植被指数整理介绍
植被指数总结资料

1生物量生物量:指某一时刻单位面积内实存生活的有机物质(干重)北京地区森林植被:北京地区森林植被生物量遥感反演及时空动态格局分析_张慧芳呼伦贝尔草地:基于环境减灾卫星遥感数据的呼伦贝尔草地地上生物量反演研究_陈鹏飞延庆县森林:基于SPOT5的延庆县森林生物量研究_韩冬花芦苇:基于光谱特征信息的芦苇生物量反演研究_陈爱莲根据实地测量的芦苇反射光谱数据,建立该区域芦苇的光谱数据库,提取芦苇光谱维特征参数;并以光谱维特征为依据选取卫星数据,分析卫星数据与实测芦苇光谱特征的相关性,进而应用光谱角角度匹配!光谱特征拟合!二进制编码等三种光谱匹配技术,研究卫星数据光谱与实测芦苇光谱的匹配度,提取影像的芦苇像元,作为大面积自动估算芦苇生物量的基础"水稻:1.微波遥感水稻种植面积提取_生物量反演与稻田甲烷排放模拟_张远2.水稻高光谱特征及其生物理化参数模拟与博士估测模型研究_唐延林辽东湾翅碱蓬:辽东湾双台子河口湿地翅碱蓬生物量遥感反演研究_吴涛.cajSAVI和MSAVI与LAI的关系取样框内样方所在经度、纬度及高程、样方内水深、植株高度、盖度等。
同步采集植被冠层光谱叶面积指数。
对样方内植株个体先称干重在称量湿重。
现场光谱测定与处理:使用光谱仪为ISI921VF-256便携式地物光谱辐射计采集现场光谱值。
卫星遥感和TM数据和CCD数据。
小麦:冬小麦花期生理形态指标与卫星遥感光谱特征的相关性分析_李卫国.pdf 2 叶绿素玉米:1.不同氮处理春玉米叶片光谱反射率与叶片全氮和叶绿素含量的相关研究_王磊.pdf2.基于小波分析的玉米叶绿素a与LAI高光谱反演模型研究_宋开山.pdf3.受污染胁迫玉米叶绿素含量微小变化的高光谱反演模型_王平.pdf4.夏玉米叶片全氮_叶绿素及叶面积指数的光谱响应研究_谭昌伟.pdf5.利用遥感红边参数估算夏玉米农学参数的可行性分析_谭昌伟.caj大豆:1.大豆叶绿素含量高光谱反演模型研究_宋开山.pdf2.大豆叶片水平叶绿素含量的高光谱反射率反演模型研究_陈婉婧.pdf(红边位置与植物叶片的相关性在红边参数中相关性最好,红边斜率主要与lai相关) 3.基于多角度成像数据的大豆冠层叶绿素密度反演_张东彦.pdf 4.基于小波分析的大豆叶绿素a含量高光谱反演模型_宋开山.pdf5.小波分析在大豆叶绿素含量高光谱反演中的应用_宋开山.pdf森林:1.基于Hyperion数据的森林叶绿素含量反演_杨曦光.pdf2.基于PROSPECT_SAIL模型的森林冠层叶绿素含量反演_杨曦光.pdf3.基于叶片光谱的森林叶绿素浓度反演研究_焦全军.pdf4.森林叶片叶绿素含量反演的比较与分析_佃袁勇.caj水稻:1.水稻叶片不同光谱形式反演叶绿素含量的对比分析研究_陈君颖.pdf2.水稻叶片叶绿素含量的光谱反演研究_陈君颖.caj3.水稻叶片叶绿素含量与吸收光谱变量的相关性研究_刘子恒.pdf4.水稻高光谱特征及其生物理化参数模拟与博士估测模型研究_唐延林.caj5.利用高光谱参数预测水稻氮素状况_色素含量和籽粒蛋白含量的研究_孙雪梅.caj6.水稻高光谱特征及其生物理化参数模拟与博士估测模型研究_唐延林.caj小麦:1.基于ACRM模型不同时期冬小麦LAI和叶绿素反演研究_李宗南.caj2.基于BP和GRNN神经网络的冬小麦冠层叶绿素高光谱反演建模研究_孙焱鑫.pdf3.基于BP和GRNN神经网络的冬小麦冠层叶绿素高光谱反演建模研究_孙焱鑫.pdf4.基于SVR算法的小麦冠层叶绿素含量高光谱反演_梁亮 (1).caj5.基于高光谱数据的小麦叶绿素含量反演_赵祥.caj6.基于高光谱数据的小麦叶绿素含量反演_赵祥.caj7.用多角度光谱信息反演冬小麦叶绿素含量垂直分布_赵春江.pdf8.冬小麦花期生理形态指标与卫星遥感光谱特征的相关性分析_李卫国.pdf丁香:丁香叶片叶绿素含量偏振高光谱数学模型反演研究_韩阳.pdf棉花:基于棉花红边参数的叶绿素密度及叶面积指数的估算_黄春燕.pdf苜蓿:基于因子分析的苜蓿叶片叶绿素高光谱反演研究_肖艳芳.pdf法国梧桐:基于主成分分析和BP神经网络的法国梧桐叶绿素含量高光谱反演研究_姚付启.pdf湿地小叶章:湿地小叶章叶绿素含量的高光谱遥感估算模型_李凤秀.pdf行道树:行道树叶绿素变化的高光谱神经网络模型_刘殿伟.pdf落叶松:用高光谱数据反演健康与病害落叶松_省略__和龙两市落叶松冠层采样测量数据_石韧.pdf毛竹林:毛竹林冠层参数动态变化及高光谱遥感反演研究_陆国富.caj阔叶红松林:阔叶红松林3个主要树种垂直结构上的光合光谱研究_方晓雨.caj3叶面积叶面积指数:(leaf area index)又叫叶面积系数,是指单位土地面积上植物叶片总面积占土地面积的倍数。
植被指数总结资料

1生物量生物量:指某一时刻单位面积内实存生活的有机物质(干重)北京地区森林植被:北京地区森林植被生物量遥感反演及时空动态格局分析_张慧芳呼伦贝尔草地:基于环境减灾卫星遥感数据的呼伦贝尔草地地上生物量反演研究_陈鹏飞延庆县森林:基于SPOT5的延庆县森林生物量研究_韩冬花芦苇:基于光谱特征信息的芦苇生物量反演研究_陈爱莲根据实地测量的芦苇反射光谱数据,建立该区域芦苇的光谱数据库,提取芦苇光谱维特征参数;并以光谱维特征为依据选取卫星数据,分析卫星数据与实测芦苇光谱特征的相关性,进而应用光谱角角度匹配!光谱特征拟合!二进制编码等三种光谱匹配技术,研究卫星数据光谱与实测芦苇光谱的匹配度,提取影像的芦苇像元,作为大面积自动估算芦苇生物量的基础"水稻:1.微波遥感水稻种植面积提取_生物量反演与稻田甲烷排放模拟_张远2.水稻高光谱特征及其生物理化参数模拟与博士估测模型研究_唐延林辽东湾翅碱蓬:辽东湾双台子河口湿地翅碱蓬生物量遥感反演研究_吴涛.cajSAVI和MSAVI与LAI的关系取样框内样方所在经度、纬度及高程、样方内水深、植株高度、盖度等。
同步采集植被冠层光谱叶面积指数。
对样方内植株个体先称干重在称量湿重。
现场光谱测定与处理:使用光谱仪为ISI921VF-256便携式地物光谱辐射计采集现场光谱值。
卫星遥感和TM数据和CCD数据。
小麦:冬小麦花期生理形态指标与卫星遥感光谱特征的相关性分析_李卫国.pdf 2 叶绿素玉米:1.不同氮处理春玉米叶片光谱反射率与叶片全氮和叶绿素含量的相关研究_王磊.pdf2.基于小波分析的玉米叶绿素a与LAI高光谱反演模型研究_宋开山.pdf3.受污染胁迫玉米叶绿素含量微小变化的高光谱反演模型_王平.pdf4.夏玉米叶片全氮_叶绿素及叶面积指数的光谱响应研究_谭昌伟.pdf5.利用遥感红边参数估算夏玉米农学参数的可行性分析_谭昌伟.caj大豆:1.大豆叶绿素含量高光谱反演模型研究_宋开山.pdf2.大豆叶片水平叶绿素含量的高光谱反射率反演模型研究_陈婉婧.pdf(红边位置与植物叶片的相关性在红边参数中相关性最好,红边斜率主要与lai相关) 3.基于多角度成像数据的大豆冠层叶绿素密度反演_张东彦.pdf 4.基于小波分析的大豆叶绿素a含量高光谱反演模型_宋开山.pdf5.小波分析在大豆叶绿素含量高光谱反演中的应用_宋开山.pdf森林:1.基于Hyperion数据的森林叶绿素含量反演_杨曦光.pdf2.基于PROSPECT_SAIL模型的森林冠层叶绿素含量反演_杨曦光.pdf3.基于叶片光谱的森林叶绿素浓度反演研究_焦全军.pdf4.森林叶片叶绿素含量反演的比较与分析_佃袁勇.caj水稻:1.水稻叶片不同光谱形式反演叶绿素含量的对比分析研究_陈君颖.pdf2.水稻叶片叶绿素含量的光谱反演研究_陈君颖.caj3.水稻叶片叶绿素含量与吸收光谱变量的相关性研究_刘子恒.pdf4.水稻高光谱特征及其生物理化参数模拟与博士估测模型研究_唐延林.caj5.利用高光谱参数预测水稻氮素状况_色素含量和籽粒蛋白含量的研究_孙雪梅.caj6.水稻高光谱特征及其生物理化参数模拟与博士估测模型研究_唐延林.caj小麦:1.基于ACRM模型不同时期冬小麦LAI和叶绿素反演研究_李宗南.caj2.基于BP和GRNN神经网络的冬小麦冠层叶绿素高光谱反演建模研究_孙焱鑫.pdf3.基于BP和GRNN神经网络的冬小麦冠层叶绿素高光谱反演建模研究_孙焱鑫.pdf4.基于SVR算法的小麦冠层叶绿素含量高光谱反演_梁亮 (1).caj5.基于高光谱数据的小麦叶绿素含量反演_赵祥.caj6.基于高光谱数据的小麦叶绿素含量反演_赵祥.caj7.用多角度光谱信息反演冬小麦叶绿素含量垂直分布_赵春江.pdf8.冬小麦花期生理形态指标与卫星遥感光谱特征的相关性分析_李卫国.pdf丁香:丁香叶片叶绿素含量偏振高光谱数学模型反演研究_韩阳.pdf棉花:基于棉花红边参数的叶绿素密度及叶面积指数的估算_黄春燕.pdf苜蓿:基于因子分析的苜蓿叶片叶绿素高光谱反演研究_肖艳芳.pdf法国梧桐:基于主成分分析和BP神经网络的法国梧桐叶绿素含量高光谱反演研究_姚付启.pdf湿地小叶章:湿地小叶章叶绿素含量的高光谱遥感估算模型_李凤秀.pdf行道树:行道树叶绿素变化的高光谱神经网络模型_刘殿伟.pdf落叶松:用高光谱数据反演健康与病害落叶松_省略__和龙两市落叶松冠层采样测量数据_石韧.pdf毛竹林:毛竹林冠层参数动态变化及高光谱遥感反演研究_陆国富.caj阔叶红松林:阔叶红松林3个主要树种垂直结构上的光合光谱研究_方晓雨.caj3叶面积叶面积指数:(leaf area index)又叫叶面积系数,是指单位土地面积上植物叶片总面积占土地面积的倍数。
ENVI中常见植被指数介绍

作业9 植被指数植被指数概念:利用卫星不同波段探测数据组合而成的,能反映植物生长状况的指数。
植物叶面在可见光红光波段有很强的吸收特性,在近红外波段有很强的反射特性,这是植被遥感监测的物理基础,通过这两个波段测值的不同组合可得到不同的植被指数。
不同的植被覆盖类型可以通过其特有的光谱特征进行区分,这是由于叶绿素在红波段内对太阳辐射的吸收以及叶片细胞结构对红外波段内太阳辐射的强反射。
Broadband Greenness(5 indices)(宽带绿色指标(5))宽带绿度指数可以简单度量绿色植被的数量和生长状况,它对植物的叶绿素含量、叶子表面冠层、冠层结构比较敏感,这些都是植被光合作用的主要物质,与光合有效辐射(fAPAR)也有关系。
宽带绿度指数常用于植被物候发育的研究,土地利用和气候影响评估,植被生产力建模等。
宽带绿度指数选择的波段范围在可见光和近红外,一般的多光谱都包含这些波段。
下面的公式中规定波段的中心波长:ρNIR=800nm,ρRED=680nm,ρBLUE=450nm。
1. Normalized Difference Vegetation Index归一化植被指数增强在近红外波段范围绿叶的散射与红波段范围叶绿素的吸收差异。
简称NDVI: NDVI=(NIR-R)/(NIR+R)(1)应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等;(2)-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;(3)NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。
对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI 对高植被区具有较低的灵敏度;(4)NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关;2.Simple Ratio Index比值植被指数在近红外波段范围绿叶的散射与红波段范围叶绿素吸收的比值。
几种常用植被指数介绍

对几种常用植被指数的认识植被指数主要反映植被在可见光、近红外波段反射与土壤背景之间差异的指标,各个植被指数在一定条件下能用来定量说明植被的生长状况。
在学习和使用植被指数时必须由一些基本的认识:1、健康的绿色植被在NIR和R的反射差异比较大,原因在于R对于绿色植物来说是强吸收的,NIR则是高反射高透射的;2、建立植被指数的目的是有效地综合各有关的光谱信号,增强植被信息,减少非植被信息3、植被指数有明显的地域性和时效性,受植被本身、环境、大气等条件的影响一、RVI——比值植被指数:RVI=NIR/R,或两个波段反射率的比值。
1、绿色健康植被覆盖地区的RVI远大于1,而无植被覆盖的地面(裸土、人工建筑、水体、植被枯死或严重虫害)的RVI在1附近。
植被的RVI通常大于2;2、RVI是绿色植物的灵敏指示参数,与LAI、叶干生物量(DM)、叶绿素含量相关性高,可用于检测和估算植物生物量;3、植被覆盖度影响RVI,当植被覆盖度较高时,RVI对植被十分敏感;当植被覆盖度<50%时,这种敏感性显著降低;~4、RVI受大气条件影响,大气效应大大降低对植被检测的灵敏度,所以在计算前需要进行大气校正,或用反射率计算RVI。
二、NDVI——归一化植被指数:NDVI=(NIR-R)/(NIR+R),或两个波段反射率的计算。
1、NDVI的应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等;2、-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;3、NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。
对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI对高植被区具有较低的灵敏度;4、NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关;三、DVI\EVI——差值\环境植被指数:DVI=NIR-R,或两个波段反射率的计算。
植被指数整理介绍

植被指数介绍目录1. 植被指数概述 (3)2. 植被指数的分类 (3)不考虑影响因子 (3)考虑影响因子 (4)消除土壤因子 (4)消除大气因子 (4)消除综合因子 (5)3. 植被指数的应用 (5)生态 (5)林业 (7)农业 (9)环境 (10)海洋 (11)参考文献 (12)1.植被指数概述植被指数是用不同波段的植被-土壤系统的反射率因子以一定形式组合成的参数,它与植被特征参数间的函数联系比单一波段值更稳定、可靠[1]。
从物理意义上看,植被指数是利用绿色植被的反射光谱特征:在红光波段的吸收和在近红外波段的高反射之间的差异,来达到区分绿色植物与其他地物的目的。
由于植被-土壤系统是一个复杂的非朗伯体系,它的反射率因子受到各种因素的影响,因此,对于任何单一波段反射率,都会因任一个因素的变化而导致巨大变化,但当同时应用两个或多个波段时,就可以部分消除某因素带来的影响,还可以应用植被指数的某种形式最大限度地抑制土壤背景信息,突出植被信息。
植被指数涉及的应用领域各异,用途广泛。
它可用来诊断植被一系列生物物理参数:叶面积指数(LAI)、植被覆盖率、生物量等;又可用来分析植被生长过程:净初级生产力(NPP)和蒸腾等,在应用时要根据不同的实际情况选用。
而且植被光谱表现为植被、土壤亮度、环境影响、阴影、土壤颜色和湿度的复杂混合反应,所以植被指数的影响因子很多,具体使用时应适时修正。
2.植被指数的分类基于各种应用目的和应用情况,发展了许多不同的植被指数,这些指数都有各自的优缺点和适用条件,针对不同的应用需求,对影响因子的消除程度要求也不同。
按照是否考虑影响因子将植被指数分成两大类。
不考虑影响因子植被指数最早的发展是为了估算和监测植被覆盖,不考虑任何影响因子,简单地将波段进行线性组合或比值,基于经验方法发展了比值植被指数RVI和针对Landsat?MSS特定遥感图像的土壤亮度指数SBI、绿度植被指数GVI、黄度植被指数YVI。
ENVI中常见植被指数介绍

作业9 植被指数植被指数概念:利用卫星不同波段探测数据组合而成的,能反映植物生长状况的指数。
植物叶面在可见光红光波段有很强的吸收特性,在近红外波段有很强的反射特性,这是植被遥感监测的物理基础,通过这两个波段测值的不同组合可得到不同的植被指数。
不同的植被覆盖类型可以通过其特有的光谱特征进行区分,这是由于叶绿素在红波段内对太阳辐射的吸收以及叶片细胞结构对红外波段内太阳辐射的强反射。
Broadband Greenness(5 indices)(宽带绿色指标(5))宽带绿度指数可以简单度量绿色植被的数量和生长状况,它对植物的叶绿素含量、叶子表面冠层、冠层结构比较敏感,这些都是植被光合作用的主要物质,与光合有效辐射(fAPAR)也有关系。
宽带绿度指数常用于植被物候发育的研究,土地利用和气候影响评估,植被生产力建模等。
宽带绿度指数选择的波段范围在可见光和近红外,一般的多光谱都包含这些波段。
下面的公式中规定波段的中心波长:ρNIR=800nm,ρRED=680nm,ρBLUE=450nm。
1. Normalized Difference Vegetation Index归一化植被指数增强在近红外波段范围绿叶的散射与红波段范围叶绿素的吸收差异。
简称NDVI: NDVI=(NIR-R)/(NIR+R)(1)应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等;(2)-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;(3)NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。
对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI 对高植被区具有较低的灵敏度;(4)NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关;2.Simple Ratio Index比值植被指数在近红外波段范围绿叶的散射与红波段范围叶绿素吸收的比值。
ENVI中常见植被指数介绍
作业9 植被指数植被指数概念:利用卫星不同波段探测数据组合而成的,能反映植物生长状况的指数。
植物叶面在可见光红光波段有很强的吸收特性,在近红外波段有很强的反射特性,这是植被遥感监测的物理基础,通过这两个波段测值的不同组合可得到不同的植被指数。
不同的植被覆盖类型可以通过其特有的光谱特征进行区分,这是由于叶绿素在红波段内对太阳辐射的吸收以及叶片细胞结构对红外波段内太阳辐射的强反射。
Broadband Greenness(5 indices)(宽带绿色指标(5))宽带绿度指数可以简单度量绿色植被的数量和生长状况,它对植物的叶绿素含量、叶子表面冠层、冠层结构比较敏感,这些都是植被光合作用的主要物质,与光合有效辐射(fAPAR)也有关系。
宽带绿度指数常用于植被物候发育的研究,土地利用和气候影响评估,植被生产力建模等。
宽带绿度指数选择的波段范围在可见光和近红外,一般的多光谱都包含这些波段。
下面的公式中规定波段的中心波长:ρNIR=800nm,ρRED=680nm,ρBLUE=450nm。
1. Normalized Difference Vegetation Index归一化植被指数增强在近红外波段范围绿叶的散射与红波段范围叶绿素的吸收差异。
简称NDVI: NDVI=(NIR-R)/(NIR+R)(1)应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等;(2)-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;(3)NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。
对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI 对高植被区具有较低的灵敏度;(4)NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关;2.Simple Ratio Index比值植被指数在近红外波段范围绿叶的散射与红波段范围叶绿素吸收的比值。
几种常用植被指数介绍
几种常用植被指数介绍植被指数是通过遥感技术获取的植被信息量化指标,包括植被覆盖度、生长状态、植被类型等信息,广泛应用于土地利用、资源管理、环境监测等领域。
在本文中,将介绍几种常用的植被指数,包括归一化植被指数(NDVI)、广域植被指数(EVI)、归一化差值水体指数(NDWI)、颜色指数(CI)、土地覆盖指数(LCI)等。
1. 归一化植被指数(NDVI)归一化植被指数(Normalized Difference Vegetation Index,NDVI)是最早被广泛应用的植被指数,由罗浮(Rouse)等人于1974年提出。
它以红光波段和近红外波段的反射率之差的比值来度量植被状况,公式为:NDVI = (NIR - RED) / (NIR + RED)其中,NIR为近红外波段的反射率,RED为红光波段的反射率。
NDVI取值范围为-1到1之间,数值越大代表植被覆盖度越高,生长状况越好。
广域植被指数(Enhanced Vegetation Index,EVI)是对NDVI的一种改进,由胡侃(Huete)等人于1994年提出。
EVI在NDVI的基础上增加了大气校正、背景亮度校正等,公式为:其中,NIR、RED和BLUE分别为近红外波段、红光波段和蓝光波段的反射率。
EVI相比NDVI具有更好的大气校正能力和对土壤、雪等因素的较好抵抗能力,能够更准确地反映植被状况。
其中,Green为绿光波段的反射率。
NDWI值越低代表水体覆盖度越高,可以用于监测水体的位置和面积变化,以及水资源的管理和保护。
4. 颜色指数(CI)颜色指数(Color Index,CI)是一种基于色彩特征的植被指数,由Stiles于1954年提出。
它使用波段之间的差值来计算颜色特征,公式为:其中,GREEN、RED和BLUE分别为绿光波段、红光波段和蓝光波段的反射率。
CI能够反映植被的颜色特征,可以用于识别植被类型、估算植被生物量等。
土地覆盖指数(Land Cover Index,LCI)是一种基于土地覆盖类型的指数,由Gao和Ji于2008年提出。
植被指数
DVI=NIR-R,或两个波段反射率的计算。 1.对土壤背景的变化极为敏感 SAVITSAVIMSAVI——调整土壤亮度的植被指数:SAVI=((NIR-R)/(NIR+R+L))(1+L),或两个波段反射率的计算。 1.目的是解释背景的光学特征变化并修正NDVI对土壤背景的敏感。与NDVI相比,增加了根据实际情况确定的土壤调节系数L,取值范围0~1。L=0 时,表示植被覆盖度为零;L=1时,表示土壤背景的影响为零,即植被覆盖度非常高,土壤背景的影响为零,这种情况只有在被树冠浓密的高大树木覆盖的地方才会出现。 2.SAVI仅在土壤线参数a=1,b=0(即非常理想的状态下)时才适用。因此有了TSAVI、ATSAVI、MSAVI、SAVI2、SAVI3、SAVI4等改进模型。 小结:上述几种VI均受土壤背景的影响大。植被非完全覆盖时,土壤背景影响较大
编辑本段GVI——绿度植被指数
k-t变换后表示绿度的分量。 1.通过k-t变换使植被与土壤的光谱特性分离。植被生长过程的光谱图形呈所谓的"穗帽"状,而土壤光谱构成一条土壤亮度线,土壤的含水量、有机质含量、粒度大小、矿物成分、表面粗糙度等特征的光谱变化沿土壤亮度线方向产生。 2.kt变换后得到的第一个分量表示土壤亮度,第二个分量表示绿度,第三个分量随传感器不同而表达不同的含义。如,MSS的第三个分量表示黄度,没有确定的意义;TM的第三个分量表示湿度。 3.第一二分量集中了>95%的信息,这两个分量构成的二位图可以很好地反映出植被和土壤光谱特征的差异。 4.GVI是各波段辐射亮度值的加权和,而辐射亮度是大气辐射、太阳辐射、环境辐射的综合结果,所以GVI受外界条件影响大。
利用卫星不同波段探测数据组合而成的,能反映植物生长状况的指数。植物叶面在可见光红光波段有很强的吸收特性,在近红外波段有很强的反射特性,这是植被遥感监测的物理基础,通过这两个波段测值的不同组合可得到不同的植被指数。差值植被指数又称农业植被指数,为二通道反射率之差,它对土壤背景变化敏感,能较好地识别植被和水体。
常用的植被指数
常用的植被指数植被指数(Vegetation Index)是指用来反映植被生长状态和活力的一种指标,常用于遥感数据的处理和分析中。
下面将介绍常用的植被指数,并解释其作用和适用情况。
1. 归一化植被指数(Normalized Difference Vegetation Index,NDVI)NDVI 是最早也是最常用的植被指数,其计算公式为 (NIR – Red) / (NIR + Red),其中 NIR 表示近红外波段信号,Red 表示红色波段信号。
NDVI 的值范围为 -1 到 1,通常植被覆盖度高的地方 NDVI 值会更高。
NDVI 可以用来监测植被的生长周期和健康状况,评估土地的退化程度以及判断干旱和洪涝等自然灾害的影响。
2. 归一化水体指数(Normalized Difference Water Index,NDWI)NDWI 是用来区分水体和非水体的指数,其计算公式为 (Green –NIR) / (Green + NIR),其中 Green 表示绿色波段信号。
NDWI 的值范围为 -1 到 1,如果某像素的 NDWI 值高于某个阈值,就被认为是水体;反之,就被认为是非水体。
NDWI 可以用来监测湖泊、河流、水库等水体的分布和变化情况。
3. 红边指数(Red Edge Index,REI)REI 是用来检测植被叶绿素含量和水分含量的指数,其计算公式为 (NIR – Red Edge) / (NIR + Red Edge),其中 Red Edge 表示红边波段信号。
REI 的值范围为 -1 到 1,通常植被叶绿素含量高或水分含量高的地方 REI 值会更高。
REI 可以用来区分植被类型、监测植被健康状况以及评估土地干旱程度等。
4. 植被指数差分(Vegetation Index Difference,VID)VID 是用来监测植被健康状况和生长变化的指数,其计算公式为VID = (VI1 – VI2) / (VI1 + VI2),其中 VI1 和 VI2 分别表示两个不同时期的植被指数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载植被指数整理介绍地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容植被指数介绍目录TOC \o "1-3" \h \z \u HYPERLINK \l "_Toc408667889" 1. 植被指数概述 PAGEREF _Toc408667889 \h 3HYPERLINK \l "_Toc408667890" 2. 植被指数的分类 PAGEREF _Toc408667890 \h 3HYPERLINK \l "_Toc408667891" 2.1不考虑影响因子 PAGEREF_Toc408667891 \h 3HYPERLINK \l "_Toc408667892" 2.2考虑影响因子 PAGEREF_Toc408667892 \h 4HYPERLINK \l "_Toc408667893" 2.2.1 消除土壤因子 PAGEREF _Toc408667893 \h 4HYPERLINK \l "_Toc408667894" 2.2.2 消除大气因子 PAGEREF _Toc408667894 \h 4HYPERLINK \l "_Toc408667895" 2.2.3 消除综合因子 PAGEREF _Toc408667895 \h 5HYPERLINK \l "_Toc408667896" 3. 植被指数的应用 PAGEREF _Toc408667896 \h 5HYPERLINK \l "_Toc408667897" 3.1生态 PAGEREF_Toc408667897 \h 5HYPERLINK \l "_Toc408667898" 3.2林业 PAGEREF_Toc408667898 \h 7HYPERLINK \l "_Toc408667899" 3.3农业 PAGEREF_Toc408667899 \h 9HYPERLINK \l "_Toc408667900" 3.4环境 PAGEREF_Toc408667900 \h 10HYPERLINK \l "_Toc408667901" 3.5海洋 PAGEREF_Toc408667901 \h 11HYPERLINK \l "_Toc408667902" 参考文献 PAGEREF_Toc408667902 \h 12植被指数概述植被指数是用不同波段的植被-土壤系统的反射率因子以一定形式组合成的参数,它与植被特征参数间的函数联系比单一波段值更稳定、可靠[1]。
从物理意义上看,植被指数是利用绿色植被的反射光谱特征:在红光波段的吸收和在近红外波段的高反射之间的差异,来达到区分绿色植物与其他地物的目的。
由于植被-土壤系统是一个复杂的非朗伯体系,它的反射率因子受到各种因素的影响,因此,对于任何单一波段反射率,都会因任一个因素的变化而导致巨大变化,但当同时应用两个或多个波段时,就可以部分消除某因素带来的影响,还可以应用植被指数的某种形式最大限度地抑制土壤背景信息,突出植被信息。
植被指数涉及的应用领域各异,用途广泛。
它可用来诊断植被一系列生物物理参数:叶面积指数(LAI)、植被覆盖率、生物量等;又可用来分析植被生长过程:净初级生产力(NPP)和蒸腾等,在应用时要根据不同的实际情况选用。
而且植被光谱表现为植被、土壤亮度、环境影响、阴影、土壤颜色和湿度的复杂混合反应,所以植被指数的影响因子很多,具体使用时应适时修正。
植被指数的分类基于各种应用目的和应用情况,发展了许多不同的植被指数,这些指数都有各自的优缺点和适用条件,针对不同的应用需求,对影响因子的消除程度要求也不同。
按照是否考虑影响因子将植被指数分成两大类。
2.1不考虑影响因子植被指数最早的发展是为了估算和监测植被覆盖,不考虑任何影响因子,简单地将波段进行线性组合或比值,基于经验方法发展了比值植被指数RVI和针对Landsat MSS特定遥感图像的土壤亮度指数SBI、绿度植被指数GVI、黄度植被指数YVI。
比值植被指数RVI[2]是最先发展的植被指数,它处理方法简单,能较好地反映植被的覆盖度和生长状况的差异,但是应用的受到植被覆盖度的限制,只有在植被覆盖浓密的情况下效果最好,当植被覆盖不够浓密时(小于50%),它的分辨能力很弱,这一点与NDVI恰好相反。
而且它受大气影响较大,对土壤背景亮度敏感。
由RVI生成的植被指数图像与NDVI生成的相比,RVI信息量更丰富,总体图像的亮度值较低。
土壤亮度指数SBI、绿度植被指数GVI、黄度植被指数YVI[3]是将遥感图像进行缨帽变换,使植被与土壤的光谱特性分离。
变换后得到的图像第一分量表示土壤亮度,第二分量表示绿度,这两个分量集中了>95%的信息,构成的二位图可以很好的反映出植被和土壤光谱特征的差异。
但GVI是各波段辐射亮度值的加权和,而辐射亮度是大气辐射、太阳辐射、环境辐射的综合结果,所以GVI受外界条件影响大。
2.2考虑影响因子针对波段简单线性组合的植被指数的局限性,以及在实际应用中的需要,后来又发展了许许多多消除影响因子的植被指数,这些大都基于物理知识,将大气、植被覆盖和土壤背景的影响结合在一起考虑,并通过数学和物理及逻辑经验以及通过模拟将原植被指数不断改进。
大致可以进一步分成三类:考虑土壤因子、大气因子和综合影响因子[4]。
2.2.1 消除土壤因子由于植被-土壤是一个系统,土壤的信息往往会对植被信息产生干扰,所以土壤是首先考虑的要消除的影响因子。
垂直植被指数PVI[3]是基于土壤线理论发展的,是在R、NIR二维数据中对GVI的模拟,两者物理意义相似。
与RVI相同的是,在植被覆盖浓密的情况下应用最好,又比RVI更好地滤除了土壤亮度的影响,对大气效应的敏感程度也小于其它植被指数,但它消除土壤背景信息的能力有限,会随LAI的增加而减弱。
土壤调节植被指数SAVI[5]在土壤线理论基础上引入了土壤亮度指数L,建立了一个可适当描述土壤——植被系统的简单模型。
L的取值取决于植被的密度,由等LAI和土壤线的交点产生。
这个指数进一步降低了土壤背景的影响,减少了土壤和植被冠层背景的双层干扰。
但L1,L2会随 LAI的增加而减小,很难获得实时的适合的准确参数值 L,应用困难,而且可能丢失部分背景信息,导致植被指数偏低。
对于植被信息提取的精度比NDVI高,能修正NDVI对土壤背景的敏感。
但对于林地、耕地和园地等不同地表覆被类型空间分布信息的总体提取,NDVI效果优于SAVI。
基于难以获得实时准确的土壤亮度指数L,对SAVI进行转换后发展了转换型土壤调整植被指数TSAVI[6],它只需要求得土壤线的截距和斜率,适合于求解某一小范围植被覆盖变化较小的下垫面上的植被指数,对土壤背景的消除能力有所改善。
而且考虑了裸土土壤线,比NDVI对于低植被覆盖有更好的指示作用,兼顾了低LAI时PVI和高LAI时RVI的优点。
但指数的动态范围较小,求解时必须预先已知下垫面植被密度或覆盖度的分布特征,对实际应用的条件要求较高。
为减小SAVI中裸土的影响,发展了修正的土壤调节植被指数MSAVI[7],它的L值可以随植被密度而自动调节,进一步减少了土壤背景影响,使植被信息与土壤噪音之比更大,可以用于研究荒漠区的植被。
2.2.2 消除大气因子大气层对遥感图像的影响很大,在计算植被指数时同样要消除它的影响。
根据大气对红光通道的影响比近红外通道大得多的特点,在定义NDVI时通过蓝光和红光通道的辐射差别修正红光通道的辐射值,发展了抗大气植被指数ARVI[8],它定义了一个决定大气调节程度的关键参数γ,γ取决于气溶胶的类型。
Kanfman推荐的γ为常数1仅能消除某些尺寸气溶胶的影响,有很大局限性。
对大气的敏感性比NDVI约减小4倍,减小了大气气溶胶引起的大气散射对红的波段的影响。
ARVI要先通过辐射传输方程的预处理来消除分子和臭氧的作用,进行预处理时需要输入的大气实况参数往往是难以得到的,给应用带来困难。
由于预先的分子散射和臭氧订正较复杂,在ARVI的基础上,得到新的抗大气影响植被指数IAVI[9],它是运用大气下向光谱的同步观测实例值以及大气辐射传输方程,得到纠正NDVI的关键参数γ,使γ值可从0.65~1.21之间变化,同时也不必采用辐射传输模型进行预处理。
使得大气对IAVI影响误差为0.4%~3.7%,比NDVI的14%~31%有明显的减小。
为了发展一个植被指数能适用于全球范围,且在相当长的时间间隔上具有可比性,Pinty等对AVHRR数据进行了自纠正处理,提出了全球环境监测植被指数GEMI[10],它不用改变植被信息就可以减小大气影响,能很好地分离云和陆地表面。
但GEMI受到裸土的亮度和颜色相当大的影响,对于稀疏或中密度植被覆盖不太适用,而且很难区分水生植被与陆地表面,动态分辨率也比较低。
与NDVI指数相比,GEMI保存了相对低密度至浓密度覆盖更大的动态范围,区分植被与非植被之间差异程度比NDVI高。
2.2.3 消除综合因子归一化差值植被指数NDVI[11]是在对RVI非线性归一化处理后得到的,用非线性拉伸的方式增强了NIR和R反射率的对比度,会发现对于同一幅图像,分别求 HYPERLINK "/view/4761962.htm" \t"_blank" RVI 和NDVI时,RVI值增加的速度高于NDVI增加速度。
对绿色植被表现敏感,对植被的响应能力增强,适合于稀疏植被条件下。
它可以对农作物和半干旱地区降水量进行预测,是目前应用最广泛的植被指数。
但它受到定标和仪器特性、大气、土壤及叶冠背景等因素影响,使其应用受到限制;由于同时考虑到多个影响因子,消除效果都不是很好,对植被冠层的背景亮度非常敏感, 很难消除大气效应,还具有容易饱和的缺陷。
基于土壤和大气的影响是相互作用的事实,提出了一种三波段梯度差植被指数TGDVI[12],它具有一定的消除背景和薄云影响的能力,解决了NDVI在高植被覆盖区饱和点低的问题。
但在计算植被覆盖度时没有考虑植被、土壤面积比随波长的变化情况,与实际情况存在差异,此外TGDVI用到三个波段的信息,且没有经过比值处理,波段噪声的影响会较大。