北师版九年级数学上册 第一学期期中测试卷及答案
北师大版九年级上册数学期中考试试题及答案

北师大版九年级上册数学期中考试试卷一、单选题1.下列方程是一元二次方程的是()A.3(x+1)2=-2(x+1)B.2x2-3x=2(x-1)2C.ax2+bx+c=0D.94+x-2=02.一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断3.用配方法解方程y2-94y-1=0,正确的是()A.(y-94)2=134,y=94B.(y-32)2=134,y=32C.(y-32)2=134,y=32D.(y-98)2=14564,y=984.如图,下列条件能使平行四边形ABCD是菱形的为()①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.A.①③B.②③C.③④D.①5.下列命题中错误的是()A.平行四边形的对边相等B.对角线相等的四边形是矩形C.矩形的对角线相等D.两组对边分别相等的四边形是平行四边形6.根据下列表格的对应值:x… 6.17 6.18 6.19 6.20…ax2+bx+c…-0.02-0.010.010.04…判断方程ax2+bx+c=0(a≠0,a,b,c为常数)一个解x的取值范围是()A.6<x<6.17B.6.17<x<6.18C.6.18<x<6.19D.6.19<x<6.207.若关于x的方程x2﹣x+a=0有实根,则a的值可以是()A.2B.1C.0.5D.0.258.如图,在菱形ABCD中,∠BAD=120°,已知ΔABC的周长是15,则菱形ABCD的周长是()A.10B.15C.20D.309.如图,矩形纸片ABCD,长AD=9m,宽AB=3cm,将其折叠,使点D与点B重合,那么折叠后DE的长为()A.7cm B.6cm C.5.5cm D.5cm10.如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF 沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N,有下列四个结论:①DF=CF;DEF,其中,将正确结论的序号全部选②BF⊥EN;③△BEN是等边三角形;④S△BEF=3S△对的是()A.①②③B.①②④C.②③④D.①②③④二、填空题11.一个口袋中有3个红球、7个白球,这些球除颜色外都相同,从口袋中随机摸出一个球,这个球是白球的概率是_______.12.某种水果的原价为15元/箱,经过连续两次增长后的售价为30元/箱.设平均每次增长的百分率为x ,根据题意列方程是________.13.若关于x 的一元二次方程x 2-mx-n=0有一个根是2,则2m+n=_______.14.已知方程(x-3)(x+m )=0与方程x 2-2x-3=0的解完全相同,则m=______.15.一个三角形的两边长分别为3和6,第三边的长是方程()()240x x --=的一个根,则这个三角形的周长是__________.16.如图,在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条宽度相等的金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm ,则可列方程为____.17.如图,正方形ABCD 中,AB=6,G 是BC 的中点.将△ABG 沿AG 对折至△AFG ,延长GF 交DC 于点E ,则DE 的长是___.18.M 为矩形ABCD 中AD 的中点,P 为BC 上一点,PE ⊥MC ,PF ⊥MB ,当AB 、BC 满足_________时,四边形PEMF 为矩形.三、解答题19.解方程:(用适当的方法解方程)(1)解方程:x 2﹣6x+2=0.(2)(2x+5)-3x (2x+5)=020.列方程解应用题某商场销售一批名牌衬衫,平均每天销售出20件,每件盈利40元,为了扩大销售,增加利润,尽快减少库存,商场决定采取降价措施.经调查发现,如果衬衫每降价5元,商场平均每天就可多售出10件.(1)如果衬衫每降价4元,则商场平均每天可盈利多少元?(2)若商场平均每天要想盈利1200元,每件衬衫应降价多少元?21.已知关于x的一元二次方程3x2+ax-2=0.(1)若该方程的一个根为-2,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程总有两个不相等的实数根.22.如图,在正方形ABCD中,E为CD上点,F为BC延长线上一点,CE=CF,(1)猜想线段BE与DF的关系,并证明你的结论.(2)连接EF,若∠BED=120°,求∠EFD的度数.23.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,垂足为F,交直线MN于E,连接CD,BE.(1)求证:CE=AD;(2)当D为AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)在满足(2)的条件下,当△ABC满足什么条件时,四边形BECD是正方形?(不必说明理由)24.如图,已知AB∥DE,AB=DE,AC=FD,∠CEF=90°.(1)求证:△ABF≌△DEC;(2)求证:四边形BCEF是矩形.25.校园空地上有一面墙,长度为20m,用长为32m的篱笆和这面墙围成一个矩形花圃,如图所示.(1)能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.(2)若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.26.(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE,求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.参考答案1.A【解析】【分析】根据一元二次方程的定义,必须满足四个条件:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数,据此将选项中的方程化成一般形式后,再判断即可.【详解】解:∵方程()()23121x x +=-+化简后得:23850x x ++=,∴是一元二次方程;方程()222321x x x -=-化简后得:20x -=,∴是一元一次方程;∵方程20ax bx c ++=中,当0a =时,∴是一元一次方程;∵方程9420x +-=化简后得:104x +=,∴是一元一次方程;综上所述,只有A 选项是一元二次方程;故选:A .【点睛】本题考查了一元二次方程的判别式,熟悉相关定义,将方程化成一般式,是解题的关键.2.B【解析】【分析】把a=1,b=-2,c=1代入△=b 2-4ac ,然后计算△,最后根据计算结果判断方程根的情况.【详解】解:∵a=1,b=-2,c=1,∴△=b 2-4ac=(-2)2-4×1×1=0,∴方程有两个相等的实数根.故选B .【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0,a ,b ,c 为常数)的根的判别式△=b 2-4ac .当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3.D【解析】【分析】方程常数项移到右边,两边加上一次项系数一半的平方,变形后开方即可求出解.【详解】解:y 2-94y-1=0,方程移项得:y 2-94y=1,配方得:y 2-94y+8164=1+8164,即(y-98)2=14564,则y-98=±8∴y=98±8,故选:D .【点睛】此题考查了解一元二次方程−配方法,熟练掌握完全平方公式是解本题的关键.4.A【解析】【分析】根据菱形的判定定理以及所给条件证明平行四边形ABCD 是菱形,菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形.据此判断即可.【详解】解:①▱ABCD 中,AC ⊥BD ,根据对角线互相垂直的平行四边形是菱形,即可判定▱ABCD 是菱形;故①正确;②▱ABCD 中,∠BAD =90°,根据有一个角是直角的平行四边形是矩形,即可判定▱ABCD 是矩形,而不能判定▱ABCD 是菱形;故②错误;③▱ABCD 中,AB =BC ,根据一组邻边相等的平行四边形是菱形,即可判定▱ABCD 是菱形;故③正确;④▱ABCD 中,AC =BD ,根据对角线相等的平行四边形是矩形,即可判定▱ABCD 是矩形,而不能判定▱ABCD 是菱形;故④错误.故正确的为①③故选:A .【点睛】此题考查了菱形的判定与矩形的判定定理.此题难度不大,注意掌握菱形的判定定理是解此题的关键.5.B【解析】【分析】根据平行四边形的性质和判定、矩形的性质和判定逐个判断即可求解.【详解】解:平行四边形的对边相等,故A 正确;对角线相等的四边形不一定是矩形,也可能是等腰梯形,故B 错误;矩形的对角线相等,故C 正确;两组对边分别相等的四边形是平行四边形,故D 正确.故选:B .【点睛】本题考查了平行四边形的性质和判定、矩形的性质和判定,熟练掌握各知识点是解题的关键.6.C【解析】【分析】根据在6.18和6.19之间有一个值能使ax 2+bx+c 的值为0,于是可判断方程ax 2+bx+c=0一个解x 的范围.【详解】解:由2y ax bx c =++,得 6.17x >时y 随x 的增大而增大,得 6.18x =时,0.01y =-,6.19x =时,0.01y =,∴20ax bx c ++=的一个解x 的取值范围是6.18 6.19x <<,故选:C .【点睛】本题考查了估算一元二次方程的近似解,解答此题的关键是利用函数的增减性.7.D【解析】【详解】∵关于x 的方程式x 2﹣x+a=0有实根,∴△=(﹣1)2﹣4a≥0,解得a≤0.25.故选D .8.C【解析】【分析】依题意,依据菱形对角线的性质可得,菱形ABCD 中,AC 平分角120BAD ∠=︒,然后可知ABC ∆为等边三角形,可得5AB =,即可求解;【详解】解:由题知,在菱形ABCD 中,AB BC CD AD ===,AC 为菱形的对角线,依据菱形对角线的性质可得,AC 平分角BAD ∠,∴60BAC ∠=︒;又AB BC CD AD ===,∴ABC ∆为等边三角形,又因为ABC ∆的周长为15;∴5AB BC AC ===;∴菱形ABCD 的周长为:20;故选:C【点睛】本题主要考查菱形的基本性质,属于基础性应用,关键在结合三角形的性质进行实际计算;9.D【解析】【分析】由矩形的性质和折叠的性质以及勾股定理得出方程,解方程即可.【详解】由折叠的性质得:BE=DE,设DE长为xcm,则AE=(9﹣x)cm,BE=xcm,∵四边形ABCD是矩形,∴∠A=90°,根据勾股定理得:AE2+AB2=BE2,即(9﹣x)2+32=x2,解得:x=5,即DE长为5cm,故选:D.【点睛】此题考查矩形的性质,翻折变换,勾股定理;熟练掌握矩形和翻折变换的性质,运用勾股定理进行计算是解题的关键.10.B【解析】【分析】根据矩形与折叠性质得出DF=MF,根据角平分线性质得出CF=MF,可判断①,利用等角余角性质得出∠BFM=∠BFC,再证∠BFE=∠BFN即可判断②,证明△DEF≌△CNF可判断③,推出BM=3EM即可判断④.【详解】解:∵四边形ABCD是矩形,∴∠D=∠BCD=90°,由折叠的性质可得:∠EMF=∠D=90°,即FM⊥BE,CF⊥BC,DF=MF.∵BF平分∠EBC,∴CF=MF.∴DF=CF.故①正确,符合题意.∵∠BFM=90°﹣∠EBF,∠BFC=90°﹣∠CBF,∴∠BFM=∠BFC.∵∠MFE=∠DFE=∠CFN,∴∠BFE=∠BFN.∵∠BFE+∠BFN=180°,∴∠BFE=90°,即BF⊥EN.故②正确,符合题意.∵在△DEF和△CNF中,易由ASA得△DEF≌△CNF,∴EF=FN.∴BE=BN.但无法求得△BEN各角的度数,∴△BEN不一定是等边三角形.故③错误,不符合题意.∵∠BEM=∠BFC,BM⊥FM,BC⊥CF,∴BM=BC=AD=2DE=2EM.∴BM=3EM.∴S△BE F=3S△EMF=3S△DEF.故④正确,符合题意.综上所述,正确的结论是①②④.故选B.【点睛】本题考查矩形性质,角平分线性质,线段中点,折叠性质,三角形全等判定与性质,掌握矩形性质,角平分线性质,线段中点,折叠性质,三角形全等判定与性质是解题关键.11.7 10【解析】【分析】由一个口袋中有3个红球,7个白球,这些球除色外都相同,直接利用概率公式求解即可求得答案.【详解】解:∵一个口袋中有3个红球,7个白球,这些球除色外都相同,∴从口袋中随机摸出一个球,这个球是白球的概率是:77 3710=+,故答案为:710.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.12.()215130x +=【解析】【分析】设平均每次涨价的百分率为x ,利用经过两次涨价后的价格=原价(1⨯+涨价的百分率)2,即可得出关于x 的一元二次方程,据此求解即可.【详解】解:设平均每次涨价的百分率为x ,依题意得:()215130x +=.故答案为:()215130x +=.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.13.4【解析】【分析】根据一元二次方程的解的定义把2x =代入20x mx n --=得到420m n --=得24m n +=,然后利用整体代入的方法进行计算.【详解】把2x =代入方程20x mx n --=得:420m n --=,即24m n +=,故答案为:4.【点睛】本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.14.1【解析】【分析】利用因式分解法把方程x2-2x-3=0变形,根据解完全相同可求m值.【详解】解:把方程x2-2x-3=0左边因式分解得,(x-3)(x+1)=0,∵方程(x-3)(x+m)=0与方程x2-2x-3=0的解完全相同,∴m=1,故答案为:1.【点睛】本题考查了一元二次方程的解法,解题关键是熟练运用因式分解法解方程.15.13【解析】【分析】解方程(x-4)(x-2)=0,根据三角形三边的关系得到三角形第三边的长为4,然后计算三角形的周长.【详解】解:(x-4)(x-2)=0,x-4=0或x-2=0,所以x1=4,x2=2,因为2+3<6,所以x=2舍去,所以三角形第三边的长为4,所以三角形的周长=3+6+4=13,故答案为:13.【点睛】本题考查了解一元二次方程-因式分解法.先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了三角形三边的关系.16.(80+2x)(50+2x)=5400【解析】【分析】整个挂图的面积=挂图的长×挂图的宽=(原矩形风景画的长+2x)×(原矩形风景画的宽+2x),列出方程即可.【详解】解:∵挂图的长为80+2x,宽为50+2x,∴可列方程为(80+2x)(50+2x)=5400.故答案为:(80+2x)(50+2x)=5400.【点睛】本题考查了用一元二次方程解决实际问题,用x的代数式表示挂图的长和宽是解题的关键.17.2【解析】【分析】连接AE,由折叠的性质可得AF=AB=AD,BG=GF,易证Rt△ADE≌Rt△AFE,得到DE=EF,设DE=x,在Rt△CEG中利用勾股定理建立方程求解.【详解】如图所示,连接AE,∵四边形ABCD为正方形,∴AB=BC=CD=AD=6,∠B=∠C=∠D=90°∵G为BC的中点∴BG=GC=3由折叠的性质可得AF=AB=6,BG=GF=3,在Rt△ADE和Rt△AFE中,∵AE=AE,AF=AD=6∴Rt △ADE ≌Rt △AFE (HL )∴DE=EF设DE=EF=x ,则EC=6-x在Rt △CEG 中,GC 2+EC 2=GE 2,即()()222363x x +-=+解得2x =故答案为:2.【点睛】本题考查正方形中的折叠问题,利用正方形的性质证明DE=EF ,然后利用勾股定理建立方程是解题的关键.18.12AB BC =##2BC AB=【解析】【详解】∵在矩形ABCD 中,M 为AD 边的中点,AB=12BC ,∴AB=DC=AM=MD ,∠A=∠D=90°,∴∠ABM=∠MCD=45°,∴∠BMC=90°,又∵PE ⊥MC ,PF ⊥MB ,∴∠PFM=∠PEM=90°,∴四边形PEMF 是矩形.故答案为:AB=12BC .19.(1)x1,x 2(2)x 1=-52,x 2=13.【解析】【分析】(1)利用配方法求解即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:(1)x 2﹣6x+2=0,移项得:x 2-6x=-2,配方得:x 2-6x+9=-2+9,即(x-3)2=7,开方得:,∴原方程的解是:x 1,x 2;(2)(2x+5)-3x (2x+5)=0,∴(2x+5)(1-3x )=0,∴2x+5=0或1-3x =0,∴x 1=-52,x 2=13.【点睛】本题主要考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.(1)1008元;(2)20元【解析】【分析】(1)根据题意可得,降价4元,每天就可多售出的件数是:41085⨯=(件),再利用衬衣平均每天售出的件数⨯每件盈利=每天销售这种衬衣利润,直接求解即可;(2)设每件衬衫应降价x 元,则每天就可多售出的件数是2x ,利用衬衣平均每天售出的件数⨯每件盈利=每天销售这种衬衣利润列出方程,然后解答即可.【详解】解:(1)根据题意可得,降价4元,每天就可多售出的件数是:41085⨯=(件),则,商场平均每天可盈利:()()2084041008+⨯-=(元);(2)设每件衬衫应降价x 元,则每天就可多售出的件数是2x ,依题意得()()202401200x x +-=,解得120x =,210x =,因为尽快减少库存,所以取120x =答:若商场每件衬衫降价4元,商场每天可盈利1008元,每件衫应降价20元,商场平均每天要想盈利1200元.【点睛】本题主要考查了一元二次方程的应用,读懂题意,能根据平均每天售出的件数⨯每件盈利=每天销售的利润计算,是解题关键.21.(1)a=5,x=13;(2)见解析【解析】【分析】(1)解:设方程的另一根为t ,利用根与系数的关系得到-2+t=3a -,-2t=23-,然后通过解方程组可得到a 和t 的值;(2)先计算判别式的值得到Δ=a 2-4×3×(-2)=a 2+24,然后利用非负数的性质得到Δ>0,则根据判别式的意义可判断不论a 取何实数,该方程都有两个不相等的实数根.【详解】(1)解:设方程的另一根为t ,根据题意得-2+t=3a -,-2t=23-所以解得t=13,所以a=5;(2)证明:Δ=a 2-4×3×(-2)=a 2+24∴Δ>0,∴不论a 取何实数,该方程都有两个不相等的实数根.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=b a-,x 1x 2=c a.也考查了根的判别式.22.(1)BE=DF ,BE ⊥DF ,证明见解析;(2)∠EFD 的度数是15°.【解析】【分析】(1)可利用边角边证明BE、DF所在的两个直角三角形全等,进而证明这两条线段相等且垂直;(2)由(1)中的全等可得∠DFC=∠BEC=60°,易得∠CFE=45°,相减即可得到所求角的度数.【详解】解:(1)BE=DF.BE⊥DF,理由如下:如图,∵四边形ABCD是正方形,∴BC=CD,∠BCD=∠DCF=90°,又∵CE=CF,∴△BCE≌△DCF,∴BE=DF,∠EBC=∠FDC,延长BE交DF于点G,∵∠BEC=∠DEG,∴∠DGE=∠BCE=90°,∴BE=DF.BE⊥DF;(2)∵△BCE≌△DCF,∠BED=120°,∴∠BEC=60°,∴∠DFC=∠BEC=60°,∵∠DCF=90°,CE=CF,∴∠CFE=45°,∴∠EFD=∠DFC-∠CFE=15°.【点睛】本题综合考查了正方形的性质及全等三角形的判定与性质.用到的知识点为:考查两条线段的大小关系,一般考虑相等,证明这两条线段所在的三角形的全等是常用的方法.23.(1)见解析;(2)菱形,理由见解析;(3)∠A=45°.【解析】【分析】(1)根据∠ACB=90°,DE⊥BC可得DE//AC,即可证明四边形ADEC是平行四边形,根据平行四边形的性质即可得结论;(2)根据直角三角形斜边中线的性质可得AD=BD=CD,可得BD=CE,根据AB//MN可证明BECD是平行四边形,根据有一组邻边相等的平行四边形是菱形即可得结论;(3)根据正方形的性质可得∠CBD=45°,根据∠ACB=90°可得△ABC为等腰直角三角形,可得答案.【详解】(1)∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD.(2)四边形BECD是菱形,理由如下:∵D为AB中点,∠ACB=90°,∴AD=BD=CD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵BD=CD,∴四边形BECD是菱形.(3)当△ABC是等腰直角三角形时,四边形BECD是正方形,理由如下:由(2)可知,四边形BECD是菱形,∴∠BDC=90°时,四边形BECD 是正方形,∴∠CBD =45°,∵∠ACB=90°,∴△ABC 是等腰直角三角形,∴当△ABC 是等腰直角三角形时,四边形BECD 是正方形.24.(1)证明见解析;(2)证明见解析.【解析】(1)首先根据AB ∥DE 得到∠A =∠D ,然后利用SAS 定理判定全等即可;(2)首先判定四边形BCEF 为平行四边形,然后根据有一个角是直角的平行四边形为矩形判定矩形即可.【详解】证明:(1)∵AB ∥DE ,∴∠A =∠D ,∵AC =FD ,∴AC ﹣CF =DF ﹣CF ,即AF =CD ,在△ABF 与△DEC 中,AF DC A D AB DE =⎧⎪∠=∠⎨⎪=⎩,∴△ABF ≌△DEC(SAS);(2)∵△ABF ≌△DEC ,∴EC =BF ,∠ECD =∠BFA ,∴∠ECF =∠BFC ,∴EC ∥BF ,∴四边形BCEF 是平行四边形,∵∠CEF =90°,∴平行四边形BCEF 是矩形.25.(1)长为18米、宽为7米或长为14米、宽为9米;(2)若篱笆再增加4m ,围成的矩形花圃面积不能达到170m 2.【解析】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,再根据矩形面积公式列方程求解即可得到答案.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.【详解】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,根据题意得:x(32﹣2x)=126,解得:x1=7,x2=9,∴32﹣2x=18或32﹣2x=14,∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,根据题意得:y(36﹣2y)=170,整理得:y2﹣18y+85=0.∵△=(﹣18)2﹣4×1×85=﹣16<0,∴该方程无解,∴假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.26.(1)证明见解析;(2)证明见解析;(3)108.【解析】(1)根据正方形的性质,可直接证明△CBE≌△CDF,从而得出CE=CF;(2)延长AD至F,使DF=BE,连接CF,根据(1)知∠BCE=∠DCF,即可证明∠ECF=∠BCD=90°,根据∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;(3)过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解.【详解】(1)如图1,在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF,∴CE=CF;(2)如图,延长AD至F,使DF=BE,连接CF,由(1)知△CBE≌△CDF,∴∠BCE=∠DCF,∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°,∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG,∴GE=GF,∴GE=DF+GD=BE+GD;(3)如图:过点C作CF⊥AD于F,∵AD∥BC,∠B=90°,∴∠A=90°,∵∠A=∠B=90°,FC⊥AD,∴四边形ABCF是矩形,且AB=BC=12,∴四边形ABCF是正方形,∴AF=12,由(2)可得DE=DF+BE,∴DE=4+DF,在△ADE中,AE2+DA2=DE2,∴(12−4)2+(12−DF)2=(4+DF)2,∴DF=6,∴AD=6,∴S四边形ABCD =12(AD+BC)×AB=12×(6+12)×12=108.。
北师大版九年级上册数学期中测试卷及答案

北师大版九年级上册数学期中考试试题(带答案)一、选择题(本大题共10小题,每小题4分,共40分)1.若△ABC∽△DEF,相似比为3:2,则对应高的比为()A.3:2 B.3:5 C.9:4 D.4:92.一个布袋里装有3个红球、2个白球,每个球除颜色外均相同,从中任意摸出一个球,则摸出的球是白球的概率是()A.B.C.D.3.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形4.对一元二次方程x2﹣ax=3进行配方时,两边同时加上()A.)2B.C.D.a25.已知x:y=3:2,则下列各式中不正确的是()A.B.C.D.6.在一个不透明的袋中,有若干个白色乒乓球和4个黄色乒乓球,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回袋中,通过大量重复摸球实验后发现,摸到黄球的频率稳定在40%,那么,估计袋中白色乒乓球的个数为()A.6 B.8 C.10 D.127.如图,△ABC中,DE∥BC,AD=5,BD=10,DE=4,则BC的值为()A.24 B.12 C.8 D.68.若方程3(x﹣7)(x﹣2)=k的根是7和2,则k的值为()A.0 B.2 C.7 D.2或79.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF 为()A.80°B.70°C.65°D.60°10.关于x的方程m(x+h)2+k=0(m,h,k均为常数,m≠0)的解是x1=﹣3,x2=2,则方程m(x+h﹣3)2+k=0的解是()A.x1=﹣6,x2=﹣1 B.x1=0,x2=5 C.x1=﹣3,x2=5 D.x1=﹣6,x2=2二、填空题(本大题共6小题,每小题4分,共211.一元二次方程x2+2x+a=0有实根,则a的取值范围是.12.已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是cm2.13.如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB=2米,BC=18米,则旗杆CD的高度是米.14.某公司4月份的利润为160万元,要使6月份的利润达到250万元,则平均每月增长的百分率是.15.在正方形ABCD中,O是对角线AC、BD的交点,过O作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF的长为.16.如图,矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的面积为.三、解答题(本大题共9小题,共86分)17.8分)解方程:(1)x2﹣3x=0(2)3x2+2x﹣5=0.18.8分)如图,在已知的平面直角坐标系中,△ABC的顶点都在正方形网格的格点上,若A,B两点的坐标分别是A(﹣1,0),B(0,3).(1)以点O为位似中心,与△ABC位似的△A1B1C1满足A1B1:AB=2:1,请在网格内画出△A1B1C1;(2)A1的坐标是,C1的坐标是.19.8分)如图△ABC与△CDE都是等边三角形,点E、F分别在AC、BC上,且EF∥AB.(1)求证:四边形EFCD是菱形;(2)设CD=4,求D、F两点间的距离.20.(8分)如图,某校在开展积极培育和践行社会主义核心价值观的活动中,小光同学将自己需要加强的“文明”、“友善”、“法治”、“诚信”的价值取向文字分别贴在4张质地、大小完全一样的硬纸板上,制成卡片,随时提醒自己要做个遵纪守法的好学生.小光同学还把卡片编成一道数学题考同桌小亮:将这4张卡片洗匀后背面朝上放在桌子上,从中随机抽取一张卡片,不放回,再随机抽取另一张卡片,让小亮同学用列表法或画树状图法,求出两次抽到卡片上的文字含有“文明”、“诚信”价值取向的概率(卡片名称可用字母表示).21.8分)已知关于x的一元二次方程(x﹣2)2=3m﹣1有两个不相等的实数根,求m的取值范围.22.10分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,连接CE,连接DE 交AC于F.(1)求证:△ADC∽△ACB;(2)若AD=4,AB=6,求的值.23.(10分)某超市在销售中发现:“宝宝乐”牌童装进价为60元,当定价为100元时,平均每天可售出20件,为了迎接“十一”国庆节,商场决定采取适当的降价措施,经调查发现:如果每件童装降价5元,那么平均每天就可多售出10件,要想平均每天盈利1200元,那么每件童装应该降价多少元?24.(12分)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作;…依此类推,若第n次操作后,余下的四边形是菱形,则称原平行四边形为n阶准菱形,例如:如图1,▱ABCD中,若AB=1,BC=2,则▱ABCD 为1阶准菱形.(1)理解与判断:邻边长分别为1和3的平行四边形是阶准菱形;邻边长分别为3和4的平行四边形是阶准菱形;(2)操作、探究与计算:①已知▱ABCD的邻边长分别为2,a(a>2),且是3阶准菱形,请画出▱ABCD及裁剪线的示意图,并在图形下方写出a的值;②已知▱ABCD的邻边长分别为a,b(a>b),满足a=7b+r,b=4r,请写出▱ABCD是几阶准菱形.25.1如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:(1)求证:△BEF∽△DCB;(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;(4)当t为何值时,△PQF为等腰三角形?试说明理由.参考答案一、选择题(本大题共10小题,每小题4分,共40分)1.A;2.C;3.D;4.A;5.D;6.A;7.B;8.A;9.D;10.B;二、填空题(本大题共6小题,每小题4分,共211.a≤1;12.20;13.18;14.25%;15.5;16.;三、解答题(本大题共9小题,共86分)17.18.19.20.21.22.23.24.25.北师大版九年级上册数学期中考试试题(带答案)一、选择题(本大题共10小题,每小题4分,共40分)1.若△ABC∽△DEF,相似比为3:2,则对应高的比为()A.3:2 B.3:5 C.9:4 D.4:92.一个布袋里装有3个红球、2个白球,每个球除颜色外均相同,从中任意摸出一个球,则摸出的球是白球的概率是()A.B.C.D.3.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形4.对一元二次方程x2﹣ax=3进行配方时,两边同时加上()A.)2 B.C.D.a25.已知x:y=3:2,则下列各式中不正确的是()A.B.C.D.6.在一个不透明的袋中,有若干个白色乒乓球和4个黄色乒乓球,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回袋中,通过大量重复摸球实验后发现,摸到黄球的频率稳定在40%,那么,估计袋中白色乒乓球的个数为()A.6 B.8 C.10 D.127.如图,△ABC中,DE∥BC,AD=5,BD=10,DE=4,则BC的值为()A.24 B.12 C.8 D.68.若方程3(x﹣7)(x﹣2)=k的根是7和2,则k的值为()A.0 B.2 C.7 D.2或79.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF 为()A.80°B.70°C.65°D.60°10.关于x的方程m(x+h)2+k=0(m,h,k均为常数,m≠0)的解是x1=﹣3,x2=2,则方程m(x+h﹣3)2+k=0的解是()A.x1=﹣6,x2=﹣1 B.x1=0,x2=5 C.x1=﹣3,x2=5 D.x1=﹣6,x2=2二、填空题(本大题共6小题,每小题4分,共211.一元二次方程x2+2x+a=0有实根,则a的取值范围是.12.已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是cm2.13.如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB=2米,BC=18米,则旗杆CD的高度是米.14.某公司4月份的利润为160万元,要使6月份的利润达到250万元,则平均每月增长的百分率是.15.在正方形ABCD中,O是对角线AC、BD的交点,过O作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF的长为.16.如图,矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的面积为.三、解答题(本大题共9小题,共86分)17.8分)解方程:(1)x2﹣3x=0(2)3x2+2x﹣5=0.18.8分)如图,在已知的平面直角坐标系中,△ABC的顶点都在正方形网格的格点上,若A,B两点的坐标分别是A(﹣1,0),B(0,3).(1)以点O为位似中心,与△ABC位似的△A1B1C1满足A1B1:AB=2:1,请在网格内画出△A1B1C1;(2)A1的坐标是,C1的坐标是.19.8分)如图△ABC与△CDE都是等边三角形,点E、F分别在AC、BC上,且EF∥AB.(1)求证:四边形EFCD是菱形;(2)设CD=4,求D、F两点间的距离.20.(8分)如图,某校在开展积极培育和践行社会主义核心价值观的活动中,小光同学将自己需要加强的“文明”、“友善”、“法治”、“诚信”的价值取向文字分别贴在4张质地、大小完全一样的硬纸板上,制成卡片,随时提醒自己要做个遵纪守法的好学生.小光同学还把卡片编成一道数学题考同桌小亮:将这4张卡片洗匀后背面朝上放在桌子上,从中随机抽取一张卡片,不放回,再随机抽取另一张卡片,让小亮同学用列表法或画树状图法,求出两次抽到卡片上的文字含有“文明”、“诚信”价值取向的概率(卡片名称可用字母表示).21.8分)已知关于x的一元二次方程(x﹣2)2=3m﹣1有两个不相等的实数根,求m的取值范围.22.10分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,连接CE,连接DE 交AC于F.(1)求证:△ADC∽△ACB;(2)若AD=4,AB=6,求的值.23.(10分)某超市在销售中发现:“宝宝乐”牌童装进价为60元,当定价为100元时,平均每天可售出20件,为了迎接“十一”国庆节,商场决定采取适当的降价措施,经调查发现:如果每件童装降价5元,那么平均每天就可多售出10件,要想平均每天盈利1200元,那么每件童装应该降价多少元?24.(12分)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作;…依此类推,若第n次操作后,余下的四边形是菱形,则称原平行四边形为n阶准菱形,例如:如图1,▱ABCD中,若AB=1,BC=2,则▱ABCD 为1阶准菱形.(1)理解与判断:邻边长分别为1和3的平行四边形是阶准菱形;邻边长分别为3和4的平行四边形是阶准菱形;(2)操作、探究与计算:①已知▱ABCD的邻边长分别为2,a(a>2),且是3阶准菱形,请画出▱ABCD及裁剪线的示意图,并在图形下方写出a的值;②已知▱ABCD的邻边长分别为a,b(a>b),满足a=7b+r,b=4r,请写出▱ABCD是几阶准菱形.25.1如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:(1)求证:△BEF∽△DCB;(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;(4)当t为何值时,△PQF为等腰三角形?试说明理由.参考答案一、选择题(本大题共10小题,每小题4分,共40分)1.A;2.C;3.D;4.A;5.D;6.A;7.B;8.A;9.D;10.B;二、填空题(本大题共6小题,每小题4分,共211.a≤1;12.20;13.18;14.25%;15.5;16.;三、解答题(本大题共9小题,共86分)17.18.19.20.21.22.23.24.25.做好时间规划才能更有效率充分——利用你的一天时间我们都知道,对于中学生来讲,很大程度上,一个人学习成绩的好坏,是与他是否会管理自己的时间有关的。
2024-2025学年九年级数学上学期期中测试卷(陕西专用,北师大版九上全部)(考试版A4)

2024-2025学年九年级数学上学期期中模拟卷(陕西专用)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:北师大版九年级(九上全册)。
5.难度系数:0.69。
一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.下列函数不是反比例函数的是( )A.y=3x﹣1B.y=―x3C.xy=5D.y=12x2.如图是某个几何体的三视图,则该几何体是( )A.圆锥B.长方体C.三棱柱D.圆柱3.若双曲线y=k―1x的图象经过第二、四象限,则k的取值范围是( )A.k>1B.k<1C.k=1D.不存在4.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.7左右,则布袋中白球可能有( )A.15个B.20个C.30个D.35个5.如图,AD∥BE∥CF,若AB=2,AC=5,EF=4,则DE的长度是( )A .6B .23C .53D .836.在长为30m ,宽为20m 的长方形田地中开辟三条入口宽度相等的道路,已知剩余田地的面积为468m 2,求道路的宽度设道路的宽度为x (m ),则可列方程( )A .(30﹣2x )(20﹣x )=468B .(20﹣2x )(30﹣x )=468C .30×20﹣2×30x ﹣20x =468D .(30﹣x )(20﹣x )=4687.如图,正方形四个顶点分别位于两个反比例函数y =3x和y =n x 的图象的四个分支上,则实数n 的值为( )A .﹣3B .―13C .13D .38.如图,在菱形ABCD 中,DE ⊥AB ,垂足为E ,DE AE =34,BE =1,F 是BC 的中点.现有下列四个结论:①DE =3;②四边形DEBC 的面积等于9;③(AC +BD )(AC ﹣BD )=80;④DF =DE .其中正确结论的个数为( )A .1个B .2个C .3个D .4个二、填空题(共5小题,每小题3分,计15分)9.广场上,一个大型字母宣传牌垂直于地面放置,其投影如图所示,则该投影属于__________.(填“平行投影”或“中心投影”)10.反比例函数y =k x的图象经过点(1,6)和(m ,﹣3),则m =__________.11.已知等腰三角形的两边长是方程x 2﹣9x +18=0的两个根,则该等腰三角形的周长为__________.12.如图,在菱形ABCD 中,AC =24,BD =10.E 是CD 边上一动点,过点E 分别作EF ⊥OC 于点F ,EG⊥OD 于点G ,连接FG ,则FG 的最小值为__________.13.如图,在Rt △ABC 中,∠C =90°,AC =10cm ,BC =8cm .点P 从点C 出发,以2cm /s 的速度沿着CA向点A 匀速运动,同时点Q 从点B 出发,以1cm /s 的速度沿BC 向点C 匀速运动,当一个点到终点时,另一个点随之停止.经过__________秒后,△PCQ 与△ABC 相似.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)解方程:x 2﹣4x +1=0.15.(5分)已知:a 2=b 3=c 4≠0,且2a ﹣b +c =10.求a 、b 、c 的值.16.(5分)一个几何体由一些大小相同的小正方块儿搭建,如图是从上面看到的这个几何体的形状如图,小正方形的数字表示在该位置的小正方块儿的个数,请在网格中画出从正面和左面看到的几何体的形状图..17.(5分)如图所示,BE,CF是△ABC的高,D是BC边的中点,求证:DE=DF.18.(5分)已知矩形ABCD中,AB=2,在BC中取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,求AD的长.19.(5分)如图,小明用自制的直角三角形纸板DEF测量水平地面上树AB的高度,已知两直角边EF:DE=2:3,他调整自己的姿势和三角形纸板的位置,使斜边DF保持水平,并且边DE与点B在同一直线上,DM垂直于地面,测得AM=21m,边DF离地面的距离为1.6m,求树高AB.20.(5分)如图所示某地铁站有三个闸口.(1)一名乘客随机选择此地铁闸口通过时,选择A闸口通过的概率为 .(2)当两名乘客随机选择此地铁闸口通过时,请用树状图或列表法求两名乘客选择不同闸口通过的概率.21.(6分)如图,小亮利用所学的数学知识测量某旗杆AB的高度.(1)请你根据小亮在阳光下的投影,画出旗杆AB在阳光下的投影.(2)已知小亮的身高为1.72m,在同一时刻测得小亮和旗杆AB的投影长分别为0.86m和6m,求旗杆AB的高.22.(7分)如图,在平面直角坐标系中,每个小正方形的边长都是1个单位长度,△ABC的顶点都在格点上.(1)以原点O 为位似中心,在第三象限内画出将△ABC 放大为原来的2倍后的位似图形△A 1B 1C 1;(2)已知△ABC 的面积为72,则△A 1B 1C 1的面积是__________.23.(7分)实验数据显示,一般成人喝50毫升某品牌白酒后,血液中酒精含量y (毫克/百毫升)与时间x(时)变化的图象如图(图象由线段OA 与部分双曲线AB 组成)所示.国家规定,车辆驾驶人员血液中的酒精含量大于或等于20(毫克/百毫升)时属于“酒后驾驶”,不能驾车上路.(1)求部分双曲线AB的函数表达式;(2)参照上述数学模型,假设某驾驶员晚上22:00在家喝完50毫升该品牌白酒,第二天早上6:30能否驾车去上班?请说明理由.24.(8分)如图所示,A、B、C、D是矩形的四个顶点,AB=16cm,AD=6cm,动点P,Q分别从点A,C 同时出发,点P以3cm/s的速度向点B移动,一直到达点B为止,点Q以2cm/s的速度向点D移动(1)P,Q两点从出发开始到几秒时,四边形PBCQ的面积为33cm2?(2)P,Q P和点Q的距离第一次是10cm?25.(8分)如图,已知四边形ABCD为正方形,AB=E为对角线AC上一动点,连接DE,过点E 作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG 是正方形;(2)探究:CE +CG 的值是否为定值?若是,请求出这个定值;若不是,请说明理由.26.(10分)如图,12y kx =+的图象与反比例函数2y mx =图象相交于A 、B 两点,已知点B 坐标为(3,﹣1).(1)求一次函数和反比例函数的表达式;(2)求得另一个交点A(﹣1,3),观察图象,请直接写出不等式kx+2≤mx的解集;(3)P为y轴上的点,Q为反比例函数图象上的点,若以ABPQ为顶点的四边形是平行四边形,求出满足条件的点P的坐标.。
北师大版九年级上册数学期中考试试卷及答案

北师大版九年级上册数学期中考试试题一、单选题1.用配方法将x 2﹣8x +5=0化成(x +a )2=b 的形式,则变形正确的是()A .(x ﹣4)2=11B .(x ﹣4)2=21C .(x ﹣8)2=11D .(x +4)2=112.如图,直线123l l l ,直线AC 分别交1l ,2l ,3l 于点A ,B ,C ,直线DF 分别交1l ,2l ,3l 于点D ,E ,F ,若23=AB BC ,则DE DF 的值为()A .23B .35C .25D .523.一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取一张卡片,不放回,再另外抽取一张,抽取的两张卡片上数字之积为0的概率是()A .14B .716C .12D .344.已知关于x 的一元二次方程ax 2﹣4x ﹣2=0有实数根,则a 的取值范围是()A .a≥﹣2B .a >﹣2C .a≥﹣2且a≠0D .a >﹣2且a≠05.已知平行四边形ABCD 中,添加下列条件,其中能说明平行四边形ABCD 是矩形的是()A .AB BC=B .AC BD⊥C .AC BD=D .AC 平分BAD∠6.九年级(5)班文学小组在举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,全组共互赠了132本图书,如果设全组共有x 名同学,依题意,可列出的方程是()A .(1)132x x +=B .(1)132x x -=C .2(1)132x x +=D .1(1)1322x x +=7.如图,四边形ABCD 为菱形,对角线AC =6,BD =8,且AE 垂直于CD ,垂足为点E ,则AE 的长度为()A .485B .245C .185D .1258.如图,在矩形ABCD 中,,E F 分别是,BC AE 的中点,若 23,4CD AD ==,则DF 的长是()A .23B .3C .22D 69.若1x ,2x 是一元二次方程210x x +-=的两根,则211220202021x x x --的值为()A .2023B .2022C .2021D .202010.如图,在矩形ABCD 中,O 为AC 中点,EF AC ⊥交AB 于E ,点G 是AE 中点且∠AOG =30°,下列结论:(1)DC =3OG ;(2)OG =12BC ;(3) OGE 等边三角形;(4)S △AOE =16S 矩形ABCD ,正确的有()A .1个B .2个C .3个D .4个二、填空题11.在一个不透明的口袋中有若干个白球和3个黑球,小颖进行如下试验:随机摸出1个球,记录下颜色后放回,多次重复这个试验.通过大量重复试验后发现,摸到黑球的频率稳定在0.25,则原来口袋中有白球___个.12.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,AE ∥BD ,DE ∥AC .若5AC =,则四边形AODE 的周长为_______.13.AOB 的三个顶点坐标()5,0A ,()0,0O ,()3,6B ,以原点O 为位似中心,将AOB 缩小为'''AO B △,相似比为23,则点B 的对应点'B 的坐标是_______.14.如图,平面直角坐标系中,矩形AOCB 中,AB =A 的坐标为()1,2-,则点C 的坐标为________.15.如图,将直角三角形ABC 沿着AB 方向平移得到三角形DEF ,若6cm AB =,4cm BC =,1cm CH =,图中阴影部分的面积为221cm 4,则三角形ABC 沿着AB 方向平移的距离为__________cm .16.如图,AD 是ABC 的中线,点E 是线段AD 上的一点,且13AE AD =,CE 交AB 于点F .若6AF =cm ,则AB =_____cm .17.方程26x x =的根是________.三、解答题18.解方程:()2362x x -=-.19.如图,在ABC 中,AB AC =,120BAC ∠=︒,D 为BC 边上一点,E 为AC 边上一点,且30ADE ∠=︒,求证:ABD DCE ∽△△.20.如图,某测量人员的眼睛A 与标杆顶端F 、电视塔顶端E 在同一条直线上,已知此人的眼睛到地面的距离AB=1.6m ,标杆FC=2.2m ,且BC=1m ,CD=5m ,标杆FC 、ED 垂直于地面.求电视塔的高ED .21.有四张正面分别标有数字-1,0,1,2的不透明卡片,它们除了数字之外其余全部相同,将它们背面朝上,洗匀后从四张卡片中随机抽取一张不放回,将卡片上的数字记为m ,再随机地抽取一张,将卡片上的数字记为n .(1)请用画树状图或列表法写出(),m n 所有的可能情况;(2)求所选的(),m n 能在一次函数y x =-的图像上的概率.22.苏州某工厂生产一批小家电,2019年的出厂价是144元,2020年、2021年连续两年改进技术降低成本,2021年出厂价调整为100元.(1)这两年出厂价下降的百分比相同,求平均下降的百分率(精确到0.01%).(2)某商场今年销售这批小家电的售价为140元时,平均每天可销售20台,为了减少库存,商场决定降价销售,经调查发现小家电单价每降低5元,每天可多售出10台,如果每天盈利1250元,销售单价应为多少元?23.如图,矩形ABCD 中,16AB =,12BC =,P 为AD 上一点,将ABP △沿BP 翻折至EBP △,PE 与CD 相交于点O ,且OE OD =,BE 与CD 交于点G .(1)求证:AP DG =;(2)求线段AP 的长.24.如图,菱形ABCD 的对角线AC ,BD 交于点O ,BE ∥AC ,AE ∥BD ,EO 与AB 交于点F .(1)求证:四边形AEBO 是矩形;(2)若CD =3,求EO 的长.25.如图,平面直角坐标系中,四边形OABC 为矩形,点A ,B 的坐标分别为()8,0,()8,6,动点M ,N 分别从O ,B 同时出发,以每秒1个单位的速度运动.其中,点M 沿OA 向终点A 运动,点N 沿BC 向终点C 运动.过点M 作MP ⊥OA ,交AC 于P ,连接NP ,设M 、N 运动的时间为t 秒()04t <<.(1)P 点的坐标为(),PC =(用含t 的代数式表示);(2)求当t 为何值时,以C 、P 、N 为顶点的三角形与△ABC 相似;(3)在平面内是否存在一个点E ,使以C 、P 、N 、E 为顶点的四边形是菱形,若存在,请直接写出t 的值;若不存在,说明理由.参考答案1.A 【详解】x 2﹣8x +5=02816516x x -+=-+即()2411x -=故选A 2.C【分析】利用平行线分线段成比例可得答案.【详解】解:因为:123l l l ,所以:23AB DE BC EF ==,所以:25DE DF =.故选C .【点睛】本题考查的是平行线分线段成比例定理,掌握定理的实际含义是解题的关键.3.C 【解析】【分析】画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得.【详解】解:画树状图如下:由图知,共有12种等可能结果,其中抽取的两张卡片上数字之积为0的有6种结果,∴抽取的两张卡片上数字之积为0的概率为61122=,故选:C .【点睛】本题考查了列表法与树状图法,解题的关键是利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.4.C【分析】根据一元二次方程的定义和判别式的意义得到0a ≠且()()24420a ∆=--⨯-≥,然后求出两不等式的公共部分即可.【详解】解:根据题意得0a ≠且()()24420a ∆=--⨯-≥,解得2a ≥-且0a ≠.故答案为:C .【点睛】本题考查了根的判别式:一元二次方程()200++=≠ax bx c a 的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程无实数根.5.C 【解析】【分析】根据矩形的判定定理和菱形的判定定理分别对各个选项进行判断即可.【详解】解:A 、∵四边形ABCD 是平行四边形,AB=BC ,∴平行四边形ABCD 是菱形,故本选项不符合题意;B 、∵四边形ABCD 是平行四边形,AC ⊥BD ,∴平行四边形ABCD 是菱形,故本选项不符合题意;C 、∵四边形ABCD 是平行四边形,AC=BD ,∴四边形ABCD 是矩形,故本选项符合题意;D 、∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DAC=∠ACB ,∵AC 平分∠BAD ,∴∠BAC=∠DAC ,∴∠ACB=∠BAC ,∴平行四边形ABCD是菱形,故本选项不符合题意;故选:C.【点睛】本题考查了矩形的判定定理、菱形的判定定理、平行四边形的性质、等腰三角形的判定等知识,掌握矩形的判定和菱形的判定是解题的关键.6.B【解析】【分析】如果设全组共有x名同学,那么每名同学要赠送(x﹣1)本,有x名学生,那么总互共送x (x﹣1)本,根据全组共互赠了132本图书即可得出方程.【详解】x-本;解:设全组共有x名同学,那么每名同学送出的图书是(1)x x-;则总共送出的图书为(1)又知实际互赠了132本图书,x-=.则x(1)132故选:B.【点睛】考查的是列一元二次方程,本题要读清题意,弄清每名同学送出的图书是(x﹣1)本是解决本题的关键.7.B【解析】【分析】根据菱形的性质得出CO、DO的长,在Rt△COD中求出CD,利用菱形面积等于对角线乘积的一半,也等于CD×AE,可得出AE的长度.【详解】解:如图,∵四边形ABCD 是菱形,114,3,,22DO BD CO AC AC BD ∴====⊥5CD ∴==116824.22ABCD S AC BD ∴=⋅=⨯⨯=ABCD S CD AE=⨯ ∴CD×AE=24,∴AE=245.故选:B .【点睛】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.8.A 【解析】【分析】结合矩形的性质,勾股定理,利用SAS 证明DAF AEB ∆≅∆,进而可求解.【详解】解: 四边形ABCD 为矩形,CD =,4=AD ,//AD BC ,90B ∴∠=︒,4BC AD ==,AB CD ==,DAF AEB ∠=∠,E 为BC 的中点,2BE ∴=,4AE ∴=,AD AE ∴=,F 点为AE 的中点,2AF ∴=,AF BE ∴=,()DAF AEB SAS ∴∆≅∆,DF AB ∴==.故选:A .【点睛】本题主要考查勾股定理,矩形的性质,全等三角形的性质与判定,证明DAF AEB ∆≅∆是解题的关键.9.B【解析】【分析】利用一元二次方程根的定义以及根与系数的关系计算即可求出值.【详解】解:∵x 1,x 2是一元二次方程x 2+x-1=0的两根,∴x 1+x 2=-1,且x 12+x 1-1=0,即x 12+x 1=1,则原式=x 12+x 1-2021(x 1+x 2)=1+2021=2022.故选:B .【点睛】本题考查了根与系数的关系,以及方程的根,熟练掌握根与系数的关系是解本题的关键.10.C【解析】【分析】根据矩形的性质、等边三角形的判定、勾股定理逐一判断即可;【详解】∵点G 是AE 中点,EF AC ⊥,∴12OG AG GE AE ===,∵∠AOG =30°,∴30OAG AOG ∠=∠=︒,90903060GOE AOG ∠=︒-∠=︒-︒=︒,∴ OGE 等边三角形,故(3)正确;设2AE a =,则OE OG a ==,由勾股定理得,AO ===,∵O 为AC 中点,∴2AC AO ==,在Rt ABC 中,30CAB ∠=︒,∴12BC AC ==,由勾股定理得,3AB a =,∵四边形ABCD 是矩形,∴3CD AB a ==,∴DC =3OG ,故(1)正确;∵OG a =,12BC =,∴12OG BC ≠,故(2)错误;∵2122AOE S a a ==△,2=3ABCD S a =矩形,∴16AOE ABCD S S = 矩形,故(4)正确;综上所述,正确的结论有(1)(3)(4);故答案选C .【点睛】本题主要考查了矩形的性质、等边三角形的判定与性质、勾股定理,准确计算是解题的关键.11.9.【解析】【分析】设口袋中白球的个数为x ,根据摸到黑球的频率稳定在0.25及摸到黑球的概率为0.25,据此列出关于x 的方程,解之可得答案.【详解】解:设口袋中白球的个数为x ,根据题意,得:33x+=0.25,解得x=9,检验:当x=9时,3+x=12≠0,∴x=9是分式方程的解,且符合题意,∴原来口袋中有白球9个,故答案为:9.12.10【分析】根据AE∥BD,DE∥AC,可得到四边形AODE是平行四边形,再由四边形ABCD是矩形,可证得四边形AODE是菱形,即可求解.【详解】解:∵AE∥BD,DE∥AC,∴四边形AODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO,∴AO=DO,∴四边形AODE是菱形,∴AO=DO=DE=AE,∵5AC=,∴52 AO=,∴四边形AODE的周长为54102⨯=.故答案为:1013.(2,4)或(-2,-4)【解析】【分析】根据位似变换的性质解答即可.【详解】解:∵△AOB顶点B的坐标为(3,6),以原点O为位似中心,相似比为23,将△AOB缩小,∴点B 的对应点B′的坐标为22(3,6)33⨯⨯或22(3(),6())33⨯-⨯-,即(2,4)或(-2,-4),故答案为:(2,4)或(-2,-4).14.(4,2)【分析】过点A 作AD x ⊥轴于D ,过点C 作CE x ⊥轴于E ,这样易得AOD OCE ∽△△,再根据已知条件求得线段OE ,CE 的长,即可求得点C 坐标.【详解】解:过点A 作AD x ⊥轴于D ,过点C 作CE x ⊥轴于E ,在矩形AOCB 中,OC AB ==90AOC ∠=︒,∵点A 的坐标为()1,2-,∴1OD =,2AD =,∴在Rt AOD 中,AO ===易知DAO AOD AOD COE ∠+∠=∠+∠,∴DAO COE ∠=∠,又∵90ADO OEC ∠=∠=︒,∴AOD OCE ∽△△,∴AD OD AO OE CE OC ==,∵12AO OC =,∴12AD OD OE CE ==,∴24OE AD ==,22CE OD ==,∴点C 的坐标为(4,2),故答案为:(4,2).15.32【分析】根据题意,计算得HB ;再根据阴影部分的面积ABC DBH S S =-△△,通过求解一元一次方程得DB ,从而得AD ,即可得到答案.【详解】解:根据题意,得413HB BC CH cm =-=-=,∵90ABC ∠=︒,∴三角形DBH 为直角三角形,∴21122ABC S AB BC cm =⨯= ,1322DBH S DB HB DB =⨯=△,根据题意得:阴影部分的面积ABC DBH S S =-△△,且阴影部分的面积为221cm 4,∴3211224DB -=,∴92DB cm =,∴93622AD AB DB cm =-=-=,即三角形ABC 沿着AB 方向平移的距离为32cm ,故答案为:32.16.30【解析】过A 作AG ∥BC ,交CF 的延长线于G ,依据相似三角形的对应边成比例,即可得到12AG AE DC DE ==,进而得出BF=4AF=24cm ,可得AB 的长度.【详解】解:如图所示,过A 作AG ∥BC ,交CF 的延长线于G ,∵AE=13AD ,AG ∥BC ,∴△AEG ∽△DEC ,∴12AG AE DC DE ==,又∵AD 是△ABC 的中线,∴BC=2CD ,∴14AGBC =,∵AG ∥BC ,∴△AFG ∽△BFC ,∴14AFAGBF BC ==,∴BF=4AF=24(cm),∴AB=AF+BF=30(cm),故答案为:30.17.0x =或6x =【解析】用因式分解法解方程即可.【详解】移项,得260,x x -=提公因式,得x(x−6)=0,∴x=0或x−6=0,解得x=0或x=6.故答案为0x =或6x =.18.x1=3,x2=1.【解析】先移项整理,再根据因式分解法即可求解.【详解】解:移项,得(x−3)2+2(x−3)=0,因式分解得(x−3)(x−3+2)=0,∴x-3=0或x-1=0,∴x1=3,x2=1.19.见解析【分析】利用三角形的外角性质证明∠EDC=∠DAB,即可证明△ABD∽△DCE.【详解】证明:∵AB=AC,且∠BAC=120°,∴∠ABD=∠ACB=30°,∵∠ADE=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE.20.5.2米【详解】试题分析:作AH⊥ED交FC于点G,根据题意得出AH=BD,AG=BC,然后根据平行线截线段成比例得出答案.试题解析:作AH⊥ED交FC于点G;如图所示:∵FC⊥BD,ED⊥BD,AH⊥ED交FC于点G,∴FG∥EH,∵AH⊥ED,BD⊥ED,AB⊥BC,ED⊥BC,∴AH=BD,AG=BC,∵AB=1.6,FC=2.2,BC=1,CD=5,∴FG=2.2﹣1.6=0.6,BD=6,∵FG∥EH,∴,解得:EH=3.6,∴ED=3.6+1.6=5.2(m)答:电视塔的高ED 是5.2米.考点:平行线截线段成比例21.(1)(-1,0),(-1,1),(-1,2),(0,-1),(0,1)(0,2),(1,-1),(1,0),(1,2),(2,-1),(2,0),(2,1);(2)16【解析】(1)根据题意画出树状图,即可求出(m ,n )所有的可能情况;(2)求出所选的m ,n 能在一次函数y x =-的图像上的情况数,再根据概率公式列式计算即可.【详解】解:(1)画树状图如下:则(m ,n )所有的可能情况是(-1,0),(-1,1),(-1,2),(0,-1),(0,1)(0,2),(1,-1),(1,0),(1,2),(2,-1),(2,0),(2,1).(2)所选的(m ,n )能在一次函数y x =-的图像上的情况有:(-1,1),(1,-1)共2种所以,所选的(),m n 能在一次函数y x =-的图像上的概率:21126=22.(1)16.67%;(2)125元【分析】(1)设平均下降的百分率为x ,根据2021年的出厂价=2019年的出厂价×(1-下降率)2,即可得出关于x 的一元二次方程,解之取其合适的值即可得出结论;(2)设销售单价应为y 元,则每台的销售利润为(y-100)元,每天的销售量为(300-2y )台,根据每天盈利=每台的利润×每天的销售量,即可得出关于y 的一元二次方程,解之即可得出结论.【详解】解:(1)设平均下降的百分率为x ,依题意得:144(1-x )2=100,解得:x 1=16≈16.67%,x 2=116(不合题意,舍去).答:平均下降的百分率约为16.67%.(2)设销售单价应为y 元,则每台的销售利润为(y-100)元,每天的销售量为20+()101405y -=(300-2y )台,依题意得:(y-100)(300-2y )=1250,整理得:y 2-250y+15625=0,解得:y 1=y 2=125.答:销售单价应为125元.23.(1)见解析;(2)9.6【分析】(1)由折叠的性质得出EP AP =,90E A ∠=∠=︒,16BE AB ==,由ASA 证明ODP OEG ∆≅∆,得出OP OG =,PD GE =,即可得出结论;(2)由折叠的性质得出EP AP =,90E A ∠=∠=︒,16BE AB ==,由(1)得出AP EP DG ==,设AP EP x ==,则12PD GE x ==-,DG x =,求出CG 、BG ,根据勾股定理得出方程,解方程即可.【详解】证明:(1) 四边形ABCD 是矩形,90D A C ∴∠=∠=∠=︒,12AD BC ==,16CD AB ==,根据题意得:ABP EBP ∆≅∆,EP AP ∴=,90E A ∠=∠=︒,16BE AB ==,在ODP ∆和OEG ∆中,D E OD OE DOP EOG ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ODP OEG ASA ∴∆≅∆,OP OG ∴=,PD GE =,DG EP ∴=,AP DG ∴=;(2)如图所示, 四边形ABCD 是矩形,90D A C ∴∠=∠=∠=︒,12AD BC ==,16CD AB ==,根据题意得:ABP EBP ∆≅∆,EP AP ∴=,90E A ∠=∠=︒,16BE AB ==,由(1)知AP DG =,又AP EP = ,AP EP DG ∴==,设AP EP x ==,则12PD GE x ==-,DG x =,16CG x ∴=-,16(12)4BG x x =--=+,根据勾股定理得:222BC CG BG +=,即222(16)(412)x x +-=+,解得:9.6x =,9.6AP ∴=.24.(1)见解析;(2)3【分析】(1)先根据平行四边形的判定证明四边形AEBO 是平行四边形,再利用菱形的对角线互相垂直和矩形的判定证明即可;(2)利用矩形的性质求解即可.(1)证明:∵BE ∥AC ,AE ∥BD ,∴四边形AEBO 是平行四边形.∵四边形ABCD 是菱形,∴AC ⊥BD ,即∠AOB =90°.∴四边形AEBO 是矩形.(2)解:∵四边形AEBO 是矩形,∴EO =AB ,在菱形ABCD 中,AB =CD ,∴EO =CD =3.25.(1)3,64t t ⎛⎫- ⎪⎝⎭;54t ;(2)t=12841;(3)329t =或83.【解析】(1)根据题意表示出OM 的长度,即求出P 点的横坐标,然后根据△APM ∽△ACO 即可表示出PM 和AP 的长度,即求出点P 的纵坐标和PC 的长度;(2)当CNP CBA △∽△时,PN BA ∥,可得点P 和点N 的横坐标相等,然后列方程求解即可,当CPN CBA △∽△时,分别表示出CN ,CP 的长度,根据相似三角形对应边成比例列方程求解即可;(3)当四边形CPEN 是菱形时,可得CP=CN ,分别表示出CP 和CN 的长度列方程求解即可;当四边形CPNE 是菱形时,根据菱形的性质可得N 点的横坐标是P 点横坐标的两倍,列方程求解即可;当四边形CEPN 是菱形时,根据菱形的性质得到CN=PN ,列方程求解即可.【详解】解:(1)∵点A ,B 的坐标分别为()8,0,()8,6,∴CO=6,AO=8,∴10AC ===,∵点M 以每秒1个单位的速度运动,运动的时间为t 秒,∴OM=t ,AM=AO-OM=8-t ,∴P 点的横坐标为t ,∵MP ⊥OA ,∴CO PM ∥,∴COA PMA ∠=∠,又∵CAO PAM ∠=∠,∴APM ACO △∽△,∴=PM AM AP CO AO AC =,即86810PM t AP -==,解得:364tPM =-,5104tAP =-,∴点P 的坐标为364t t ⎛⎫- ⎪⎝⎭,,∴55101044t tPC AC AP ⎛⎫=-=--= ⎪⎝⎭;(2)由(1)可知点P 的坐标为364t t ⎛⎫- ⎪⎝⎭,,由题意可知,BN=t ,∴CN=8-t ,∴点N 的坐标为()86t -,,当CNP CBA △∽△时,由题意可得PN BA ∥,∴点P 和点N 的横坐标相等,∴8t t -=,解得:t=4,∵04t <<,∴应舍去.当CPN CBA △∽△时,∴CP CNBC AC =,即584810tt-=,解得:12841t =.(3)如图所示,当四边形CPEN是菱形时,∴CP=CN ,∵CP=54t,CN=8-t ,∴584t t =-,解得:329t =;如图所示,当四边形CPNE 是菱形时,根据菱形的性质可得,PE 垂直平分CN ,∴N 点的横坐标是P 点横坐标的两倍,∴8-t=2t ,解得:83t =;如图所示,当四边形CEPN 是菱形时,根据菱形的性质可得CN=PN ,∴8t -=,整理得:2572560t t -=,解得:10t =(舍去),2256457t =>,应舍去;综上所述,329t =或83.【点睛】此题考查了矩形的性质和动点问题,相似三角形的判定和性质,解题的关键是根据题意表示出点P和点N的坐标.。
北师大版九年级数学上册期中试卷及答案【完整】

北师大版九年级数学上册期中试卷及答案【完整】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为13,则a 等于( )A .1B .2C .3D .43.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( )A .1000100030xx -+=2 B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x--=2 4.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:x 甲=x 丙=13,x 乙=x 丁=15:s 甲2=s 丁2=3.6,s 乙2=s 丙2=6.3.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁 5.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A .-3B .-2C .-1D .16.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变7.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°8.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(―1,2) B.(―9,18)C.(―9,18)或(9,―18) D.(―1,2)或(1,―2)9.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.计算(31)(31)+-的结果等于___________.2.分解因式:x 3﹣16x =_____________.3.函数132y x x =--+中自变量x 的取值范围是__________. 4.如图,抛物线2y ax c =+与直线y mx n =+交于A(-1,P),B(3,q)两点,则不等式2ax mx c n ++>的解集是__________.5.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是__________.6.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22k y x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--2.已知关于x 的一元二次方程220x x k +-=有两个不相等的实数根.(1)求k 的取值范围;(2)若方程的两个不相等实数根是a ,b ,求111a ab -++的值.3.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF=45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF 的长.4.如图,在Rt △ABC 中,∠ACB =90°,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D 作DE ⊥BC ,交直线MN 于E ,垂足为F ,连接CD 、BE .(1)求证:CE =AD ;(2)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由;(3)若D 为AB 中点,则当∠A 的大小满足什么条件时,四边形BECD 是正方形?请说明你的理由.5.随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.6.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、A4、D5、A6、D7、B8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、22、x (x +4)(x –4).3、23x -<≤4、3x <-或1x >.5、x=26、8.三、解答题(本大题共6小题,共72分)1、2x =2、(1)k>-1;(2)13、(1)略;(2) 52.4、(1)略;(2)四边形BECD 是菱形,理由略;(3)当∠A =45°时,四边形BECD 是正方形,理由略5、(1)90人,补全条形统计图见解析;.(2)48︒;(3)560人.6、(1) 4800元;(2) 降价60元.。
北师大版九年级上册数学期中考试试卷及答案

北师大版九年级上册数学期中考试试题一、单选题1.方程x(x+2)=0的根是()A.x=2B.x=0C.x1=0,x2=﹣2D.x1=0,x2=2 2.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则这个骰子向上的一面点数是奇数的概率为()A.12B.13C.14D.153.如图,在菱形ABCD中,AB=6,∠ABD=30°,则菱形ABCD的面积是()A.18B.C.36D.4.如图,DE∥FG∥BC,若DB=4FB,则EG与GC的关系是()A.EG=4GC B.EG=3GC C.EG=52GC D.EG=2GC5.一元二次方程x(x﹣3)=0的根是()A.0B.3C.0和3D.1和36.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.1B C.2D17.如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.给出以下结论:①DG=DF;②四边形EFDG是菱形;③EG2=12GF×AF;④当AG=6,EG=BE)A.①②③B.①②④C.①③④D.①②③④8.某校文学小组在举行的图书共享仪式上互赠图书,每位同学都把自己的图书向本组其他成员增送一本,全组共互赠了1260本书,设全组共有x名同学,依题意,可列出方程为A.x(x﹣1)=1260B.x(x+1)=1260C.2x(x﹣1)=1260D.12x(x﹣1)=12609.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,若∠DHO=20°,则∠ADC的度数是()A.120°B.130°C.140°D.150°10.下列四个选项中的三角形,与图中的三角形相似的是()A.B.C.D.二、填空题11.方程23530x x-=-的一次项系数是__________.12.已知23a cb d==,若b+d≠0,则a cb d++=_____.13.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于7”的概率是_____. 14.已知长方形ABCD,AB=3cm,AD=4cm,过对角线BD的中点O做BD垂直平分线EF,分别交AD 、BC 于点E 、F ,则AE 的长为__________cm .15.如图,在正方形ABCD 的外侧,作等边DCE ,则AEC 的度数是__________.16.如图,Rt △ABC 中,∠C =90°,以斜边AB 为边向外作正方形ABDE ,且正方形对角线交于点O ,连接OC ,已知AC =3,OC =,则另一直角边BC 的长为_____.三、解答题17.解下列方程(1)2x 2﹣4x ﹣3=0(2)(x ﹣1)2=(1﹣x )18.已知关于x 的一元二次方程(a +c)x 2+2bx +(a -c)=0,其中a ,b ,c 分别为△ABC 三边的长.(1)如果x =-1是方程的根,试判断△ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由.19.袋中装有除数字不同其它都相同的六个小球,球上分别标有数字1,2,3,4,5,6.(1)从袋中摸出一个小球,求小球上数字小于3的概率;(2)将标有1,2,3数字的小球取出放入另外一个袋中,分别从两袋中各摸出一个小球,求数字之和为偶数的概率.(要求用列表法或画树状图求解)20.在矩形ABCD 中,点E 在BC 上,AE AD =,DF ⊥AE ,垂足为F .(1)求证.DF AB=(2)若30FDC ∠=︒,且4AB =,求AD .21.某商店从厂家以每件18元购进一批商品出售,若每件售价为a 元,则可售出(320﹣10a )件,但物价部门限定每件商品加价不能超过进价的25%,若商店要想获得400元利润,则售价应定为每件多少元?需售出这种商品多少件?22.在 ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF.(1)求证:四边形BFDE 是矩形;(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB.23.如图,在△ABC 中,AB=AC ,点P 、D 分别是BC 、AC 边上的点,且∠APD=∠B .(1)求证:AC•CD=CP•BP ;(2)若AB=10,BC=12,当PD ∥AB 时,求BP 的长.24.如图,△ABC 在平面直角坐标系中,三个顶点坐标分别为A (0,3)、B (3、4)、C (2,2)(网格中每个正方形的边长是1个单位长度).(1)以点B为位似中心,在网格内画出△A′BC′,使△A′BC′与△ABC位似,且位似比为2:1,则点C′的坐标是______;(2)△A′BC′的面积是_______平方单位;(3)在x轴上找出点P,使得点P到B与点A距离之和最小,请直接写出P点的坐标.25.如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD 于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若3DCF=30°,求四边形AECF的面积.(结果保留根号)参考答案1.C【解析】【分析】本题可根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【详解】解:x(x+2)=0,∴x=0或x+2=0,解得x1=0,x2=﹣2.故选:C.【点睛】此题考查解一元二次方程,正确掌握解方程的方法及能依据每个方程的特点选择恰当的解法是解题的关键.2.A【解析】【详解】试题解析:∵骰子六个面中奇数为1,3,5,∴P(向上一面为奇数)31. 62 ==故选A.3.B【解析】【详解】过点A作AE⊥BC于E,如图,∵在菱形ABCD中,AB=6,∠ABD=30°,∴∠BAE=30°,∵AE⊥BC,∴AE=∴菱形ABCD的面积是6⨯=,故选B.4.B【解析】【分析】根据平行线分线段成比例定理即可得到答案.【详解】∵DE∥FG∥BC,DB=4FB,∴31EG DFGC FB===3.故选B.【点睛】此题主要考查平行线分线段成比例定理的理解及运用.根据平行线分线段成比例定理解答是解题的关键.5.C【解析】【详解】试题分析:x=0或x﹣3=0,所以x1=0,x2=3.故选C.考点:因式分解法解一元二次方程6.B【解析】【分析】先根据四边形ABCD是菱形可知,AD∥BC,由∠A=120°可知∠B=60°,作点P关于直线BD的对称点P′,连接P′Q,PC,则P′Q的长即为PK+QK的最小值,由图可知,当点Q与点C重合,CP′⊥AB时PK+QK的值最小,再在Rt△BCP′中利用锐角三角函数的定义求出P′C的长即可.【详解】解:∵四边形ABCD是菱形,∴AD∥BC,∵∠A=120°,∴∠B=180°-∠A=180°-120°=60°,作点P 关于直线BD 的对称点P′,连接P′Q ,P′C ,则P′Q 的长即为PK+QK 的最小值,由图可知,当点Q 与点C 重合,CP′⊥AB 时PK+QK 的值最小,在Rt △BCP′中,∵BC=AB=2,∠B=60°,∴sin 2P Q CP BC B ''==⋅=⨯故选B .【点睛】本题考查的是轴对称-最短路线问题及菱形的性质,根据题意作出辅助线,构造出直角三角形是解答此题的关键.7.D【解析】【分析】先依据翻折的性质和平行线的性质证明∠DGF=∠DFG ,从而得到GD=DF ,接下来依据翻折的性质可证明DG=GE=DF=EF ,连接DE ,交AF 于点O .由菱形的性质可知GF ⊥DE ,OG=OF=12GF ,接下来,证明△DOF ∽△ADF ,由相似三角形的性质可证明DF 2=FO•AF ,于是可得到GE 、AF 、FG 的数量关系,过点G 作GH ⊥DC ,垂足为H .利用(2)的结论可求得FG=4,然后再△ADF 中依据勾股定理可求得AD 的长,然后再证明△FGH ∽△FAD ,利用相似三角形的性质可求得GH 的长,最后依据BE=AD-GH 求解即可.【详解】解:∵GE ∥DF ,∴∠EGF =∠DFG .∵由翻折的性质可知:GD =GE ,DF =EF ,∠DGF =∠EGF ,∴∠DGF =∠DFG .∴GD =DF .故①正确;∴DG =GE =DF =EF .∴四边形EFDG 为菱形,故②正确;如图1所示:连接DE ,交AF 于点O .∵四边形EFDG 为菱形,∴GF ⊥DE ,OG =OF =12GF .∵∠DOF =∠ADF =90°,∠OFD =∠DFA ,∴△DOF ∽△ADF .∴DFAF =OFDF ,即DF 2=FO•AF .∵FO =12GF ,DF =EG ,∴EG 2=12GF•AF .故③正确;如图2所示:过点G 作GH ⊥DC ,垂足为H .∵EG 2=12GF•AF ,AG =6,EG =∴20=12FG (FG+6),整理得:FG 2+6FG ﹣40=0.解得:FG =4,FG =﹣10(舍去).∵DF =GE =AF =10,∴AD =∵GH ⊥DC ,AD ⊥DC ,∴GH ∥AD .∴△FGH ∽△FAD .∴GHAD=FGAF410,∴GH,∴BE=AD﹣GH=故选:D.【点睛】本题考查了四边形与三角形的综合应用,掌握矩形的性质、菱形的判定和性质、相似三角形的性质和判定、勾股定理的应用,利用相似三角形的性质得到DF2=FO•AF是解题答问题②的关键,依据相似三角形的性质求得GH的长是解答问题④的关键.8.A【解析】【分析】设全组共有x名同学,那么每名同学要赠送(x﹣1)本,那么总共送x(x﹣1)本,据此可得出方程.【详解】设全组共有x名同学,那么每名同学送出的图书是(x﹣1)本;则总共送出的图书为x(x﹣1);又知实际互赠了1260本图书,∴x(x﹣1)=1260;故选:A.【点睛】此题考查列一元二次方程,本题弄清每名同学送出的图书是(x-1)本是解题的关键.9.C【解析】【分析】由四边形ABCD是菱形,可得OB=OD,AC⊥BD,又由DH⊥AB,∠DHO=20°,可求得∠OHB的度数,然后由直角三角形斜边上的中线等于斜边的一半,证得△OBH是等腰三角形,继而求得∠ABD的度数,然后求得∠ADC的度数.【详解】∵四边形ABCD是菱形,∴OB=OD,AC⊥BD,∠ADC=∠ABC,∵DH⊥AB,∴OH=OB=12 BD,∵∠DHO=20°,∴∠OHB=90°﹣∠DHO=70°,∴∠ABD=∠OHB=70°,∴∠ADC=∠ABC=2∠ABD=140°,故选C.【点睛】本题考查了菱形的性质、直角三角形的性质以及等腰三角形的判定与性质,证得△OBH是等腰三角形是关键.10.B【解析】【分析】由于已知三角形和选择项的三角形都放在小正方形的网格中,设正方形的边长为1,所以每一个三角形的边长都是可以表示出,然后根据三角形的对应边成比例即可判定选择项.【详解】解:设小正方形的边长为1,那么已知三角形的三边长分别为,所以三边之比为1:2A、三角形的三边分别为2,,三边之比为3,故本选项错误;B、三角形的三边分别为2,4,1:2C、三角形的三边分别为2,32:3D44,故本选项错误.故选:B.【点睛】此题主要考查了相似三角形的判定,属于基础题,掌握三边对应成比例的两个三角形相似是解答本题的关键,难度一般.11.-5【解析】【分析】根据任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;b叫做一次项系数,c叫做常数项可得答案.【详解】方程3x2﹣5x﹣3=0的一次项系数是﹣5.故答案为:﹣5.【点睛】本题考查了一元二次方程的一般形式,关键是掌握要确定二次项系数,一次项系数和常数项,必须先把一元二次方程化成一般形式.12.23【解析】【分析】分别设a=2m,c=2n,根据23a cb d==可用m、n表示出b、d,代入所给代数式即可得答案.【详解】设a=2m,c=2n,∵23a cb d==,∴b=3m,d=3n,∴a cb d++=2m2n3m3n++=23,故答案为:2 3【点睛】本题考查等比性质的应用,若a c kb d==,则a cb d++=k,熟练掌握等比性质是解题关键.13.15 36【解析】【分析】画树状图展示所有36种等可能的结果数,再找出“两枚骰子的点数和小于7”的结果数,然后根据概率公式求解.【详解】画树状图为:共有36种等可能的结果数,其中“两枚骰子的点数和小于7”的结果数为15,所以“两枚骰子的点数和小于7”的概率15 36;故答案为:15 36 .【点睛】此题考查列表法与画树状图法,解题关键在于根据题意画出树状图.14.7 8【解析】【详解】连接EB,∵BD垂直平分EF,∴ED=EB,设AE=xcm,则DE=EB=(4﹣x)cm,在Rt△AEB中,AE2+AB2=BE2,即:x2+32=(4﹣x)2,解得:x=78故答案为78cm .15.45︒【解析】【分析】先求出AED ∠的度数,即可求出AEC ∠.【详解】解:由题意可得,,90,60AD DC DE ADC EDC DEC ︒︒==∠=∠=∠=,,150AD DE ADE ADC EDC ︒=∠=∠+∠= 180150152AED DAE ︒︒︒-∴∠=∠==45AEC CED AED ︒∴∠=∠-∠=故答案为45︒【点睛】本题考查了等腰与等边三角形的性质,等腰三角形的两底角相等,等边三角行的三条边都相等,三个角都相等,灵活应用等腰及等边三角形的性质是解题的关键.16.9【解析】【分析】过O 作OF ⊥BC ,过A 作AM ⊥OF ,根据正方形的性质得出∠AOB=90°,OA=OB ,求出∠BOF=∠OAM ,根据AAS 证△AOM ≌△BOF ,推出AM=OF ,OM=FB ,求出四边形ACFM 为矩形,推出AM=CF ,AC=MF=3,得出等腰三角形三角形OCF ,根据勾股定理求出CF=OF=6,求出BF ,即可求出答案.【详解】解:过O 作OF ⊥BC 于F ,过A 作AM ⊥OF 于M ,∵∠ACB =90°,∴∠AMO =∠OFB =90°,∠ACB =∠CFM =∠AMF =90°,∴四边形ACFM 是矩形,∴AM =CF ,AC =MF =3,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∵∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△OBF中0AM BOF AMO OFB OA0B∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOM≌△OBF(AAS),∴AM=OF,OM=FB,∴OF=CF,∵∠CFO=90°,∴△CFO是等腰直角三角形,∵OC=,由勾股定理得:CF=OF=6,∴BF=OM=OF﹣FM=6﹣3=3,∴BC=6+3=9.故答案为:9.【点睛】本题考查了等腰直角三角形,勾股定理,正方形的性质,全等三角形的性质和判定的应用,主要考查学生综合运用性质进行推理的能力.17.(1)x1x2(2)x1=1,x2=0.【解析】【分析】(1)利用公式法解方程即可;(2)先移项,利用因式分解法解方程即可.【详解】(1)∵a =2,b =﹣4,c =﹣3,∴△=(﹣4)2﹣4×2×(﹣3)=40>0,则x 22,即x 1=22+,x 2=22;(2)(x ﹣1)2=(1-x ),(x ﹣1)2+(x ﹣1)=0,(x ﹣1)•x =0,解得:x 1=1,x 2=0.【点睛】本题考查解一元二次方程,解一元二次方程常用的方法有直接开平方法、公式法、因式分解法、配方法等,熟练掌握并灵活运用适当的方法是解题关键.18.(1)△ABC 是等腰三角形,理由见解析;(2)△ABC 是直角三角形.理由见解析.【解析】【详解】试题分析:(1)由方程解的定义把x=﹣1代入方程得到a ﹣b=0,即a=b ,于是由等腰三角形的判定即可得到△ABC 是等腰三角形;(2)由判别式的意义得到△=0,整理得222a b c =+,然后由勾股定理的逆定理得到△ABC 是直角三角形.试题解析:解:(1)△ABC 是等腰三角形.理由如下:∵x=﹣1是方程的根,∴(a+c )×1﹣2b+(a ﹣c )=0,∴a+c ﹣2b+a ﹣c=0,∴a ﹣b=0,∴a=b ,∴△ABC 是等腰三角形;(2)△ABC 是直角三角形.理由如下:∵方程有两个相等的实数根,∴△=2(2)4()()0b a c a c -+-=,∴2224440b a c -+=,∴222a b c =+,∴△ABC 是直角三角形.考点:1.根的判别式;2.等腰三角形的判定;3.勾股定理的逆定理.19.(1)13;(2)49.【解析】【分析】(1)先列出摸出一个小球的所有可能的结果,再找出小球上数字小于3的结果,然后利用概率公式求解即可;(2)先用表格列出从两袋中摸出小球的所有可能的结果,再计算两个小球数字之和,从而得出数字之和为偶数的结果,然后利用概率公式计算即可.【详解】(1)依题意,从袋中摸出一个小球的结果有6种,即1,2,3,4,5,6,它们每一种出现的可能性相等其中,小球上数字小于3的结果有2种,即1,2故小球上数字小于3的概率为2163 P==;(2)依题意,用列表法列出从两袋中摸出小球的所有可能的结果如下:4561(1,4)(1,5)(1,6)2(2,4)(2,5)(2,6)3(3,4)(3,5)(3,6)其中,数字之和为偶数的结果有4种,即(1,5),(2,4),(2,6),(3,5)故两个小球上数字之和为偶数的概率为49 P=.【点睛】本题考查了简单事件的概率计算、利用列举法求概率,依据题意,正确列出事件的所有可能的结果是解题关键.20.(1)证明见解析;(2)8【解析】【分析】(1)利用“AAS”证△ADF≌△EAB即可得;(2)由∠ADF+∠FDC=90°、∠DAF+∠ADF=90°得∠FDC=∠DAF=30°,据此知AD=2DF,根据DF=AB可得答案.【详解】(1)证明:在矩形ABCD中,∵AD∥BC,∴∠AEB=∠DAF,又∵DF⊥AE,∴∠DFA=90°,∴∠DFA=∠B,又∵AD=EA,∴△ADF≌△EAB,∴DF=AB.(2)∵∠ADF+∠FDC=90°,∠DAF+∠ADF=90°,∴∠FDC=∠DAF=30°,∴AD=2DF,∵DF=AB,∴AD=2AB=8.【点睛】本题主要考查矩形的性质,解题的关键是掌握矩形的性质和全等三角形的判定与性质及直角三角形的性质.21.每件商品的售价应定为22元,需要卖出这种商品100件.【解析】【分析】可根据关键语“若每件售价x元,则每件盈利(x-18)元,则可卖出(320-10x)件”,根据每件的盈利×销售的件数=获利,即可列出方程求解.【详解】解:设每件商品的售价定为x元,则(x﹣18)(320﹣10x)=400,整理得x2﹣50x+616=0,∴x1=22,x2=28∵18(1+25%)=22.5,而28>22.5∴x=22.卖出商品的件数为320﹣10×22=100.答:每件商品的售价应定为22元,需要卖出这种商品100件.【点睛】本题考查了一元二次方程的应用,解题时可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.22.(1)见解析(2)见解析【解析】【分析】(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE 是平行四边形,再根据矩形的判定,即可证明;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,即可证明.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【点睛】本题考查了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.23.(1)证明见解析;(2)253.【解析】【分析】(1)易证∠APD=∠B=∠C,从而可证到△ABP∽△PCD,即可得到BP ABCD CP=,即AB•CD=CP•BP,由AB=AC即可得到AC•CD=CP•BP;(2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,从而可证到△BAP∽△BCA,然后运用相似三角形的性质即可求出BP的长.【详解】解:(1)∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴BP AB CD CP=,∴AB•CD=CP•BP.∵AB=AC,∴AC•CD=CP•BP;(2)∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.∵∠B=∠B,∴△BAP∽△BCA,∴BA BP BC BA=.∵AB=10,BC=12,∴101210BP =,∴BP=253.【点睛】本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明AC•CD=CP•BP 转化为证明AB•CD=CP•BP 是解决第(1)小题的关键,证到∠BAP=∠C 进而得到△BAP ∽△BCA 是解决第(2)小题的关键.24.(1)(1,0);(2)10;(3)(97,0).【解析】【分析】(1)利用位似图形的性质得出对应点位置,即可得出答案;(2)利用勾股定理逆定理可得△A′BC′是直角三角形,利用三角形面积公式求出△A′BC′面积即可;(3)作A 关于y 轴的对称点A″,连接A″B ,交x 轴于点P ,根据对称性质可得A″B 即为PA+PB 的最小值,根据A″和B 点坐标可得直线A″B 的解析式,令y=0即可得P 点坐标.【详解】(1)如图所示:C′(1,0);故答案为:(1,0);(2)∵A′B 2=62+22=40,A′C′2=42+22=20,C′B 2=42+22=20,∴A′B 2=A′C′2+C′B 2,∴△A′BC′是直角三角形,∴△A′BC′的面积是:1210平方单位;故答案为:10(3)作A 关于y 轴的对称点A″,连接A″B ,交x 轴于点P ,∴PA=PA″,∴PA″+PB=PA+PB=BA″,即为PA+PB 的最小值,设A″B 直线解析式为:y =kx+b ,把(3,4),(0,﹣3),代入得:343k bb+=⎧⎨=-⎩,解得:733 kb⎧=⎪⎨⎪=-⎩,故A″B直线解析式为:y=73x﹣3,当y=0时,x=9 7,故P(97,0).【点睛】本题考查位似变换以及坐标与图形的性质、待定系数法求一次函数解析式及轴对称的性质,正确得出对应点的坐标是解题关键.25.(1)证明见解析(2)【解析】【分析】(1)由过AC的中点O作EF⊥AC,根据线段垂直平分线的性质,可得AF=CF,AE=CE,OA=OC,然后由四边形ABCD是矩形,易证得△AOF≌△COE,则可得AF=CE,继而证得结论;(2)由四边形ABCD是矩形,易求得CD的长,然后利用三角函数求得CF的长,继而求得答案.【详解】(1)∵O是AC的中点,且EF⊥AC,∴AF=CF ,AE=CE ,OA=OC ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠AFO=∠CEO ,在△AOF 和△COE 中,{AFO CEOAOF COEOA OC∠=∠∠=∠=∴△AOF ≌△COE (AAS ),∴AF=CE ,∴AF=CF=CE=AE ,∴四边形AECF 是菱形;(2)∵四边形ABCD 是矩形,∴在Rt △CDF 中,cos ∠DCF=CDCF ,∠DCF=30°,∴CF=cos 30CD︒=2,∵四边形AECF 是菱形,∴CE=CF=2,∴四边形AECF 是的面积为:。
北师大版2022~2023学年九年级数学第一学期期中质量检测题【含答案】
北师大版2022~2023学年九年级数学第一学期期中质量检测题( 分值:150分)本试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置.考试结束后,只交答题卡.第Ⅰ卷 (选择题 共60分)一、选择题(本题共15个小题,每题只有一个正确答案,每小题4分,共60分)1. 菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形2. 已知平行四边形ABCD ,下列条件中,不能判定这个平行四边形为矩形的是( )A .∠A=∠B B .∠A=∠C C .AC =BD D .AB⊥BC3.解一元二次方程x2﹣8x﹣5=0,用配方法可变形为( )A .(x+4)2=11B .(x﹣4)2=11C .(x+4)2=21D .(x﹣4)2=214.若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M 与N 的大小关系正确的为( )A .M >NB .M=NC .M <ND .不确定5.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( ) A .21B .41C .61D .1216.在一个暗箱里放有a 个除颜色外其它完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是( )A .12B .9C .4D .37.如图,在△ABC 中,DE ∥BC ,AD =6,BD =3,AE =4,则EC 的长为( )A.1 B .2 C.3 D. 4第7题 图 第8题 图 第9题图 第10题图8.如图,下列条件不能判定△ADB ∽△ABC 的是( )A .∠ABD =∠ACB B .∠ADB =∠ABC B .AB 2=AD •AC D .AD AB AB BC=9.如图,点D 、E 分别为△ABC 的边AB 、AC 上的中点,则△ADE 的面积与四边形BCED 的面积的比为( )A .1:2B .1:3C .1:4D .1:110.如图,在直角坐标系中,有两点A (6,3)、B (6,0).以原点O 为位似中心,相似比为31,在第一象限内把线段AB 缩小后得到线段CD ,则点C 的坐标为( )A .(2,1)B .(2,0)C .(3,3)D .(3,1)11.已知点A (-2,y 1),B (-3,y 2)是反比例函y=x 6-图象上的两点,则有( )A .y 1>y 2B .y 1<y 2C .y 1= y 2 D.不能确定12.函数xa y =(0≠a )与a ax y -=(0≠a )在同一平面直角坐标系中的大致图象是( )13.某村耕地总面积为 50 公顷,且该村人均耕地面积 y (单位:公顷/人)与总人口x (单位:人)的函数图象如图所示,则下列说法正确的是( )A .该村人均耕地面积随总人口的增多而增多B .该村人均耕地面积 y 与总人口 x 成正比例C .若该村人均耕地面积为 2 公顷,则总人口有 100 人A CBD .当该村总人口为 50 人时,人均耕地面积为 1 公顷14. 如图,菱形ABCD 的边AD⊥y 轴,垂足为点E ,顶点A 在第二象限,顶点B 在y 轴的正半轴上,反比例函数()0,0y >≠=x k x k 的图象同时经过顶点C.D ,若点C 的横坐标为5,BE=3DE.则k 的值为( ) A.25B.3C.415D.515.如图,在正方形ABCD 中,点P 是AB 上一动点(不与A 、B 重合),对角线AC 、BD 相交于点O ,过点P 分别作AC 、BD 的垂线,分别交AC 、BD 于点E 、F ,交AD 、BC 于点M 、N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE 2+PF 2=PO 2;④△POF∽△BNF;⑤当△PMN∽△AMP 时,点P 是AB 的中点.其中正确的结论有( )A .5个B .4个C .3个D .2个第Ⅱ卷(非选择题 共90分)二、填空题(本题共7个小题,每题4分,共28分)16.若3x=5y ,则y x = ;已知0,2≠++===f d b f e d c b a 且,则fd be c a ++++= .17. 一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是 .18.把长度为20cm 的线段进行黄金分割,则较长线段的长是________cm .(结果保留根号)19.如图所示,一个底面为等边三角形的三棱柱,底面边长为2,高为4,如图放置,则其左视图的面积是 .主视图 俯视图 左视图20.如下图,为了测量校园内一棵不可攀的树的高度,实验学校“玩转数学”社团做了如下的探索:根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把镜子放在离树(AB )9米的点E 处,然后沿着直线BE 后退到点D ,这是恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7米,观察者目高CD=1.8米,则树(AB)的高度为____________米.第20题图第21题图21.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为.22.如图,在RT△A BC中,∠C=90°,BC=8,AC=6,动点Q从B点开始在线段BA上以每秒2个单位长度的速度向点A移动,同时点P从A点开始在线段AC上以每秒1个单位长度的速度向点C移动.当一点停止运动,另一点也随之停止运动.设点Q,P移动的时间为t秒.当t= 秒时△APQ与△ABC相似.三.解答题23.(8分)同一时刻,物体的高与影子的长成比例,某一时刻,高1.6m的人影长1.2m,一电线杆影长为9m,则电线杆的高为多少米?24.(8分)在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率;(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.25.(8分)如图,在△ABC 中, 点D,E 分别是AB,AC 边上的两点,且AB=8,AC=6,AD=3,AE=4,DE=6,求BC 的长.26.(12分)如图,△ABC 为锐角三角形,AD 是BC 边上的高,正方形EFGH 的一边FG 在BC 上,顶点E 、H 分别在AB 、AC 上,已知BC=40cm ,AD=30cm .(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.27.(12分)如图,已知反比例函数x k y =与一次函数b x y +=的图象在第一象限相交于点A (1,4+-k ).(1)试确定这两个函数的表达式;(2)求出这两个函数的另一个交点B的坐标,并求出△AOB的面积.(3)直接写出当反比例函数值大于一次函数值时,x的取值范围.28(14分)已知:如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=3cm,点P由B点出发沿BA方向向点A匀速运动,速度为2cm/s;点Q由A点出发沿AC方向向点C匀速运动,速度为cm/s;若设运动的时间为t(s)(0<t<3),解答下列问题:(1)如图①,连接PC,当t为何值时△APC∽△ACB,并说明理由;(2)如图②,当点P,Q运动时,是否存在某一时刻t,使得点P在线段QC的垂直平分线上,请说明理由;(3)如图③,当点P,Q运动时,线段BC上是否存在一点G,使得四边形PQGB为菱形?若存在,试求出BG长;若不存在请说明理由.数学试题答案一选择题1—5BB DB C 6~10 ABDBA 11~15 AADCB二填空题16. 35 217. 用A 和a 分别表示第一个有盖茶杯的杯盖和茶杯;12用B 和b 分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:Aa 、Ab 、Ba 、Bb .所以颜色搭配正确的概率是.1218. (105—10) 注:无括号也不再扣分19. 4320. 621. 622. 13501130或三解答题23.解设电线杆高x 米,由题意得:x 1.6=91.2 ---------------------------------------------------5分 X=12 ---------------------------------------------------7分答:电线高为12米 --------------------------------------------------8分24.解:(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,刚好是男生的概率=433 =73;---------------------------------------------2分(2)画树状图为:---------------5分共有12种等可能的结果数,------------------------6分其中刚好是一男生一女生的结果数为6,----------------------------7分所以刚好是一男生一女生的概率==.----------------------8分25解:∵,-------------------------------1分, -----------------------------------2分∴AC AD =AB AE-------------------------------------3分∵∠A=∠A ,---------------------------------4分∴△ADE ∽△ACB.----------------------------------5分∴21==AC AD BC DE 即216=BC --------------------------------------7分∴BC=12---------------------------------------------8分26解:(1)证明:∵四边形EFGH 是正方形,∴EH ∥BC ,-----------------------1分∴∠AEH=∠B ,----------------------2分∠AHE=∠C ,-----------------------3分∴△AEH ∽△ABC .-------------------4分(2)解:如图设AD 与EH 交于点M .-----------------------5分∵∠EFD=∠FEM=∠FDM=90°,∴四边形EFDM 是矩形,∴EF=DM ,设正方形EFGH 的边长为x ,-------------------6分∵△AEH ∽△ABC ,∴=,-------------------------------------------8分∴=,-------------------------------------10分∴x=,-----------------------------------------11分∴正方形EFGH 的边长为cm ,面积为cm 2.------------------------12分27题(1)∵点A (1,4k -+)在反比例函数k y x =的图象上∴=4k k -+解得=2k ----------------------------------------------------1分∴A (1,2)∵点A (1,2)在一次函数y x b =+的图象上∴12b +=解得1b =-----------------------------------------2分反比例函数的解析式为2y x =,一次函数的解析式为1y x =+-------4分(2)解方程组12y x y x =+⎧⎪⎨=⎪⎩得21x y =-⎧⎨=-⎩或12x y =⎧⎨=⎩∵点B 在第三象限 ∴点B 坐标为2-1------------------6分∵1y x =+,当0y =时1x =-∴点C 坐标为1-0------------7分∴S △A O B =23-----------------------------10分(3)x<- 2或0<x<1----------------------------------12分注:写出一种情况给1分28题已知:如图,在Rt △ACB 中,∠C=90°,AC=3cm ,BC=3cm ,点P 由B 点出发沿BA 方向向点A 匀速运动,速度为2cm/s ;点Q 由A 点出发沿AC 方向向点C 匀速运动,速度为cm/s ;若设运动的时间为t (s )(0<t <3),解答下列问题:(1)如图①,连接PC,当t为何值时△APC∽△ACB,并说明理由;(2)如图②,当点P,Q运动时,是否存在某一时刻t,使得点P在线段QC的垂直平分线上,请说明理由;(3)如图③,当点P,Q运动时,线段BC上是否存在一点G,使得四边形PQGB为菱形?若存在,试求出BG长;若不存在请说明理由.【考点】相似形综合题.【分析】(1)先根据勾股定理求出AB,再用△APC∽△ACB,得出,即:,求出时间;(2)先用垂直平分线的性质得出QM=CM=CQ=(3﹣t),然后用平行线分线段成比例建立方程求出结论;(3)先由平行四边形的性质建立方程求出时间t,即求出PQ,PB,即可得到PQ≠PB判断出四边形PQGB不可能是菱形.解:(1)在Rt△ACB中,∠C=90°,AC=3cm,BC=3cm,∴AB=6,由运动知,BP=2t,AQ=t,∴AP=6﹣2t,∵△APC∽△ACB,∴,∴,∴t=;(2)存在,理由:如图②,由运动知,BP=2t,AQ=t,∴AP=6﹣2t,CQ=3﹣t,∵点P是CQ的垂直平分线上,∴QM=CM=CQ=(3﹣t),∴AM=AQ+QM=t﹣(3﹣t)=(t﹣1)过点P作PM⊥AC,∵∠ACB=90°,∴PM∥BC,∴,∴,∴t=或t=(舍),∴t=.(3)不存在,理由:由运动知,BP=2t,AQ=t,∴AP=6﹣2t,假设线段BC上是存在一点G,使得四边形PQGB为平行四边形,∴PQ∥BG,PQ=BG,∴△APQ∽△ABC,∴,∴,∴t=,PQ=,∴BP=2t=3,∴PQ≠BP,∴平行四边形PQGB不可能是菱形.即:线段BC上不存在一点G,使得四边形PQGB为菱形.【点评】此题是相似形综合题,主要考查了勾股定理,线段的垂直平分线的性质,相似三角形的判定和性质,平行四边形的性质,菱形的判定,解本题的关键是用方程的思想解决问题.。
北师大版九年级上册数学期中考试试卷及答案
北师大版九年级上册数学期中考试试题一、单选题1.下列说法错误的是()A .对角线互相垂直的平行四边形是矩形B .矩形的对角线相等C .对角线相等的菱形是正方形D .两组对边分别相等的四边形是平行四边形2.一个菱形的两条对角线分别为4和5,则这个菱形的面积是()A .8B .10C .15D .203.在矩形ABCD 中,对角线AC 与BD 相交于点O ,34ADB ∠=︒,则BAO ∠的度数是A .46°B .54°C .56°D .60°4.如图,公路AC 、BC 互相垂直,公路AB 的中点M 与点C 被湖隔开,若测得AB 的长为3.2km ,则M ,C 之间的距离是()A .0.8kmB .1.6kmC .2.0kmD .3.2km 5.用配方法解方程2640x x ++=时,原方程变形为()A .2(3)9x +=B .2(3)13x +=C .2(3)5x +=D .2(3)4x +=6.一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A .14B .13C .12D .347.已知等腰三角形的两边长分别是一元二次方程2680x x -+=的两根,则该等腰三角形的底边长为()A .2B .4C .8D .2或48.某地一家餐厅新开张,开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元,若设每天的增长率为x ,则x 满足的方程是()A .5000(1+x )=6050B .5000(1+2x )=6050C .5000(1﹣x )2=6050D .5000(1+x )2=60509.如图矩形ABCD 的两条对角线相交于点O ,CE 垂直平分DO ,AB 1=,则BE 等于()A .32B .43C .23D .210.如图,在边长为2的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则PBQ 周长的最小值为()AB .3C 1D .二、填空题11.一元二次方程()211x x +=+的根是_____.12.若关于x 的方程21(1)7a a x +--=0是一元二次方程,则a =____.13.x 2﹣4x+1=(x ﹣2)2﹣______.14.如图所示,平行四边形ABCD 的对角线AC 、BD 相交于点O ,试添加一个条件:___,使得平行四边形ABCD 为菱形.15.若关于x 的一元二次方程2(1)10k x x -++=有实数根,则k 的最大整数值是_________.16.一个袋子中6个红球,若干白球,它们除颜色外完全相同,现在经过大量重复的摸球试验发现,摸出一个球是白球的频率稳定在0.4附近,则袋子中白球有_____个.17.如图,正方形ABCD 的对角线BD 是菱形BEFD 的一边,菱形BEFD 的对角线BF 交CD 于点P ,则∠FPC 的度数是______.18.如图,在Rt ABC 中,90A ∠= ,AB=6,BC=10,P 是BC 边上的一点,作PE 垂直AB ,PF 垂直AC ,垂足分别为E 、F ,求EF 的最小值是_____.三、解答题19.用适当的方法解方程:(1)x 2+2x ﹣1=0;(用配方法)(2)3x 2﹣5x+1=0;(用公式法)(3)3(2x+1)2=4x+2;(用因式分解法)(4)3x 2+5x =3x+3.(选择适当的方法)20.“一方有难,八方支援”.四川汶川大地震牵动着全国人民的心,我市某医院准备从甲、乙、丙三位医生和A 、B 两名护士中选取一位医生和一名护士支援汶川.(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果;(2)求恰好选中医生甲和护士A 的概率.21.如图,菱形ABCD 的对角线AC 与BD 相交于点O ,∠ABC ∶∠BAD =1∶2,AC ∥BE ,CE ∥BD .(1)求∠DBC 的度数;(2)求证:四边形OBEC 是矩形.22.如图,在正方形ABCD 中,点P 是对角线BD 上的一点,点E 在AD 的延长线上,且PA=PE,PE交CD于点F.(1)证明:PC=PE;(2)求∠CPE的度数.23.某公园内有一块长30m,宽20m的矩形空地,准备将其建成一个矩形花坛,要求在花坛中修建三条长方形的矩形小道(如图),剩余的地方种植花草,要使种植花草的面积为532m2,那么小道的宽度应为多少米?(注:所有小道宽度相等)24.某服装专卖店在销售中发现,一款衬衫每件进价为70元,销售价为100元时,每天可售出20件,今年受“疫情”影响,为尽快减少库存,商店决定采取适当的降价措施,经市场调查发现,如果每件衬衫降价1元,那么平均可多售出2件.试问:每件衬衫降价多少元时,平均每天赢利750元?25.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:△AFE≌△DBE;(2)若AB⊥AC,试判断四边形ADCF是不是菱形?若是,证明你的结论;若不是,请说明理由.参考答案1.A【解析】根据特殊平行四边形的性质判断即可;【详解】经过判断,对角线互相垂直的平行四边形是菱形,故A错误;B、C、D均正确;故答案选A.【点睛】本题主要考查了特殊平行四边形的判定,准确判断是解题的关键.2.B【解析】【分析】根据菱形的面积计算公式计算即可;【详解】∵菱形的两条对角线分别为4和5,∴菱形的面积14510 2=⨯⨯=;故答案选B.【点睛】本题主要考查了菱形的面积计算,准确计算是解题的关键.3.C【解析】【分析】由矩形的性质得∠BAD=90°,OA=OC=12AC,OB=OD=12BD,AC=BD,则OA=OD,由等腰三角形的性质得∠OAD=∠ADB=34°,进而得出答案.【详解】解:∵四边形ABCD是矩形,∴∠BAD=90°,OA=OC=12AC,OB=OD=12BD,AC=BD,∴OA=OD,∴∠OAD=∠ADB=34°,∴∠BAO=90°−∠OAD=90°−34°=56°;故选:C.【点睛】本题考查了矩形的性质、等腰三角形的判定与性质等知识;熟练掌握矩形的性质和等腰三角形的性质是解题的关键.4.B【解析】【分析】根据直角三角形斜边上的中线性质得出CM=12AB,代入求出即可.【详解】∵AC⊥BC,∴∠ACB=90°,∵M为AB的中点,∴CM=12 AB,∵AB=3.2km,∴CM=1.6km,故选:B.【点睛】此题考查直角三角形斜边上的中线性质,能根据直角三角形斜边上的中线性质得出CM=12AB是解题的关键.5.C【解析】【分析】方程整理后,配方得到结果,即可做出判断.【详解】解:方程配方得:x2+6x+5+4-5=0,即(x+3)2=5.故选:C.【点睛】此题考查解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.6.B【解析】【分析】画树状图展示所有12种等可能的结果数,再找出抽取的两张卡片上数字之积为负数的结果数,然后根据概率公式求解.【详解】解:画树状图如下:由树状图可知共有12种等可能结果,其中抽取的两张卡片上数字之积为负数的结果有4种,所以抽取的两张卡片上数字之积为负数的概率为412=13,故选B.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.7.A【解析】【分析】解一元二次方程求出方程的解,得出三角形的边长,用三角形存在的条件分类讨论边长,即可得出答案.【详解】解:x2-6x+8=0(x-4)(x-2)=0解得:x=4或x=2,当等腰三角形的三边为2,2,4时,不符合三角形三边关系定理,此时不能组成三角形;当等腰三角形的三边为2,4,4时,符合三角形三边关系定理,此时能组成三角形,所以三角形的底边长为2,故选:A.本题考查了等腰三角形的性质,三角形的三边关系,解一元二次方程,能求出方程的解并能够判断三角形三边存在的条件是解此题的关键.8.D【解析】【分析】根据开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元列方程即可得到结论.【详解】解:设每天的增长率为x ,依题意,得:5000(1+x )2=6050.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.A【解析】【分析】根据矩形的性质可证明ODC ,OAB 都是等边三角形,根据等边三角形的性质即可求出OE 的长,即可的答案;【详解】四边形ABCD 是矩形,OA OB OD OC ∴===,CE 垂直平分相等OD ,CO CD ∴=,OC OD CD ∴==,OCD ,AOB 都是等边三角形,OB AB OD 1∴===,OE DE ==12OD=12,13BE 122∴=+=,【点睛】本题考查矩形的性质、等边三角形的判断和性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.C【解析】【分析】由于点B 与点D 关于AC 对称,所以如果连接DQ ,交AC 于点P ,那么PBQ 的周长最小,此时PBQ 的周长BP PQ BQ DQ BQ.=++=+在Rt CDQ 中,由勾股定理先计算出DQ 的长度,再得出结果即可.【详解】连接DQ ,交AC 于点P ,连接PB 、BD ,BD 交AC 于O .四边形ABCD 是正方形,AC BD ∴⊥,BO OD =,CD 2cm =,∴点B 与点D 关于AC 对称,BP DP ∴=,BP PQ DP PQ DQ ∴+=+=.在Rt CDQ 中,DQ ===,PBQ ∴的周长的最小值为:BP PQ BQ DQ BQ 1++=+=+.故选C .【点睛】此题考查轴对称问题,根据两点之间线段最短,确定点P 的位置是解题关键.11.10x =,21x =-【分析】利用因式分解法求解可得.【详解】解:2(1)1x x +=+ ,2(1)(1)0x x ∴+-+=,则(1)0x x +=,0x ∴=或10x +=,解得10x =,21x =-,故答案为:10x =,21x =-.12.﹣1.【解析】根据一元二次方程的定义得到由此可以求得a 的值.【详解】解:∵关于x 的方程(a ﹣1)xa2+1﹣7=0是一元二次方程,∴a 2+1=2,且a ﹣1≠0,解得,a =﹣1.故答案为﹣1.13.3【解析】利用配方法的步骤整理即可.【详解】解:x 2﹣4x+1=x 2﹣4x+4﹣3=(x ﹣2)2﹣3,故答案为3,14.AD=DC (答案不唯一)【详解】由四边形ABCD 是平行四边形,添加AD=DC ,根据邻边相等的平行四边形是菱形的判定,可使得平行四边形ABCD 为菱形;添加AC ⊥BD ,根据对角线互相垂直的平行四边形是菱形的判定,可使得平行四边形ABCD 为菱形.故答案为:AD=DC (答案不唯一).15.0【解析】关于x 的一元二次方程2(1)10k x x -++=有实数根,则△=240b a -≥,且k-1≠0,求出k 的取值范围即可解决本题.【详解】解:关于x 的一元二次方程2(1)10k x x -++=有实数根,则()=1410k 10△--≥⎧⎪⎨-≠⎪⎩k ,解得:54k ≤且k≠1,则k 的最大整数值为;0,故答案为:0.16.4【解析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】设袋子中白球有x 个,由题意得,6x x+=0.4,解得:x =4,经检验x=4是原方程的解故袋子中白球有4个,故答案为:4.17.112.5°【解析】利用正方形的性质得到90BCD ∠︒=,45CBD ∠︒=,再根据菱形的性质得BF 平分,EBD ∠,所以22.5CBP ∠︒=,然后根据三角形外角性质计算∠FPC 的度数.【详解】解:∵四边形ABCD 为正方形,90BCD ∴∠︒=,45CBD ∠︒=,∵四边形BEFD 为菱形,∴BF 平分∠EBD ,22.5CBP ∴∠︒=,22.590112.5FPC PBC BCP ∴∠∠∠︒︒︒=+=+=.故答案为:112.5︒.18.4.8【解析】根据已知得出四边形AEPF 是矩形,得出EF=AP ,要使EF 最小,只要AP 最小即可,根据垂线段最短得出即可.【详解】解:连接AP ,∵∠BAC=90°,PE ⊥AB ,PF ⊥AC ,∴∠BAC=∠AEP=∠AFP=90°,∴四边形AFPE 是矩形,∴EF=AP ,要使EF 最小,只要AP 最小即可,过A 作AP ⊥BC 于P ,此时AP 最小,在Rt △BAC 中,∠BAC=90°,BC=10,AB=6,由勾股定理得:AC=8,由三角形面积公式得:116810AP 22⨯⨯=⨯⋅,∴AP=4.8,即EF=4.8,故答案为:4.8.【点睛】本题利用了矩形的性质和判定、勾股定理以及垂线段最短的应用.19.(1)x1=﹣x 2=﹣1(2)x 1x 2(3)x 1=﹣12,x 2=﹣16(4)1211,33x x --==【解析】【分析】(1)根据配方法求解即可;(2)根据公式法求解即可;(3)根据因式分解法求解即可;(4)根据公式法求解即可;(1)解:x 2+2x ﹣1=0,x 2+2x =1,x 2+2x+1=1+1,即(x+1)2=2,∴x+1=,∴x 1=﹣x 2=﹣1(2)解:3x 2﹣5x+1=0,∵a =3,b =﹣5,c =1,∴Δ=(﹣5)2﹣4×3×1=13>0,则x即x 1=56,x 2=56-;(3)解:3(2x+1)2=4x+2,3(2x+1)2﹣2(2x+1)=0,(2x+1)[3(2x+1)﹣2]=0,2x+1=0或6x+1=0,x 1=﹣12,x 2=﹣16.(4)解:3x 2+5x =3x+3,3x 2+2x-3=0∵a =3,b =2,c =-3,∴Δ=22﹣4×3×(﹣3)=40>0,∴x =223-±⨯=13-,∴x 1=13-+,x 2【点睛】本题考查解一元二次方程的解法,熟练掌握解法解一元二次方程的方法:配方法、公式法、因式分三种方法是解题的关键.20.(1)详见解析;(2)16【解析】(1)利用用树状图(或列表法)列举出所有情况;(2)让恰好选中医生甲和护士A 的情况数除以总情况数即为所求的概率.【详解】解:(1)用列表法或树状图表示所有可能结果如下:护士医生A B 甲(甲,)A (甲,)B 乙(乙,)A (乙,)B丙(丙,)A(丙,)B(2)因为共有6种等可能的结果,其中恰好选中医生甲和护士A的有1种,所以P(恰好选中医生甲和护士1)6A=.(3分)【点睛】本题考查的是用列表法或者用树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件;解题的关键是还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21.(1)30°(2)证明见解析【解析】【分析】(1)由四边形ABCD是菱形,得到对边平行,且BD为角平分线,利用两直线平行得到一对同旁内角互补,根据已知角之比求出相应度数,进而求出∠BDC度数;(2)由四边形ABCD是菱形,得到对角线互相垂直,利用两组对边平行的四边形是平行四边形,再利用有一个角为直角的平行四边形是矩形即可得证.【详解】(1)∵四边形ABCD是菱形,∴AD∥BC,∠DBC=12∠ABC,∴∠ABC+∠BAD=180°,∵∠ABC:∠BAD=1:2,∴∠ABC=60°,∴∠BDC=12∠ABC=30°;(2)证明:∵四边形ABCD是菱形,∴AC ⊥BD ,即∠BOC=90°,∵BE ∥AC ,CE ∥BD ,∴BE ∥OC ,CE ∥OB ,∴四边形OBEC 是平行四边形,则四边形OBEC 是矩形.【点睛】此题考查了矩形的判定,菱形的性质,熟练掌握判定与性质是解本题的关键.22.(1)见解析;(2)90°【解析】【分析】(1)由四边形ABCD 是正方形,BD 是正方形ABCD 的对角线,得AB =BC ,∠ABP =∠CBP =45°,利用SAS 可证得△ABP ≌△CBP 即可证明PC =PE .(2)由△ABP ≌△CBP ,得∠BAP =∠BCP ,从而得∠DAP =∠DCP ,再由PA =PE 即可证出∠DCP =∠E ,进而可证出∠CPE =∠EDF =90°.【详解】(1)证明:∵四边形ABCD 是正方形,BD 是正方形ABCD 的对角线,∴AB =BC ,∠ABP =∠CBP =45°,在△ABP 和△CBP 中,=AB BC ABP CBP PB PB =⎧⎪∠∠⎨⎪=⎩,∴△ABP ≌△CBP (SAS ),∴PA =PC ,∵PA =PE ,∴PC =PE ,(2)解:由(1)知,△ABP ≌△CBP ,∴∠BAP =∠BCP ,∴∠DAP =∠DCP ,∵PA =PE ,∴∠DAP =∠E ,∴∠DCP=∠E,∵∠CFP=∠EFD,∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPE=∠EDF=90°.【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,等腰三角形的性质,解题的关键在于能够熟练掌握相关知识进行求解.23.小道进出口的宽度应为1米.【解析】【分析】观察图形可知,种植花草的地方拼凑起来可以得到一个新矩形,设小道进出口的宽度为x 米,则新矩形的长是(30﹣2x)m,宽是(20﹣x)m,根据面积公式列方程,求解即可.【详解】设小道进出口的宽度为x米,依题意得(30﹣2x)(20﹣x)=532,整理,得x2﹣35x+34=0,解得,x1=1,x2=34.∵34>20(不合题意,舍去),∴x=1.答:小道进出口的宽度应为1米.【点睛】本题考查一元二次方程的实际应用,解题关键是根据题中的等量关系列方程,注意根据实际意义对求得的根进行取舍.24.每件衬衫降价15元时,平均每天赢利750元【解析】【分析】设每件衬衫降价x元,则平均每天可售出(20+2x)件,再写出单件利润的表达式(100﹣70﹣x),两者乘积为总利润,解方程,根据题意对根进行取舍,即可求出答案.【详解】设每件衬衫降价x元,则平均每天可售出(20+2x)件,依题意,得:(100﹣70﹣x)(20+2x)=750,整理,得:x 2﹣20x+75=0,解得:x 1=5,x 2=15.∵尽快减少库存,∴x =15.答:每件衬衫降价15元时,平均每天赢利750元.【点睛】本题考查一元二次方程的实际应用,解题关键是根据题中的等量关系列方程,注意根据题意对求得的根进行取舍.25.(1)证明见解析;(2)四边形ADCF 是菱形,证明见解析【解析】【分析】(1)根据平行线的性质可得∠AFE=∠DBE ,然后利用AAS 判定△AFE ≌△DBE 即可;(2)首先证明四边形ADCF 是平行四边形,再根据直角三角形斜边上的中线等于斜边的一半可得AD=CD ,进而可得四边形ADCF 是菱形.【详解】(1)证明:∵AF ∥BC ,∴∠AFE=∠DBE ,∵E 是AD 的中点,∴AE=DE ,在△AFE 和△DBE 中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DBE (AAS );(2)解:四边形ADCF 是菱形,理由如下:∵△AFE ≌△DBE ,∴AF=BD ,∵AD 是斜边BC 的中线,∴BD=DC∴AF=DC .∵AF∥BC,∴四边形ADCF是平行四边形,∵AC⊥AB,AD是斜边BC的中线,∴AD=12BC=DC,∴平行四边形ADCF是菱形.。
24-25学年九年级数学期中测试卷(北师大版)(解析版)【测试范围:第一章~第四章】A4版
2024-2025学年九年级数学上学期期中测试卷(北师大版)(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一章~第四章(北师大版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)用配方法解一元二次方程2x2﹣2x﹣1=0,下列配方正确的是( )A.(x―14)2=34B.(x―14)2=32C.(x―12)2=34D.(x―12)2=32【分析】方程整理后,利用完全平方公式配方得到结果,即可作出判断.【解答】解:方程2x2﹣2x﹣1=0,整理得:x2﹣x=1 2,配方得:x2﹣x+14=34,即(x―12)2=34.故选:C.2.(3分)如图,AB∥CD∥EF,AF交BE于点G,若AC=CG,AG=FG,则下列结论错误的是( )A .DG BG =12B .CD EF =12C .DG BE =13D .CG CF =13【分析】根据平行线分线段成比例定理进行逐项判断即可.【解答】解:∵AB ∥CD ,∴DG BG =CG AG ,∵AC =CG ,∴DG BG =CG AG =12,故A 正确,不符合题意;∵CD ∥EF ,∴CD EF =CG FG ,∵AC =CG ,AG =FG ,∴FG =2CG ,∴EG =2DG ,∴CD EF =CG FG =12,故B 正确,不符合题意;∵AB ∥CD ∥EF ,∴BG EG =AG FG ,∵AG =FG ,∴BG =EG ,∴BE =2BG ,∵DG BG =CG AG =12,∴BG =2DG ,∵BE =4DG ,∴DGBE=14,故C错误,符合题意;∵CD∥EF,∴CGCF=DGDE∵BG=2DG,BE=4DG,∴DE=3DG,∴CGCF=DGDE=13,故D正确,不符合题意;故选:C.3.(3分)如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AE⊥BC于点E,连接OE.若OB=6,菱形ABCD的面积为54,则OE的长为( )A.4B.4.5C.5D.5.5【分析】由菱形的性质得出BD=12,由菱形的面积得出AC=9,再由直角三角形斜边上的中线性质即可得出结果.【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD=12BD,BD⊥AC,∴BD=2OB=12,∵S菱形ABCD =12AC•BD=54,∴AC=9,∵AE⊥BC,∴∠AEC=90°,∴OE=12AC=4.5,故选:B.4.(3分)已知关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,则m的取值范围是( )A .m ≥23B .m <23C .m >23且m ≠1D .m ≥23且m ≠1【分析】利用一元二次方程有实数根的条件得到关于m 的不等式组,解不等式组即可得出结论.【解答】解:∵关于x 的一元二次方程(m ﹣1)x 2+2x ﹣3=0有实数根,∴Δ=22―4(m ―1)×(―3)≥0m ―1≠0,解得:m ≥23且m ≠1.故选:D .5.(3分)下列说法正确的是( )A .邻边相等的平行四边形是矩形B .矩形的对角线互相平分C .对角线互相垂直的四边形是菱形D .一组对边相等,另一组对边平行的四边形是平行四边形【分析】由菱形的判定、矩形的判定与性质、平行四边形的判定与性质分别对各个选项进行判断即可.【解答】解:A 、邻边相等的平行四边形是菱形,故选项A 不符合题意;B 、矩形的对角线互相平分,故选项B 符合题意;C 、对角线互相垂直的平行四边形是菱形,故选项C 不符合题意;D 、一组对边相等,另一组对边平行的四边形不一定是平行四边形,故选项D 不符合题意;故选:B .6.(3分)在第十九届亚运会中国国家象棋队选拔赛的第一阶段中,采用分组单循环(每两人之间都只进行一场比赛)制,每组x 人.若每组共需进行15场比赛,则根据题意可列方程为( )A .12x (x ﹣1)=15B .12x (x +1)=15C .x (x ﹣1)=15D .x (x +1)=15【分析】设一共邀请了x 支球队参加比赛,赛制为单循环形式(每两支球队之间都进行一场比赛),则每个队参加(x ﹣1)场比赛,则共有x(x―1)2场比赛,可以列出一元二次方程.【解答】解:由题意得,x(x―1)2=15.故选:A .7.(3分)掷一个骰子,向上一面的点数大于2且小于5的概率为p 1,抛两枚硬币,正面均朝上的概率为p 2,则( )A .p 1<p 2B .p 1>p 2C .p 1=p 2D .不能确定【分析】计算出各种情况的概率,然后比较即可.【解答】解:大于2小于5的数有2个数,∴p1=26=13;投掷一次正面朝上的概率为12,两次正面朝上的概率为p2=12×12=14,∵13>14,∴p1>p2.故选:B.8.(3分)顶角为36°的等腰三角形我们把这种三角形称为“黄金三角形”,它的底与腰的比值为黄金比.如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC交AC于点D,若CD=1,则AC的长为( )A B C D【分析】根据等腰三角形的性质得到∠ABC=∠ACB,根据角平分线的性质得到∠ABD=∠DBC,证明△CBD∽△CAB,根据相似三角形的性质列出比例式,解方程得到答案.【解答】解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠DBC=∠A,∠ABD=∠A,∠BDC=36°+36°=72°=∠C,∴AD=BD=BC,∵∠C=∠C,∴△CBD∽△CAB,∴BCAC=CDBC,即AD1+AD=1AD,整理得:AD2﹣AD﹣1=0,解得:AD1=AD2=则AC=AD+CD=+1=故选:D .9.(3分)如图,在平面直角坐标系中,四边形OABC 为矩形,且A (0,2),C (4,0).点E 为OC 上一点,连接AE ,射线AF ⊥AE .以点A 为圆心,适当长为半径作弧,分别交AE ,AF 于点N ,M ,再分别以点M ,N 为圆心,大于12MN 的长为半径作弧,两弧交于点P ,作射线AP ,交BC 于点G .若OE =1,则点G 的坐标为( )A .(4,23)B .(4,1)C .(4D .(4【分析】延长CB 交射线AF 于点Q ,过点G 作GH ⊥AF 于点H ,求出CG ,可得结论.【解答】解:延长CB 交射线AF 于点Q ,过点G 作GH ⊥AF 于点H ,如解图所示.∵AE ⊥AF ,四边形ABCO 是矩形,∴∠EAF =∠OAB =90°,∴∠OAE =∠BAF ,∵GH ⊥AF ,∴∠GHF =∠ABQ =∠AOE =90°,∵∠AQB =∠CQH ,∴△GHQ ∽△ABQ ∽△AOE ,∴GH HQ =AB BQ =AO OE =21,∴GH =2HQ ,BQ =12AB =2.∴AQ ==AP 平分∠EAF ,∴∠HAG =45°.又∵GH⊥AF,∴AH=HG.设HQ=x,则AH=HG=2x.∴AQ=AH+HQ=3x,即3x=∴x=∴HG=∴GQ===10 3.∴CG=BC+BQ―GQ=2+2―103=23.∴点G的坐标为(4,23 ),故选:A.10.(3分)如图,在正方形ABCD中,点E是CD上一点,延长CB至点F,使BF=DE,连结AE,AF,EF,EF交AB于点K,过点A作AG⊥EF,垂足为点H,交CF于点G,连结HD,HC.下列四个结论:①AH=HC;②HD=CD;③∠FAB=∠DHE;④AK•HD=2.其中正确结论的个数为( )A.1个B.2个C.3个D.4个【分析】①证明△EAF是等腰直角三角形,根据直角三角形斜边中线可得AH=12EF=CH,可得①正确;②证明∠DAH与∠AHD不一定相等,则AD与DH不一定相等,可知②不正确;③证明△ADH≌△CDH(SSS),则∠ADH=∠CDH=45°,再由等腰直角三角形的性质可得结论正确;④证明△AKF∽△HED,列比例式可得结论正确.【解答】解:①∵四边形ABCD是正方形,∴AD=AB,∠ADE=∠ABC=90°,∴∠ADE=∠ABF=90°,∵DE=BF,∴△ADE≌△ABF(SAS),∴AE=AF,∠DAE=∠BAF,∵∠DAE+∠EAB=90°,∴∠BAF+∠EAB=90°,即∠EAF=90°,∵AG⊥EF,∴EH=FH,∴AH=12 EF,Rt△ECF中,∵EH=FH,∴CH=12 EF,∴AH=CH;故①正确;③∵AH=CH,AD=CD,DH=DH,∴△ADH≌△CDH(SSS),∴∠ADH=∠CDH=45°,∵△AEF为等腰直角三角形,∴∠AFE=45°,∴∠AFK=∠EDH=45°,∵四边形ABCD为正方形,∴AB∥CD,∴∠BKF=∠CEH,∴∠AKF=∠DEH,∴∠FAB=∠DHE,故③正确;②∵∠ADH=∠AEF,∴∠DAE=∠DHE,∵∠BAD=∠AHE=90°,∴∠BAE=∠AHD,∵∠DAE与∠BAG不一定相等,∴∠DAH与∠AHD不一定相等,则AD与DH不一定相等,即DH与CD不一定相等,故②不正确;④∵∠FAB=∠DHE,∠AFK=∠EDH,∴△AKF∽△HED,∴AKEH=AFDH,∴AK•DH=AF•EH,在等腰直角三角形AFH中,AF==,∴AK•HD=2.故④正确;∴本题正确的结论有①③④,共3个.故选:C.二.填空题(共6小题,满分18分,每小题3分)11.(3分)若xy=23,则代数式x―yx+2y的值是 .【分析】利用x与y的比可x=2t,y=3t,然后把它们代入代数式中进行分式的运算.【解答】解:∵xy=23,∴设x=2t,y=3t,∴x―yx+2y=2t―3t2t+6t=―t8t=―18.故答案为―1 8.12.(3分)在一个不透明的袋子中,有除颜色外完全相同的6个白球和若干个红球.通过大量重复摸球试验后,发现摸到红球的频率稳定在0.4,由此可估计袋中红球的个数为 .【分析】根据摸到红球的频率,可以得到摸到白球的概率,从而可以求得总的球数,从而可以得到红球的个数.【解答】解:由题意可得:摸到白球的频率之和为:1﹣0.4=0.6,∴总的球数为:6÷0.6=10,∴红球有:10﹣6=4(个),故答案为:4.13.(3分)设α,β是x2+x﹣18=0的两个实数根,则α2+3α+2β的值是 .【分析】先根据一元二次方程根的定义得到α2+α=18,则α2+3α+2β化为(α2+α)+2(α+β),再根据根与系数的关系得到x1+x2=﹣1,然后利用整体代入的方法计算.【解答】解:∵α,β是x2+x﹣18=0的两个实数根,∴α2+α﹣18=0,α+β=﹣1,∴α2+α=18,∴α2+3α+2β=(α2+α)+2(α+β)=18﹣2=16.故答案为:16.14.(3分)菱形有一个内角为120°,较长的对角线长为 .【分析】由菱形ABCD中,对角线AC和BD相交于点O,∠BAD=120°,BD=BAC的度数,利用菱形的性质可求出∠ABO的度数,进而得到AO的长,根据菱形的面积等于对角线乘积的一半则可求得答案.【解答】解:∵菱形ABCD中,∠BAD=120°,∴∠BAC=12∠BAD=60°,AC⊥BD,∴∠ABO=30°,∵BD=∴BO=设AO=x,则AB=2x,故x2+(2=(2x)2,解得:x=3,∴AO=3,∴AC=6,∴菱形的面积=×6÷2=故答案为:15.(3分)如图,在△ABC中,E是BC上一点,EC=2BE,点F是AC的中点,若S△ABC=12,求S△ADF ﹣S△BED= .【分析】过F 作FH ∥AE 交BC 于H ,由EC =2BE ,得到S △AEC =23S △ABC =23×12=8,根据点F 是AC 的中点,得到S △BCF =S △ABF =12S △ABC =12×12=6,根据平行线等分线段定理得到CH =EH ,求得BD =DF ,得到S △BFH =23S △BCF =23×6=4,S △ADF =12S △ABF =3,根据相似三角形的性质得到S △BDE =14×4=1,于是得到结论.【解答】解:过F 作FH ∥AE 交BC 于H ,∵EC =2BE ,∴S △AEC =23S △ABC =23×12=8,∵点F 是AC 的中点,∴S △BCF =S △ABF =12S △ABC =12×12=6,∵FH ∥AE ,点F 是AC 的中点,∴CH =EH ,∵EC =2BE ,∴BE =EH ,∵DE ∥FH ,∴BD =DF ,∴S △BFH =23S △BCF =23×6=4,S △ADF =12S △ABF =3,∵DE ∥FH ,∴△BDE ∽△BFH ,∴S △BDE S △BFH =14,∴S △BDE =14×4=1,∴S △ADF +S △BED 的值为1+3=4,故答案为:4.16.(3分)如图,在边长为4的菱形ABCD 中,∠ABC =120°,将△ADC 沿射线AC 的方向平移得到△A 'D 'C ',分别连接A 'B ,D ′B ,则A 'B +D ′B 的最小值为 .【分析】根据菱形的性质得到AB =4,∠ABC =120°,得出∠BAC =30°,根据平移的性质得到A ′D ′=AD =4,A ′D ′∥AD ,推出四边形A ′BCD ′是平行四边形,得到A ′B =D ′C ,于是得到A 'B +BD '的最小值=CD ′+BD ′的最小值,根据平移的性质得到点D ′在过点D 且平行于AC 的定直线上,作点C 关于定直线的对称点E ,连接BE 交定直线于D ′,则BE 的长度即为BA '+BD '的最小值,求得CE =CB ,得到∠E =∠CBE =30°,于是得到结论.【解答】解:∵在边长为4的菱形ABCD 中,∠ABC =120°,∴AB =CD =4,∠BAC =∠DAC =30°,∵将△ADC 沿射线AC 的方向平移得到△A 'D 'C ',∴A ′D ′=AD =4,A ′D ′∥AD ,∵四边形ABCD 是菱形,∴AD=CB,AD∥CB,∴∠ADC=120°,∴A′D′=CB,A′D′∥CB,∴四边形A′BCD′是平行四边形,∴A′B=D′C,∴A'B+BD'的最小值=BD′+CD′的最小值,∵点D′在过点D且平行于AC的定直线上,∴作点C关于定直线的对称点E,连接BE交定直线于D′,则BE的长度即为BD'+BA'的最小值,在Rt△CHD中,∵∠D′DC=∠ACD=30°,AD=4,∴CH=EH=12AD=2,∴CE=4,∴CE=CB,∵∠ECB=∠ECA′+∠ACB=90°+30°=120°,∴∠E=∠BCE=30°,∴BE=2×=故答案为:三.解答题(共8小题,满分72分)17.(6分)解方程:(1)x2﹣4x+2=0;(2)3(x﹣5)2+2(x﹣5)=0.【分析】(1)利用配方法求解即可;(2)利用因式分解法求解即可.【解答】解:(1)∵x2﹣4x+2=0,∴x2﹣4x=﹣2,∴x2﹣4x+4=﹣2+4,即(x﹣2)2=2,∴x―2=±∴x1=2+x2=2―(2)3(x﹣5)2+2(x﹣5)=0,(x﹣5)[3(x﹣5)+2]=0,x﹣5=0或3x﹣13=0,∴x1=5,x2=13 3.18.(6分)小华和小林想用标杆来测量如图1所示的古塔的高,如图2,小林在F处竖立了一根标杆EF,小华走到C处时,站立在C处恰好看到标杆顶端E和塔的顶端B在一条直线上,此时测得小华的眼睛到地面的距离DC=1.5米,EF=2.4米,CF=1.8米,FA=71.2米,点C、F、A在一条直线上,CD⊥AC,EF⊥AC,AB⊥AC,根据以上测量数据,请你求出该塔的高AB.【分析】过D作DP⊥AB于P,交EF于N,根据相似三角形的判定和性质即可得到结论.【解答】解:过D作DP⊥AB于P,交EF于N,则DN=CF=1.8米,AP=DC=1.5米,DP=AC=CF+AF=1.8+71.2=73(米),EN=EF﹣CD=2.4﹣1.5=0.9(米),由题意得,∠EDN=∠BDP,∠BPD=∠END=90°,∴△DEN∽△DBP,∴BPEN=DPDN,∴AB―1.50.9=731.8,∴AB=38(米),答:树AB的高度为38米.19.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,(1)将△ABC向上平移4个单位长度,得到△A1B1C1;(点A、B、C分别对应A1、B1、C1)(2)以原点O为位似中心,在第二象限将△ABC放大得到△A2B2C2,使得△ABC与△A2B2C2的位似比为12,并直接写出C2的坐标.【分析】(1)先根据平移的性质在坐标系中描点,再顺次连接即可得;(2)先根据位似图形的性质在坐标系中描点并顺次连接即可得.【解答】解:(1)如图1,△A1B1C1即为所作.;(2)如图2,△A2B2C2即为所作.C2(﹣6,6).20.(8分)如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的边长.【分析】(1)先证四边形BEDF是平行四边形,再证BE=DE,即可证四边形BEDF为菱形;(2)过点D作DH⊥BC于H,由含30°角的直角三角形的性质可求解.【解答】(1)证明:∵DE∥BC DF∥AB,∴四边形BEDF是平行四边形,∵DE∥BC,∴∠EDB=∠DBF,∵BD平分∠ABC,∴∠ABD=∠DBF,∴∠ABD=∠EDB,∴DE=BE,∴平行四边形BEDF是菱形;(2)解:如图,过点D作DH⊥BC于H,∵∠A=90o,∠C=30o,∴∠ABC=60°,由(1)得:四边形BEDF是菱形,∴BE=DE=BF=DF,∵DF∥AB,∴∠ABC=∠DFC=60°,∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∵BD=12,∴DH=12BD=6,∵∠FDH=90°﹣∠DFC=30°,∴FH==∴DF=2DH=即菱形BEDF的边长为21.(10分)某校为落实“双减”工作,增强课后服务的吸引力,充分用好课后服务时间,为学有余力的学生拓展学习空间,成立了5个活动小组(每位学生只能参加一个活动小组):A.音乐;B.体育;C.美术;D.阅读;E.人工智能.为了解学生对以上活动的参与情况,随机抽取部分学生进行了调查统计,并根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)①此次调查一共随机抽取了 名学生;②补全条形统计图(要求在条形图上方注明人数);③扇形统计图中圆心角α= 度;(2)若该校有1600名学生,估计该校参加D 组(阅读)的学生人数;(3)学校计划从E 组(人工智能)的甲、乙、丙、丁四位学生中随机抽取两人参加市青少年机器人竞赛,请用树状图法或列表法求出恰好抽中甲、乙两人的概率.【分析】(1)①由B 组的人数除以所占百分比即可;②求出A 组、C 组的人数,补全条形统计图即可;③由360°乘以C 组所占的比例即可;(2)由该校共有学生人数乘以参加D 组(阅读)的学生人数所占的比例即可;(3)画树状图,共有12种等可能的结果,其中恰好抽中甲、乙两人的结果有2种,再由概率公式求解即可.【解答】(1)①此次调查一共随机抽取学生人数为:100÷25%=400(名),故答案为:400;②A 组的人数:400×15%=60(名),C 组的人数:400﹣100﹣140﹣40﹣60=60(名),补全条形统计图如下:③扇形统计图中圆心角α=360°×60400=54°,故答案为:54;(2)1600×140400=560(名),答:参加D 组(阅读)的学生人数为560名;(3)画树状图如下:共有12种等可能的结果,其中恰好抽中甲、乙两人的结果有2种,∴恰好抽中甲、乙两人的概率为212=16.22.(10分)根据以下销售情况,解决销售任务.任务2:,由盈利=每件盈利×销售量,分别列式计算即可;任务3,设每件衬衫下降m元时,两家分店一天的盈利和为2244元,列出一元二次方程,解方程即可.【解答】解:任务1,甲店每天的销售量为(20+2a)件,乙店每天的销售量为(32+2b)件,故答案为:(20+2a)件,(32+2b)件;任务2,当a=5时,甲店每天的盈利为(40﹣5)×(20+2×5)=1050(元);当b=4时,乙店每天的盈利为(30﹣4)×(32+2×4)=1040(元);任务3,设每件衬衫下降m元时,两家分店一天的盈利和为2244元,由题意得:(40﹣m)(20+2m)+(30﹣m)(32+2m)=2244,整理得:m2﹣22m+121=0,解得:m1=m2=11,即每件衬衫下降11元时,两家分店一天的盈利和为2244元.23.(12分)阅读下面材料:小元遇到这样一个问题:如图1,在正方形ABCD中,点E、F分别为DC、BC边上的点,∠EAF =45°,连结EF,设DE=a,EF=b,FB=c,则把关于x的一元二次方程ax2﹣bx+c=0叫做正方形ABCD的关联方程,正方形ABCD叫做方程ax2﹣bx+c=0的关联四边形.探究方程ax2﹣bx+c=0是否存在常数根t.小元是这样思考的:要想解决这个问题,首先应想办法把这些分散的线段集中到同一条线段上.他先后尝试了平移、翻折、旋转的方法,发现通过旋转可以解决此问题.他的方法是把△ADE绕点A顺时针旋转90°得到△ABG(如图2),此时GF即是DE+BF.请回答:t= .参考小元得到的结论和思考问题的方法,解决下列问题:(1)如图1,若AD=10,DE=4,则正方形ABCD的关联方程为 ;(2)正方形ABCD的关联方程是2x2﹣bx+3=0,则正方形ABCD的面积= .【分析】阅读下面材料:由四边形ABCD是正方形,把△ADE绕点A顺时针旋转90°得到△ABG,可证明△GAF≌△EAF (SAS),从而GF=EF,即BG+BF=EF,有a+c=b,即a﹣b+c=0,故关于x的一元二次方程ax2﹣bx+c=0有一个根是x=1,即t=1;(1)在Rt△CEF中,CF2+CE2=EF2,可得(10﹣c)2+62=(c+4)2,从而可解得正方形ABCD的关联方程为4x2―587x+307=0;(2)由阅读材料知,正方形ABCD的关联方程2x2﹣bx+3=0存在常数根x=1,可得b=5,即得DE=2,BF=3,EF=5,设正方形ABCD的边长为m,有(m﹣2)2+(m﹣3)2=52,解得正方形ABCD的边长为6,正方形ABCD的面积为36.【解答】解:阅读下面材料:如图:∵四边形ABCD是正方形,∴∠D=∠ABC=∠BAD=90°,∵把△ADE绕点A顺时针旋转90°得到△ABG,∴AE=AG,∠ABG=∠D=90°,∠GAB=∠EAD,DE=BG=a,∴∠AGB+∠ABC=180°,∠EAD+∠BAE=90°=∠GAB+∠BAE,∴G,B,F共线,∠GAE=90°,∵∠EAF=45°,∴∠GAF=∠EAF=45°,在△GAF和△EAF中,AG=AE∠GAF=∠EAF AF=AF,∴△GAF≌△EAF(SAS),∴GF=EF,即BG+BF=EF,∵BG=a,EF=b,FB=c,∴a+c=b,即a﹣b+c=0,∴关于x的一元二次方程ax2﹣bx+c=0有一个根是x=1,∴t=1,故答案为:1;(1)如图:∵四边形ABCD是正方形,∴BC=CD=AD=10,∵DE=4=a,∴CE=CD﹣DE=6,由阅读材料知DE+BF=EF=b,FB=c,∴EF=4+c,CF=BC﹣BF=10﹣c,在Rt△CEF中,CF2+CE2=EF2,∴(10﹣c)2+62=(c+4)2,解得c=30 7,∴b=EF=4+c=58 7,而a=4,∴正方形ABCD的关联方程为4x2―587x+307=0,化简整理得14x2﹣29x+15=0,故答案为:14x2﹣29x+15=0;(2)如图:由阅读材料知,正方形ABCD的关联方程2x2﹣bx+3=0存在常数根x=1,∴2×12﹣b+3=0,解得b=5,∴正方形ABCD的关联方程是2x2﹣5x+3=0,∴DE=2,BF=3,EF=5,设正方形ABCD 的边长为m ,在Rt △CEF 中,CF 2+CE 2=EF 2,∴(m ﹣2)2+(m ﹣3)2=52,解得m =6,∴正方形ABCD 的边长为6,∴正方形ABCD 的面积为36,故答案为:36.24.(12分)教材再现:(1)如图1,在矩形ABCD 中,AB =3,AD =4,P 是AD 上不与A 和D 重合的一个动点,过点P 分别作AC 和BD 的垂线,垂足分别为E ,F ,则PE +PF 的值为 125 .知识应用:(2)如图2,在矩形ABCD 中,点M ,N 分别在边AD ,BC 上,将矩形ABCD 沿直线MN 折叠,使点D 恰好与点B 重合,点C 落在点C 1处,点P 为线段MN 上一动点(不与点M ,N 重合),过点P 分别作直线BM ,BC 的垂线,垂足分别为E 和F ,以PE ,PF 为邻边作平行四边形PEQF ,若DM =13,CN =5,▱PEQF 的周长是否为定值?若是,请求出▱PEQF 的周长;若不是,请说明理由.(3)如图3,当点P 是等边△ABC 外一点时,过点P 分别作直线AB 、AC 、BC 的垂线、垂足分别为点E 、D 、F .若PE +PF ﹣PD =3,请直接写出△ABC 的面积.【分析】(1)由矩形的性质得出S 矩形ABCD =12,OA =OC =OB =OD ,S △ABD =S △BCD ,∠ABC =90°,BC =AD =4,再由勾股定理得AC =5,则S △AOD =3,OA =OD =52,然后由三角形面积即可得出结论;(2)先求DM =BM =BN =13,则AD =BC =18,再由勾股定理得AB =12,然后由三角形面积求出PE +PF =12,即可解决问题;(3)由S △ABC =S △ABP +S △BCP ﹣S △ACP ,可求AB 的长,从而求出S △ABC .【解答】解:(1)如图1,设AC 与BD 的交点为O ,连接PO ,∵四边形ABCD 是矩形,∴S 矩形ABCD =AB •BC =3×4=12,OA =OC =OB =OD ,S △ABD =S △BCD ,∠ABC =90°,BC =AD =4,∴AC ==5,S △AOD =S △ABO =S △BOC =S △COD ,∴S △AOD =14S 矩形ABCD =14×12=3,OA =OD =12AC =52,∴S △AOD =S △AOP +S △DOP =12OA •PE +12OD •PF =12OA (PE +PF )=12×52×(PE +PF )=3,解得:PE +PF =125,故答案为:125;(2)▱PEQF 的周长是定值,理由如下:∵四边形ABCD 是矩形,∴AD =BC ,∠A =∠ABC =90°,AD ∥BC ,∴∠DMN =∠BNM ,连接BP ,过点M 作MH ⊥BC 于H ,如图2所示:则四边形ABHM 是矩形,∴MH =AB ,由折叠的性质得:DM =BM ,∠DMN =∠BMN ,∴∠BNM =∠BMN ,∴DM =BM =BN =13,∴AD =BC =BN +CN =13+5=18,∴AM =AD ﹣DM =18﹣13=5,在Rt △ABM 中,由勾股定理得:AB ===12,∴MH =12,∵S △BMN =S △PBM +S △PBN ,PE ⊥BM ,PF ⊥BN ,∴12BN •MH =12BM •PE +12BN •PF ,∵BM =BN ,∴PE +PF =MH =12,∴▱PEGF 的周长=2(PE +PF )=2×12=24;(3)如图3,连接AP ,BP ,CP ,∵S △ABC =S △ABP +S △BCP ﹣S △ACP ,2=12AB •PE +12BC •PF ―12AC •PD=PE +PF ﹣PD ,∵PE +PF ﹣PD =3,∴AB =∴S △ABC =2=。
最新北师大版九年级数学上册期中考试题及答案【完整版】
最新北师大版九年级数学上册期中考试题及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.估计7+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.下列说法中正确的是 ( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01±3.在实数|﹣3|,﹣2,0,π中,最小的数是( )A .|﹣3|B .﹣2C .0D .π4.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .45.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)6.下列运算正确的是( )A .(﹣2a 3)2=4a 6B .a 2•a 3=a 6C .3a +a 2=3a 3D .(a ﹣b )2=a 2﹣b 2 7.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .18.如图,在ABC ∆中,2AC =,4BC =,D 为BC 边上的一点,且CAD B ∠=∠.若ADC ∆的面积为a ,则ABD ∆的面积为( )A .2aB .52aC .3aD .72a 9.图甲和图乙中所有的正方形都全等,将图甲的正方形放在图乙中的①②③④某一位置,所组成的图形不能围成正方体的位置是( )A .①B .②C .③D .④10.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A .0.7米B .1.5米C .2.2米D .2.4米二、填空题(本大题共6小题,每小题3分,共18分)1.计算(331)的结果等于___________.2.因式分解:x 2y ﹣9y =________.3.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.4.如图,已知菱形ABCD 的周长为16,面积为83,E 为AB 的中点,若P 为对角线BD 上一动点,则EP +AP 的最小值为__________.5.如图,在平面直角坐标系xOy 中,已知直线y =kx (k >0)分别交反比例函数1y x =和9y x =在第一象限的图象于点A ,B ,过点B 作 BD ⊥x 轴于点D ,交1y x=的图象于点C ,连结AC .若△ABC 是等腰三角形,则k 的值是_________.6.在平面直角坐标系中,点A 的坐标为(a ,3),点B 的坐标是(4,b ),若点A 与点B 关于原点O 对称,则ab=__________.三、解答题(本大题共6小题,共72分)1.解方程:33122x x x -+=--2.已知抛物线2y x bx c =-++经过点A (3,0),B (﹣1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.3.如图,已知二次函数y=ax 2+bx+3的图象交x 轴于点A (1,0),B (3,0),交y 轴于点C .(1)求这个二次函数的表达式;(2)点P 是直线BC 下方抛物线上的一动点,求△BCP 面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.4.如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE,(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.105阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有______人,在扇形统计图中,“乒乓球”的百分比为______%,如果学校有800名学生,估计全校学生中有______人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.61.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、C5、D6、A7、B8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、y (x+3)(x ﹣3)3、24、5、k =或.6、12三、解答题(本大题共6小题,共72分)1、4x =2、(1)2y x 2x 3=-++(2)(1,4)3、(1)这个二次函数的表达式是y=x 2﹣4x+3;(2)S △BCP 最大=278;(3)当△BMN 是等腰三角形时,m 1,2.4、解:(1)证明:∵点O 为AB 的中点,连接DO 并延长到点E ,使OE=OD , ∴四边形AEBD 是平行四边形.∵AB=AC ,AD 是△ABC 的角平分线,∴AD ⊥BC .∴∠ADB=90°.∴平行四边形AEBD是矩形.(2)当∠BAC=90°时,矩形AEBD是正方形.理由如下:∵∠BAC=90°,AB=AC,AD是△ABC的角平分线,∴AD=BD=CD.∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.5、(1)5,20,80;(2)图见解析;(3)3 5.6、(1)y=﹣5x2+800x﹣27500(50≤x≤100);(2)当x=80时,y最大值=4500;(3)70≤x≤90.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师版九年级数学上册第一学期期中测试卷及答案满分:120分时间:100分钟一、选择题(每题3分,共30分)1.一元二次方程(x-1)(x-2)=0的解是()A.x=1 B.x=2 C.x=1或x=2 D.x=-1或x=-22.若直角三角形的斜边上的中线长为3,则斜边长为()A.6 B.8 C.10 D.123.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是() A.频率就是概率B.随着试验次数的增加,频率一般会越来越接近概率C.频率与试验次数无关D.概率是随机的,与频率无关4.下列说法正确的是()A.矩形对角线相互垂直平分B.对角线相等的菱形是正方形C.两邻边相等的四边形是菱形D.对角线分别平分相应对角的四边形不是平行四边形5.下列性质中,平行四边形、矩形、菱形、正方形共有的性质是() A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分内角6.已知不透明的袋子中装有红色、黄色、蓝色的乒乓球共120个,某学习小组做“用频率估计概率”的摸球试验(从中随机摸出一个球,记下颜色后放回),统计了“摸出的球为红色”出现的频率,绘制了如图所示的折线统计图,那么估计袋子中红色球的数目为()A.20 B.30 C.40 D.60(第6题) (第7题)7.有两个可以自由转动的转盘,每个转盘被分成如图所示的几个扇形,游戏者同时转动两个转盘,如果一个转盘转出了红色,另一个转盘转出了蓝色,游戏者就配成了紫色,下列说法正确的是( )A .两个转盘转出蓝色的概率一样大B .如果A 转盘转出了蓝色,那么B 转盘转出蓝色的可能性变小了C .先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率不同D .游戏者配成紫色的概率为168.如图,在正方形ABCD 中,点E ,F 分别在AD ,CD 上,且AE =DF ,若四边形OEDF 的面积是1,OA 的长为1,则正方形的边长AB 为( )A .1B .2 C. 5 D .2 5(第8题) (第10题) 9.将一条长为20 cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各自做成一个正方形,若两个正方形的面积之和为12.5 cm 2,则这两段铁丝的长度是( )A .5 cm ,15 cmB .12 cm ,8 cmC .4 cm ,16 cmD .10 cm ,10 cm10.定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.如图,在平面直角坐标系xOy 中,矩形OABC 的边OA =3,OC =4,点M (2,0),在边AB 上存在点P ,使得△CMP 为“智慧三角形”,则点P 的坐标为( )A .(3,1)或(3,3)B.⎝ ⎛⎭⎪⎫3,12或(3,3)C.⎝ ⎛⎭⎪⎫3,12或(3,1)D.⎝ ⎛⎭⎪⎫3,12或(3,1)或(3,3)二、填空题(每题3分,共15分)11.如图,在菱形ABCD中,对角线AC,BD相交于点O,若∠BCO=55°,则∠CBO=________°.(第11题)(第14题)(第15题)12.将2x2-12x-12=0变形为(x-m)2=n的形式,则m+n=________.13.在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是________.14.如图,要设计一幅宽25 cm,长40 cm的图案,其中有两横两竖的彩条,横、竖彩条的宽度比是2∶3,如果要使彩条所占面积是图案面积的720,设每个横彩条的宽度是2x cm.则根据题意可列方程为__________________.15.如图,已知P A=2,PB=4,以AB为一边作正方形ABCD,使P,D两点落在直线AB的两侧.当∠APB=45°时,PD的长为________.三、解答题(16题10分,17题7分,18题8分,其余每题10分,共75分) 16.用适当的方法解方程.(1)x2-6x+2=0;(2)(2x+5)-3x(2x+5)=0.17.已知关于x的一元二次方程x2+2mx+m2+m=0有实数根.(1)求m的取值范围;(2)若该方程的两个实数根分别为α,β,α2+β2=12,求m的值.18.如图,在△ABC中,∠BAC=90°,AD是BC边上的中线,E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.求证:四边形ADCF是菱形.19.全国文明城市是指全面建设小康社会中市民整体素质和城市文明程度较高的城市,2021年是第七届创城周期第一年,为此某市各校积极参与创建活动,自发组织开展文明劝导活动,某中学九(1)班为此制作了大小、形状、质地等都相同的“文明劝导员”胸章和“文明监督员”胸章各2枚,现将4枚胸章放入不透明的盒中.(1)该班级的一名“文明劝导员”要从盒中抽取一枚胸章,则该同学抽取的胸章与其相配的概率为________;(2)“文明劝导员”小新和“文明监督员”小华同时从盒中各抽取一枚胸章,试用画树状图或列表的方法表示出所有可能出现的结果,并求出小新和小华抽取的胸章恰好同时与其身份匹配的概率.20.如图,在矩形ABCD中,AB=12 cm,BC=6 cm.点P沿AB边从点A开始向点B以2 cm/s的速度移动,点Q沿DA边从点D开始向点A以1 cm/s的速度移动.如果点P,Q同时出发,用t(s)表示移动的时间(0<t<6),那么当t为何值时,△QAP的面积等于8 cm2?21.如图所示,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.(1)证明:四边形BCEO是平行四边形;(2)判断四边形OCED的形状,并说明理由.22.太原钟楼街素有“小王府井”的美誉,改革开放初期就有“不逛钟楼柳巷,枉来太原一趟”的说法,今年中秋假期,万众期待的太原钟楼街火爆开街,吸引了全国各地的游客慕名前来,据统计,假期第一天,钟楼街日均客流量为20万人,假期第三天,钟楼街日均客流量达到了28.8万人.(1)求从假期第一天到第三天日均客流量的日平均增长率;(2)钟楼街中某商家决定在中秋期间对月饼礼盒进行促销活动,该月饼礼盒的进价是每盒150元,以每盒200元销售时,平均每天可销售20盒.经调查发现,单价每降低5元,每天可多售出10盒,不考虑其他的消耗,如果每天盈利1 750元,为了尽可能让利于顾客,单价应降低多少元?23.如图①,在正方形ABCD和正方形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.(1)探究PG 与PC 的位置关系及PG PC 的值(写出结论,不需要证明);(2)如图②,将原问题中的正方形ABCD 和正方形BEFG 换成菱形ABCD 和菱形BEFG ,且∠ABC =∠BEF =60°.探究PG 与PC 的位置关系及PG PC 的值,写出你的猜想并加以证明;(3)如图③,将图②中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的边BG 恰好与菱形ABCD 的边AB 在同一条直线上,问题(2)中的其他条件不变.你在(2)中得到的两个结论是否仍成立?写出你的猜想并加以证明.答案一、1.C2.A3.B4.B5.C6.C7.D8.C9.D 10.D二、11.3512.1813.2314.(25-4x )(40-6x )=40×15.25三、16.解:(1)∵a =1,b =-6,c =2,∴Δ=36-8=28>0,∴x =6±282=6±272=3±7,∴x 1=3+7,x 2=3-7.(2)等号左边因式分解得(2x +5)(1-3x )=0,∴2x +5=0或1-3x =0,∴x 1=-52,x 2=13.17.解:(1)根据题意,得Δ=(2m )2-4(m 2+m )≥0,解得m ≤0,∴m 的取值范围是m ≤0.(2)根据题意,得α+β=-2m ,αβ=m 2+m ,∵α2+β2=(α+β)2-2αβ=12,∴(-2m )2-2(m 2+m )=12,即m 2-m -6=0,解得m 1=-2,m 2=3(舍去).故m 的值为-2.18.证明:∵AF ∥BC ,∴∠AFE =∠DBE .∵E 是AD 的中点,∴AE =DE .在△AFE 和△DBE AFE =∠DBE ,FEA =∠BED ,=DE ,∴△AFE ≌△DBE ,∴AF =DB .∵AD 是BC 边上的中线,∴DB =DC ,∴AF =CD .又∵AF ∥BC ,∴四边形ADCF 是平行四边形.∵∠BAC =90°,AD 是BC 边上的中线,∴AD =DC =12BC ,∴四边形ADCF 是菱形.19.解:(1)12(2)把2枚“文明劝导员”胸章分别记为A ,B ,2枚“文明监督员”胸章分别记为C ,D ,画树状图如图.由图可知共有12种等可能的结果,小新和小华抽取的胸章恰好同时与其身份匹配的结果有4种,则小新和小华抽取的胸章恰好同时与其身份匹配的概率为412=13.20.解:当运动时间为t s 时,AP =2t cm ,AQ =(6-t )cm ,依题意得12×2t (6-t )=8,整理得t 2-6t +8=0,解得t 1=2,t 2=4.∴当t 为2或4时,△QAP 的面积等于8cm 2.21.(1)证明:∵DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形,∴CE =OD ,∵四边形ABCD 是菱形,∴OB =OD ,∴CE =OB ,∴四边形BCEO 是平行四边形;(2)解:四边形OCED 是矩形,理由如下:∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠COD =90°,∴平行四边形OCED 是矩形.22.解:(1)设日平均增长率为x ,根据题意,得20(1+x )2=28.8,解得x 1=0.2=20%,x 2=-2.2(不符合题意,舍去).答:日平均增长率为20%.(2)设单价应降低y 元,根据题意,得(200-y -+y 5×1750,化简,得y 2-40y +375=0,解得y 1=15(舍去),y 2=25.答:为了尽可能让利于顾客,单价应降低25元.23.解:(1)PG ⊥PC ,PG PC=1.(2)猜想:PG ⊥PC ,PG PC = 3.证明:如图①,延长GP 交DC 于点H ,∵P 是线段DF 的中点,∴FP =DP ,由题意可知DC ∥GF ,∴∠GFP =∠HDP ,又∵∠GPF =∠HPD ,∴△GFP ≌△HDP ,∴GP =HP ,GF =HD .∵四边形ABCD 和四边形BEFG 是菱形,∴CD =CB ,GF =GB ,∴GB =HD ,∴CG =CH ,∴△CHG 是等腰三角形,∴PG ⊥PC ,在菱形ABCD 中,∵∠ABC =60°,∴∠BCD =120°,∴∠CGP =12(180°-120°)=30°,∴CG =2CP ,∴PG 2=3CP 2,∴PG PC = 3.(3)猜想在(2)中得到的两个结论仍成立.证明:如图②,延长GP 到H ,使PH =PG ,连接CH ,CG ,DH ,∵P 是线段DF 的中点,∴FP =DP ,∵∠GPF =∠HPD ,∴△GFP ≌△HDP ,∴GF =HD ,∠GFP =∠HDP .∵在菱形BEFG 中,∠BEF =60°,∴∠EFG =∠GFP +∠PFE =120°.易知DC ∥EF ,∴∠PFE =∠PDC ,∴∠CDH =∠HDP +∠PDC =120°.∵四边形ABCD 是菱形,∴CD =CB ,∵点A ,B ,G 在一条直线上,∠ABC =60°,11∴∠GBC =120°.∴∠GBC =∠HDC ,∵四边形BEFG 是菱形,∴GF =GB ,∴HD =GB ,∴△HDC ≌△GBC ,∴CH =CG ,∠DCH =∠BCG ,∴∠DCH +∠HCB =∠BCG +∠HCB =∠BCD =120°,即∠HCG =120°.∵CH =CG ,PH =PG ,∴PG ⊥PC ,∠CGP =12(180°-120°)=30°,∴CG =2CP ,∴PG 2=3PC 2.∴PG PC =3.。