与正弦信号的表达式与特点2离散时间复指数信号与正弦信号(见表1-1-8)表1-1-8 离散时间复指数信号与正弦信号3离散时间复指数序列的周期性质(1)离散时间指数信号的周期性的要求为了使信号是周期的,周期为N>0,就必须有,也就是要求ω0N必须是2π的整数倍,即必须有一个整数m,满足:ω0N=m2π或ω0/(2π)=m/N。
《奥本海姆 信号与系统 第2版 笔记和课后习题 含考研真题 》读书笔记思维导图

《奥本海姆 信号与系统 第2版 笔 记和课后习题 含考研真题 》
PPT书籍导读
读书笔记模板
最
新
版
本
本书关键字分析思维导图
系统
精华
复习
第版
考生
名校
教材
真题
信号
习题 奥本海姆
傅里叶
笔记
内容
考研
知识
答案
电子书
命题
目录
01 第1章 信号与系统
02
第2章 线性时不变系 统
03
第3章 周期信号的傅 里叶级数表示
04
第4章 连续时间傅里 叶变换
05
第5章 离散时间傅里 叶变换
06 第6章 信号与系统的 时域和频域特性
本书特别适用于参加研究生入学考试指定考研参考书目为奥本海姆《信号与系统》(第2版)的考生。也可 供各大院校学习奥本海姆《信号与系统》(第2版)的师生参考。本书是奥本海姆主编的《信号与系统》(第2版) 的配套电子书,主要包括以下内容:(1)梳理知识脉络,浓缩学科精华。本书每章的复习笔记均对该章的重难点 进行了整理,并参考了国内名校名师讲授该教材的课堂笔记。因此,本书的内容几乎浓缩了该教材的所有知识精 华。(2)详解课后习题,巩固重点难点。本书参考大量相关辅导资料,对奥本海姆主编的《信号与系统》(第2 版)的课后习题进行了详细的分析和解答,并对相关重要知识点进行了延伸和归纳。(3)精编考研真题,培养解 题思路。本书从历年考研真题中挑选最具代表性的部分,并对之做了详尽的解析。所选考研真题涵盖了每章的考 点和难点,考生可以据此了解考研真题的命题风格和难易程度,并检验自己的复习效果。(4)免费更新内容,获 取最新信息。本书定期会进行修订完善,补充最新的考研真题和答案。对于最新补充的考研真题和答案,均可以 免费升级获得。
信号与系统考研笔记
信号与系统考研笔记一、信号与系统的基本概念1.信号的定义和分类:信号可以分为确定性信号和随机信号,周期信号和非周期信号,连续时间信号和离散时间信号等。
2.系统的定义和分类:系统可以分为线性系统和非线性系统,时不变系统和时变系统,连续时间和离散时间系统等。
3.信号的基本运算:包括信号的加法、减法、乘法、除法等基本运算。
4.系统的基本运算:包括系统的串联、并联、反馈等基本运算。
二、傅里叶变换1.傅里叶级数和傅里叶变换的定义:傅里叶级数用于表示周期信号,而傅里叶变换则用于表示非周期信号。
2.傅里叶变换的性质:包括对称性、线性(叠加性)、奇偶虚实性、尺度变换特性、时移特性、频移特性、微分特性、积分特性、卷积特性、相关与自相关特性等。
3.傅里叶变换的应用:包括频域分析、系统响应分析、滤波器设计等。
三、拉普拉斯变换和Z变换1.拉普拉斯变换的定义和性质:拉普拉斯变换是用来分析具有无穷大的时间域信号的一种方法。
2.Z变换的定义和性质:Z变换是用来分析离散时间信号的一种方法。
3.拉普拉斯变换和Z变换的应用:包括系统响应分析、控制系统设计等。
四、线性时不变系统1.LTI系统的定义和性质:LTI系统是指具有线性特性和时不变特性的系统。
2.LTI系统的分析和设计:包括系统的频率响应分析、系统稳定性分析、系统均衡和滤波等。
3.LTI系统的状态空间表示:包括状态空间模型的建立、系统的稳定性和可控性分析等。
五、采样定理和离散傅里叶变换1.采样定理的理解和应用:采样定理规定了采样频率和信号带宽之间的关系,对于连续时间信号的离散化采样具有重要意义。
2.DFT的理解和应用:DFT是离散时间信号的一种基本运算,可以用于信号的分析和处理。
3.快速傅里叶变换(FFT)的理解和应用:FFT是一种高效计算DFT的算法,可以大大提高信号处理的速度和效率。
六、信号与系统的应用和实践1.数字信号处理的应用和实践:包括数字滤波器设计、数字波形合成、数字音频处理等。
【信号与系统】复习总结笔记
【信号与系统】复习总结笔记学习笔记(信号与系统)来源:⽹络第⼀章信号和系统信号的概念、描述和分类信号的基本运算典型信号系统的概念和分类1、常常把来⾃外界的各种报道统称为消息;信息是消息中有意义的内容;信号是反映信息的各种物理量,是系统直接进⾏加⼯、变换以实现通信的对象。
信号是信息的表现形式,信息是信号的具体内容;信号是信息的载体,通过信号传递信息。
2、系统(system):是指若⼲相互关联的事物组合⽽成具有特定功能的整体。
3、信号的描述——数学描述,波形描述。
信号的分类:1)确定信号(规则信号)和随机信号确定信号或规则信号 ——可以⽤确定时间函数表⽰的信号;随机信号——若信号不能⽤确切的函数描述,它在任意时刻的取值都具有不确定性,只可能知道它的统计特性。
2)连续信号和离散信号连续时间信号——在连续的时间范围内(-∞<t<∞)有定义的信号称为连续时间信号,简称连续信号,实际中也常称为模拟信号;离散时间信号——仅在⼀些离散的瞬间才有定义的信号称为离散时间信号,简称离散信号,实际中也常称为数字信号。
3)周期信号和⾮周期信号周期信号——是指⼀个每隔⼀定时间T,按相同规律重复变化的信号;⾮周期信号——不具有周期性的信号称为⾮周期信号。
4)能量信号与功率信号能量信号——信号总能量为有限值⽽信号平均功率为零;功率信号——平均功率为有限值⽽信号总能量为⽆限⼤。
5)⼀维信号与多维信号信号可以表⽰为⼀个或多个变量的函数,称为⼀维或多维函数。
6)因果信号若当t<0时f(t)=0,当t>0时f(t)≠0的信号,称为因果信号;⾮因果信号指的是在时间零点之前有⾮零值。
4、信号的基本运算:信号的+、-、×运算:两信号f1(·)和f2(·)的相+、-、×指同⼀时刻两信号之值对应相加减乘。
平移:将f(t)→f(t + t0)称为对信号f(·)的平移或移位,若t0< 0,则将f(·)右移,否则左移。
郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解(1-2章)【圣才出品】
第1章绪论
1.1复习笔记
本章作为《信号与系统》的开篇章节,是整个信号与系统学习的基础。
本章介绍了有关信号与系统的基本概念和术语,给出几种典型的信号和系统的表现形式,讲述了各信号与系统的特点以及信号之间的运算和转换。
通过本章学习,读者应掌握:如何判断信号类型、不同信号之间的运算、信号的分解以及系统类型的判断。
一、信号概述
1.信号的概念及分类(见表1-1-1)
表1-1-1信号的概念及分类
2.典型的连续信号(见表1-1-2)
表1-1-2典型的信号及表示形式
3.信号的运算(见表1-1-3)
表1-1-3信号的运算
4.阶跃函数和冲激函数
阶跃信号和冲激信号是信号与系统中最基础的两种信号,许多复杂信号皆可由二者或二者的线性组合表示。
具体见表1-1-4及表1-1-5。
(1)单位阶跃信号u(t)
表1-1-4单位阶跃信号u(t)
(2)单位冲激信号δ(t)
表1-1-5单位冲激信号δ(t)表示形式及性质
5.信号的分解
一个一般信号根据不同类型可分解为以下几种分量,具体见表1-1-6。
表1-1-6信号的分解
二、系统
1.系统概念及分类(见表1-1-7)
表1-1-7系统的概念及分类
系统模型如下:
输入信号经过不同系统可得到不同输出信号,具体见表1-1-8。
表1-1-8不同系统特性
1.2课后习题详解
1-1分别判断图1-2-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?
(a)
(b)
(c)
(d)
(e)
(f)。
电子信息类考研信号与系统考研2021考点复习笔记
电子信息类考研信号与系统考研2021考点复习笔记一采样1.1 复习笔记本章重点介绍了采样和采样定理,采样定理在连续时间信号和离散时间信号之间起着桥梁作用,采样在利用离散时间系统技术来实现连续时间系统并处理连续时间信号方面有着至关重要的作用。
学完本章读者应该掌握以下内容:(1)重点掌握采样的过程和采样定理,牢记奈奎斯特采样频率。
(2)掌握内插的定义及如何利用内插由样本重建信号。
(3)重点掌握连续时间信号的离散时间化处理过程。
(4)了解数字微分器及其频率特性。
(5)掌握离散时间信号采样的原理及恢复原离散时间信号的方法。
一、用信号样本表示连续时间信号:采样定理1冲激串采样(1)冲激串采样的定义冲激串采样是指用一个周期冲激串p(t)去乘待采样的连续时间信号x(t)。
该周期冲激串p(t)称为采样函数,周期T称为采样周期,而p(t)的基波频率ω=2π/T称为采样频率。
(2)冲激串采样过程(见图7-1-1)在时域中有x p(t)=x(t)p(t)在频域中有即X p(jω)是频率ω的周期函数,它由一组移位的X(jω)的叠加组成,但在幅度上标以1/T的变化。
图7-1-1 冲激串采样过程(3)采样定理频带宽度有限信号x(t),在|ω|>ωM时,X(jω)=0。
如果ωs>2ωM,其中ωs=2π/T,那么x(t)唯一地由其样本x(nT),n=0,±1,±2,…,所确定。
其中频率2ωM称为奈奎斯特率。
已知这些样本值,重建x(t)的办法:①产生一个冲激幅度就是这些依次而来的样本值的周期冲激串。
②将该冲激串通过一个增益为T,截止频率大于ωM而小于ωs-ωM的理想低通滤波器,该滤波器的输出就是x(t)。
2零阶保持采样(1)零阶保持的含义在一个给定的瞬时对x(t)采样并保持这一样本值,直到下一个样本被采到为止,利用零阶保持采样的原理图如图7-1-2所示。
图7-1-2 利用零阶保持采样(2)零阶保持采样的过程零阶保持的输出x0(t)在原理上可以用冲激串采样,再紧跟着一个线性时不变系统(该系统具有矩形的单位冲激响应)来得到,如图7-1-3所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与系统笔记
信号是指随时间、空间或其他自变量的变化而变化的一种物理量或非物理量。
在信号与系统领域,我们主要研究的是连续时间信号和离散时间信号。
连续时间信号是指在连续时间上变化的信号,可以表示为一个连续函数。
离散时间信号是指在离散时间上变化的信号,可以表示为一个离散序列。
在信号与系统中,我们关心如何对信号进行描述、分析、处理和传输。
对于信号的描述,我们可以使用时域和频域两种方式。
时域分析是指通过观察信号在时间上的变化,来了解信号的性质和特点。
时域分析包括信号的幅度、相位、频率、周期等参数的计算和分析。
频域分析是指通过将信号从时域转换到频域,来观察信号在频率上的变化。
频域分析能够帮助我们了解信号的频率成分、功率谱密度等特性。
信号处理是指对信号进行处理、改变或提取信息的过程。
常见的信号处理方法包括滤波、采样、量化、调制等。
信号传输是指将信号从一个地方传输到另一个地方的过程。
在信号传输中,我们需要考虑信号的传输损耗、传输延迟等问题。
系统是指对信号进行处理、改变或传输的装置或过程。
系统可
以是线性系统或非线性系统、时不变系统或时变系统等。
在信号与系统中,我们使用数学方法来描述和分析信号和系统。
常见的数学工具包括傅里叶变换、拉普拉斯变换、离散傅里叶变换等。
总之,信号与系统是一个涉及信号描述、分析、处理和传输的领域。
通过学习信号与系统,我们能够更好地理解和应用各种信号处理和通信技术。