厦门第一中学八年级数学下册第十九章《一次函数》基础练习(培优专题)

合集下载

人教版八年级下学期期末复习 第十九章《一次函数》 培优训练含参考答案

人教版八年级下学期期末复习 第十九章《一次函数》 培优训练含参考答案

期末复习:《一次函数》培优训练一.选择题1.下列各曲线中表示y是x的函数的是()A.B.C.D.2.函数y=+中自变量x的取值范围是()A.x≤2 B.x≤2且x≠1 C.x<2且x≠1 D.x≠13.设0<k<2,关于x的一次函数y=kx+2(1﹣x),当1≤x≤2时的最大值是()A.2k﹣2 B.k﹣1 C.k D.k+14.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<15.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=C.y=D.y=6.如图所示,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.下列说法中正确的是()A.B点表示此时快车到达乙地B.B﹣C﹣D段表示慢车先加速后减速最后到达甲地C.快车的速度为km/hD.慢车的速度为125km/h7.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.8.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个9.已知一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,则下列结论正确的是()A.k<2,m>0 B.k<2,m<0 C.k>2,m>0 D.k<0,m<010.如图所示,已知直线与x、y轴交于B、C两点,A(0,0),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第n个等边三角形的边长等于()A.B.C.D.二.填空题11.如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<x时,x的取值范围为.12.当直线y=(2﹣2k)x+k﹣3经过第二、三、四象限时,则k的取值范围是.13.如图,三个正比例函数的图象分别对应表达式:①y=ax,②y=bx,③y=cx,将a,b,c从小到大排列并用“<”连接为.14.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为.15.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示兔子所行的路程).有下列说法:表示乌龟所行的路程,y2①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是.(把你认为正确说法的序号都填上)16.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y 轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为.17.已知m是整数,且一次函数y=(m+4)x+m+2的图象不过第二象限,则m=.18.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.三.解答题19.如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的解析式;(2)求△AOB的面积.20.在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.(1)求a的值;(2)设这条直线与y轴相交于点D,求△OPD的面积.21.如图,在平面直角坐标系xOy中,直线y=﹣x+8与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长和点C的坐标;(2)求直线CD的解析式.22.快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题:(1)请直接写出快、慢两车的速度;(2)求快车返回过程中y(千米)与x(小时)的函数关系式;(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.23.某酒厂每天生产A ,B 两种品牌的白酒共600瓶,A ,B 两种品牌的白酒每瓶的成本和利润如下表:设每天生产A 种品牌白酒x 瓶,每天获利y 元.(1)请写出y 关于x 的函数关系式;(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?24.已知一次函数y =2x ﹣4的图象与x 轴、y 轴分别相交于点A 、B ,点P 在该函数的图象上,P 到x 轴、y 轴的距离分别为d 1、d 2.(1)当P 为线段AB 的中点时,求d 1+d 2的值;(2)直接写出d 1+d 2的范围,并求当d 1+d 2=3时点P 的坐标;(3)若在线段AB 上存在无数个P 点,使d 1+ad 2=4(a 为常数),求a 的值.25.一辆货车和一辆小轿车同时从甲地出发,货车匀速行驶至乙地,小轿车中途停车休整后提速行驶至乙地.货车的路程y1(km),小轿车的路程y2(km)与时间x(h)的对应关系如图所示.(1)甲乙两地相距多远?小轿车中途停留了多长时间?(2)①写出y1与x的函数关系式;②当x≥5时,求y2与x的函数解析式;(3)货车出发多长时间与小轿车首次相遇?相遇时与甲地的距离是多少?26.如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)求△COM的面积S与M的移动时间t之间的函数关系式;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.参考答案一.选择题1.解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D 正确.故选:D.2.解:根据二次根式有意义,分式有意义得:2﹣x≥0且x﹣1≠0,解得:x≤2且x≠1.故选:B.3.解:原式可以化为:y=(k﹣2)x+2,∵0<k<2,∴k﹣2<0,则函数值随x的增大而减小.∴当x=1时,函数值最大,最大值是:(k﹣2)+2=k.故选:C.4.解:当x>1时,x+b>kx+4,即不等式x+b>kx+4的解集为x>1.故选:C.5.解:A、y是x的二次函数,故A选项错误;B、y是x的反比例函数,故B选项错误;C、y是x的正比例函数,故C选项正确;D、y是x的一次函数,故D选项错误;故选:C.6.解:A、B点表示快车与慢车出发4小时两车相遇;故本选项错误;B、B﹣C﹣D段表示快、慢车相遇后行驶一段时间快车到达乙地,慢车继续行驶,慢车共用了12小时到达甲地故本选项错误;C、快车的速度=﹣=(km/h);故本选项正确;D、慢车的速度==(km/h);故本选项错误;故选:C.7.解:由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则当0<x ≤2,s =,当2<x ≤3,s =1,由以上分析可知,这个分段函数的图象开始直线一部分,最后为水平直线的一部分. 故选:C .8.解:由图象可知A 、B 两城市之间的距离为300km ,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A 城的距离y 与t 的关系式为y 甲=kt ,把(5,300)代入可求得k =60,∴y 甲=60t ,设乙车离开A 城的距离y 与t 的关系式为y 乙=mt +n ,把(1,0)和(4,300)代入可得,解得,∴y 乙=100t ﹣100,令y 甲=y 乙可得:60t =100t ﹣100,解得t =2.5,即甲、乙两直线的交点横坐标为t =2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y 甲﹣y 乙|=50,可得|60t ﹣100t +100|=50,即|100﹣40t |=50,当100﹣40t =50时,可解得t =,当100﹣40t =﹣50时,可解得t =,又当t =时,y 甲=50,此时乙还没出发,当t =时,乙到达B 城,y 甲=250;综上可知当t 的值为或或或t =时,两车相距50千米, ∴④不正确; 综上可知正确的有①②共两个,故选:B .9.解:∵一次函数y =kx ﹣m ﹣2x 的图象与y 轴的负半轴相交,且函数值y 随自变量x 的增大而减小,∴k ﹣2<0,﹣m <0,∴k <2,m >0.故选:A .10.解:∵OB =,OC =1, ∴BC =2,∴∠OBC =30°,∠OCB =60°.而△AA 1B 1为等边三角形,∠A 1AB 1=60°,∴∠COA 1=30°,则∠CA 1O =90°.在Rt △CAA 1中,AA 1=OC =,同理得:B 1A 2=A 1B 1=,依此类推,第n 个等边三角形的边长等于.故选:A .二.填空题(共8小题)11.解:∵正比例函数y =x 也经过点A ,∴kx +b <x 的解集为x >3,故答案为:x >3. 12.解:y =(2﹣2k )x +k ﹣3经过第二、三、四象限,∴2﹣2k <0,k ﹣3<0,∴k >1,k <3,∴1<k <3;故答案为1<k <3;13.解:根据三个函数图象所在象限可得a <0,b >0,c >0,再根据直线越陡,|k |越大,则b >c .则b >c >a ,故答案为:a <c <b .14.解:如图所示.∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3.∵∠CAB=90°,BC=5,∴AC=4.∴A′C′=4.∵点C′在直线y=2x﹣6上,∴2x﹣6=4,解得x=5.即OA′=5.∴CC′=5﹣1=4.∴S▱BCC′B′=4×4=16.即线段BC扫过的面积为16.故答案为16.15.解:根据图象可知:龟兔再次赛跑的路程为1000米,故①正确;兔子在乌龟跑了40分钟之后开始跑,故②错误;乌龟在30﹣﹣40分钟时的路程为0,故这10分钟乌龟没有跑在休息,故③正确;y 1=20x﹣200(40≤x≤60),y2=100x﹣4000(40≤x≤50),当y1=y2时,兔子追上乌龟,此时20x﹣200=100x﹣4000,解得:x=47.5,y 1=y2=750米,即兔子在途中750米处追上乌龟,故④正确.综上可得①③④正确.故答案为:①③④.16.解:设直线AB的解析式为y=kx+b,把A(0,2)、点B(1,0)代入,得,解得,故直线AB的解析式为y=﹣2x+2;将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC,∴DO垂直平分BC,∴OC=OB,∵直线CD由直线AB平移而成,∴CD=AB,∴点D的坐标为(0,﹣2),∵平移后的图形与原图形平行,∴平移以后的函数解析式为:y=﹣2x﹣2.故答案为:y=﹣2x﹣2.17.解:∵一次函数y=(m+4)x+m+2的图象不过第二象限,∴,解得﹣4<m≤﹣2,而m是整数,则m=﹣3或﹣2.故填空答案:﹣3或﹣2.18.解:把P(4,﹣6)代入y=2x+b得,﹣6=2×4+b解得,b=﹣14把P(4,﹣6)代入y=kx﹣3解得,k=﹣把b=﹣14,k=﹣代入kx﹣3>2x+b得,﹣x﹣3>2x﹣14解得,x<4.故答案为:x<4.三.解答题(共8小题)19.解:(1)把A(﹣2,﹣1),B(1,3)代入y=kx+b得,解得.所以一次函数解析式为y=x+;(2)把x=0代入y=x+得y=,所以D点坐标为(0,),所以△AOB的面积=S△AOD +S△BOD=××2+××1=.20.解:(1)设直线的解析式为y=kx+b,把A(﹣1,5),B(3,﹣3)代入,可得:,解得:,所以直线解析式为:y=﹣2x+3,把P(﹣2,a)代入y=﹣2x+3中,得:a=7;(2)由(1)得点P的坐标为(﹣2,7),令x=0,则y=3,所以直线与y轴的交点坐标为(0,3),所以△OPD的面积=.21.解:(1)∵直线y=﹣x+8与x轴,y轴分别交于点A,点B,∴A(6,0),B(0,8),在Rt△OAB中,∠AOB=90°,OA=6,OB=8,∴AB==10,∵△DAB沿直线AD折叠后的对应三角形为△DAC,∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上,∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0),由题意可知CD=BD,CD2=BD2,在Rt△OCD中,由勾股定理得162+y2=(8﹣y)2,解得y=﹣12.∴点D的坐标为D(0,﹣12),可设直线CD的解析式为y=kx﹣12(k≠0)∵点C(16,0)在直线y=kx﹣12上,∴16k﹣12=0,解得k=,∴直线CD的解析式为y=x﹣12.22.解:(1)慢车的速度=180÷(﹣)=60千米/时,快车的速度=60×2=120千米/时;(2)快车停留的时间:﹣×2=(小时),+=2(小时),即C(2,180),设CD的解析式为:y=kx+b,则将C(2,180),D(,0)代入,得,解得,∴快车返回过程中y(千米)与x(小时)的函数关系式为y=﹣120x+420(2≤x≤);(3)相遇之前:120x+60x+90=180,解得x=;相遇之后:120x+60x﹣90=180,解得x=;快车从甲地到乙地需要180÷120=小时,快车返回之后:60x=90+120(x﹣﹣)解得x=综上所述,两车出发后经过或或小时相距90千米的路程.23.解:(1)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶,依题意,得y=20x+15(600﹣x)=5x+9000;(2)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶,依题意,得50x+35(600﹣x)≥26400,解得x≥360,∴每天至少获利y=5x+9000=10800.24.解:(1)对于一次函数y=2x﹣4,令x=0,得到y=﹣4;令y=0,得到x=2,∴A(2,0),B(0,﹣4),∵P为AB的中点,∴P(1,﹣2),则d1+d2=3;(2)①d1+d2≥2;②设P(m,2m﹣4),∴d1+d2=|m|+|2m﹣4|,当0≤m≤2时,d1+d2=m+4﹣2m=4﹣m=3,解得:m=1,此时P1(1,﹣2);当m>2时,d1+d2=m+2m﹣4=3,解得:m=,此时P2(,);当m<0时,不存在,综上,P的坐标为(1,﹣2)或(,);(3)设P(m,2m﹣4),∴d1=|2m﹣4|,d2=|m|,∵P在线段AB上,∴0≤m≤2,∴d1=4﹣2m,d2=m,∵d1+ad2=4,∴4﹣2m+am=4,即(a﹣2)m=0,∵有无数个点,即无数个解,∴a﹣2=0,即a=2.25.解:(1)由图可知,甲乙两地相距420km,小轿车中途停留了2小时;(2)①y1=60x(0≤x≤7);②当x=5.75时,y1=60×5.75=345,x≥5时,设y2=kx+b,∵y2的图象经过(5.75,345),(6.5,420),∴,解得:,∴x≥5时,y2=100x﹣230;(3)x=5时,有y2=100×5﹣230=270,即小轿车在3≤x≤5停车休整,离甲地270km,当x=3时,y1=180;x=5时,y1=300,∴火车在3≤x≤5时,会与小轿车相遇,即270=60x,x=4.5;当0<x≤3时,小轿车的速度为270÷3=90km/h,而货车速度为60km/h,故,货车在0<x≤3时,不会与小轿车相遇,∴货车出发4.5小时后首次与小轿车相遇,距离甲地270km.26.解:(1)对于直线AB:,当x=0时,y=2;当y=0时,x=4,则A、B两点的坐标分别为A(4,0)、B(0,2);(2)∵C(0,4),A(4,0)∴OC=OA=4,当0≤t<4时,OM=OA﹣AM=4﹣t,S△OCM=×4×(4﹣t)=8﹣2t;当t>4时,OM=AM﹣OA=t﹣4,S△OCM=×4×(t﹣4)=2t﹣8;(3)分为两种情况:①当M在OA上时,OB=OM=2,△COM≌△AOB.∴AM=OA﹣OM=4﹣2=2∴动点M从A点以每秒1个单位的速度沿x轴向左移动2个单位,所需要的时间是2秒钟;M(2,0),②当M在AO的延长线上时,OM=OB=2,则M(﹣2,0),此时所需要的时间t=[4﹣(﹣2)]/1=6秒,即M点的坐标是(2,0)或(﹣2,0).。

第19章《一次函数》 实际应用解答题培优(一)2020-2021学年人教版数学八年级下册

第19章《一次函数》 实际应用解答题培优(一)2020-2021学年人教版数学八年级下册

人教版数学八年级下册第19章《一次函数》实际应用解答题培优(一)1.甲、乙两台机器共同加工一批零件,一共用了6小时,在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工,甲机器在加工过程中工作效率保持不变,甲、乙两台机器加工零件的总数y(个)与甲加工时间x(h)之间的函数图象为折线OA﹣AB﹣BC.如图所示.(1)这批零件一共有个,甲机器每小时加工个零件;(2)在整个加工过程中,求y与x之间的函数解析式;(3)乙机器排除故障后,求甲加工多长时间时,甲与乙加工的零件个数相差10个.2.在防疫工作稳步推进的过程中,复工复产工作也在如火如荼进行.某企业计划通过扩大生产能力来消化第一季度积累的订单,决定增加一条新的生产线并招收工人.根据以往经验,一名熟练工人每小时完成的工件数量比一名普通工人每小时完成的工件数量多10个,且一名熟练工人完成160个工件与一名普通工人完成80个工件所用的时间相同.(1)求一名熟练工人和一名普通工人每小时分别能完成多少个工件?(2)新生产线的目标产能是每小时生产200个工件,计划招聘n名普通工人与m名熟练工人共同完成这项任务,请写出m与n的函数关系式(不需要写自变量n的取值范围);(3)该企业在做市场调研时发现,一名普通工人每天工资为120元,一名熟练工人每天工资为150元,而且本地区现有熟练工人不超过8人.在(2)的条件下,该企业如何招聘工人,使得工人工资的总费用最少?3.某电信公司推出如下A,B两种通话收费方式,记通话时间为x分钟,总费用为y元.根据表格内信息完成以下问题:(1)分别求出A,B两种通话收费方式对应的函数表达式;(2)在给出的坐标系中作出收费方式A对应的函数图象,并求出;①通话时间为多少分钟时,两种收费方式费用相同;②结合图象,直接写出选择哪种通话方式能节省费用?收费方式月使用费(元)包时通话(分钟)超时通话(元/分钟)A12 0 0.2B18 40 0.34.如图(1)是某手机专卖店每周收支差额y(元)(手机总利润减去运营成本)与手机台数x(台)的函数图象,由于疫情影响目前这个专卖店亏损,店家决定采取措施扭亏.方式一:改善管理,降低运营成本,以此举实现扭亏.方式二:运营成本不变,提高每台手机利润实现扭亏(假设每台手机的利润都相同).解决以下问题:(1)说明图(1)中点A和点B的实际意义;(2)若店家决定采用方式一如图(2),要使每周卖出70台时就能实现扭亏(收支平衡),求节约了多少运营成本?(3)若店家决定两种方式都采用,降低运营成本为m元,提高每台手机利润n元,当5000≤m≤7000,50≤n≤100时,求店家每周销售100台手机时可获得的收支差额范围,并在图(3)中画出取得最大收支差额时y与x的关系的大致图象,要求描出反映关键数据的点.5.如图,l A、l B分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)B出发时与A相距千米.(2)B走了一段路后,自行车发生故障,B进行修理,所用的时间是小时.(3)B第二次出发后小时与A相遇.(4)若B的自行车不发生故障,保持出发时的速度前进,则出发多长时间与A相遇?(写出过程)6.甲、乙两人相约周末登崂山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,且当乙提速后,乙的登山上升速度是甲登山上升速度的3倍,且根据图象所提供的信息解答下列问题:(1)乙在A地时距地面的高度b为米;t的值为;(2)请求出甲在登山全程中,距离地面高度y(米)与登山时间x(分)之间的函数关系式;(3)已知AB段对应的函数关系式为y=30x﹣30,则登山多长时间时,甲、乙两人距地面的高度差为70米?(直接写出答案)7.某水果店11月份购进甲、乙两种水果共花费1800元,其中甲种水果10元/千克,乙种水果16元/千克.12月份,这两种水果的进价上调为:甲种水果13元/千克,乙种水果18元/千克.(1)若该店12月份购进这两种水果的数量与11月份都相同,将多支付货款400元,求该店11月份购进甲、乙两种水果分别是多少千克?(2)若12月份将这两种水果进货总量减少到130千克,设购进甲种水果a千克,需要支付的货款为w元,求w与a的函数关系式;(3)在(2)的条件下,若甲种水果不超过80千克,则12月份该店需要支付这两种水果的货款最少应是多少元?8.甲骑电动车,乙骑自行车从深圳湾公园门口出发沿同一路线匀速游玩,设乙行驶的时间为x(h),甲、乙两人距出发点的路程S甲、S乙关于x的函数图象如图①所示,甲、乙两人之间的路程差y关于x的函数图象如图②所示,请你解决以下问题:(1)甲的速度是km/h,乙的速度是km/h;(2)对比图①、图②可知:a=,b=;(3)乙出发多少时间,甲、乙两人路程差为7.5km?9.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,月用电量不超过200度时,按0.55元/度计费,月用电量超过200度时,其中的200度仍按0.55元/度计费,超过部分按0.70元/度计费,设每户家庭月用电量为x度时,应交电费y 元.(1)分别求出0≤x≤200和x>200时,y与x的函数解析式.(2)小明家4月份用电250度,应交电费多少元?(3)小明家6月份交纳电费117元,小明家这个月用电多少度?10.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)乙队开挖到30m时,用了小时,甲队在开挖后6小时内,每小时挖m;(2)分别求出y甲、y乙与x的函数解析式,并写出自变量x的取值范围;(3)开挖2小时,甲、乙两队挖的河渠的长度相差m,开挖6小时,甲、乙两队挖的河渠的长度相差m;(4)求开挖后几小时,甲、乙两队挖的河渠的长度相差5m.11.新冠肺炎疫情爆发后,口罩成为了最紧缺的防护物资之一,比亚迪,长安,格力等企业响应国家号召,纷纷开设口罩生产线.2月1日,重庆东升公司复工,利用原有的A 生产线开始生产口罩,8天后,采用最新技术的B生产线建成投产同时,为加大口罩产能,公司耗时2天对A生产线进行技术升级,升级期间A生产线暂停生产,升级后,产能提高20%.如图反映了每条A,B生产线的口罩总产量y(万个)与时间x(天)之间的关系,根据图象,解答下列问题:(1)技术升级后,每条A生产线每天生产口罩万个;(2)每条B生产线每天生产口罩万个;(3)技术升级后,东升公司的口罩日总产量为136万个,已知公司有15条A生产线,则B生产线有条;(4)在(3)的条件下,东升公司进一步扩大产能,两生产线在原每日工作时长8小时的基础上,增加m小时(m为正整数),同时新增k条B生产线,此时公司口罩日总产量达到260万个,求正整数k的值.12.某校开展“文明在行动”的志愿者活动,准备购买某一品牌书包送到希望学校.在A 商店,无论一次购买多少,价格均为每个50元,在B商店,一次购买数量不超过10个时,价格为每个60元;一次购买数量超过10个时,超出10个部分打八折.设一次购买该品牌书包的数量为x个(x>0).(Ⅰ)根据题意填表:5 10 15 …一次购买数量/个A商店花费/元500 …B商店花费/元600 …(Ⅱ)设在A商店花费y1元,在B商店花费y2元,分别求出y1,y2关于x的函数解析式;(Ⅲ)根据题意填空:①若小丽在A商店和在B商店一次购买书包的数量相同,且花费相同,则她在同一商店一次购买书包的数量为个.②若小丽在同一商店一次购买书包的数量为50个,则她在A,B两个商店中的商店购买花费少;③若小丽在同一商店一次购买书包花费了1800元,则她在A,B两个商店中商店购买数量多.13.小明和妈妈元旦假期去看望外婆,返回时,他们先搭乘顺路车到A地,约定小明爸爸驾车到A地接他们回家.一家人在A地见面,休息半小时后,小明爸爸驾车返回家中.已知小明他们与外婆家的距离s(km)和小明从外婆家出发的时间t(h)之间的函数关系如图所示.(1)小明家与外婆家的距离是km,小明爸爸驾车返回时平均速度是km/h:(2)点P的实际意义是什么?(3)求他们从A地驾车返回家的过程中,s与t之间的函数关系式.14.新冠疫情期间,口罩的需求量增大,某口罩加工厂承揽生产1600万个口罩的任务,每天生产的口罩数量相同,计划用x天(x>4)完成.(1)求每天生产口罩y(万个)与生产时间x(天)之间的函数表达式;(2)由于疫情形势严峻,卫生管理部门要求厂家提前4天交货,那么加工厂每天要多做20万个口罩才能完成任务,求实际生产时间.15.某公司销售玉米种子,价格为5元/千克,如果一次性购买10千克以上的种子,超过10千克部分的种子的价格打8折,部分表格如下:2 5 10 12 20 30 …购买种子的数量/千克10 a50 58 b130 …付款金额/元(1)直接写出表格中a,b的值;(2)设购买种子数量为x(x>10)千克,付款金额为y元,求y与x的函数关系式;(3)小李第一次购买种子35千克,第二次又购买了8千克,若两次购买种子的数量合在一起购买可省多少钱?参考答案1.解:(1)由函数图象可知,共用6小时加工完这批零件,一共有270个.AB段为甲机器单独加工,每小时加工个数为(90﹣50)÷(3﹣1)=20(个),故答案为:270,20;(2)设y OA=k1x,当x=1时,y=50,则50=k1,∴y OA=50x;设y AB=k2x+b2,,解得,∴y AB=20x+30;设y BC=k3x+b3,,解得,∴y BC=60x﹣90;综上所述,在整个加工过程中,y与x之间的函数解析式是y=;(3)乙开始的加工速度为:50÷1﹣20=30(个/小时),乙后来的加工速度为:(270﹣90)÷(6﹣3)﹣20=40(个/小时),设乙机器排除故障后,甲加工a小时时,甲与乙加工的零件个数相差10个,20a﹣[30×1+40(a﹣3)]=±10,解得a=4或a=5,答:排除故障后,甲加工4小时或5小时时,甲与乙加工个数相差10.2.解:(1)设一名普通工人每小时完成x个工件,则一名熟练工人每小时完成(x+10)个工件,,解得x=10,经检验,x=10是原分式方程的解,∴x+10=20,即一名熟练工人和一名普通工人每小时分别能完成20个工件、10个工件;(2)由题意可得,10n+20m=200,则m=﹣0.5n+10,即m与n的函数关系式是m=﹣0.5n+10;(3)设工人工资的总费用为w元,w=120n+150m=120n+150(﹣0.5m+10)=45n+1500,∴w随n的增大而增大,∵本地区现有熟练工人不超过8人,∴m≤8,即﹣0.5n+10≤8,解得n≥4,∴当n=4时,w取得最小值,此时w=1680,m=﹣0.5n+10=8,答:招聘普通工人4人,熟练工人8人时,工人工资的总费用最少.3.解:(1)由表格可得,收费方式A对应的函数表达式是y=0.2x+12,收费方式B对应的函数表达式是:当0≤x≤40时,y=18,当x>40时,y=0.3(x ﹣40)+18=0.3x+6,由上可得,收费方式A对应的函数表达式是y=0.2x+12,收费方式B对应的函数表达式是y=;(2)∵收费方式A对应的函数表达式是y=0.2x+12,∴当x=0时,y=12,当x=40时,y=20,收费方式A对应的函数图象如右图所示;①设通话时间为a分钟时,两种收费方式费用相同,0.2a+12=18或0.2a+12=0.3a+6,解得a=30或a=60,即通话时间为30分钟或60分钟时,两种收费方式费用相同;②由图象可得,当0≤x<30或x>60时,选择A种通话方式能节省费用;当x=30或x=60时,两种通话方式一样;当30<x<60时,选择B种通话方式能节省费用.4.解:(1)由图像可知A点是函数图象与x轴的交点,所以点A的实际意义表示当卖出100台手机时,该专卖店每周收支差额为0;B点是函数图象与y轴的交点,所以点B的实际意义表示当手机店一台手机都没有卖出时,该专卖店亏损20000元;(2)由图(1)可求出以前的函数为y=200x﹣20000,若店家决定采用方式一,降低运营成本,即将函数图象上下平移,所以可以设新函数为y =200x+b,∵函数图象经过点(70,0),代入可得200×70+b=0,解得:b=﹣14000,∴要使每周卖出70台时就能实现扭亏(收支平衡),运营成本为14000元,节约了6000元运营成本;(3)设新函数为y=(200+n)x﹣(20000﹣n),∵50≤n≤100,∴250≤200+n≤300,当店家每周售出100台手机,收支差额最小时y=250×100﹣7000=18000,收支差额最大时y=300×100﹣5000=25000,∴收支差额范围为18000≤y≤25000,图象为:.5.解:(1)∵当t=0时,S=10,∴B出发时与A相距10千米.故答案为:10.(2)1.5﹣0.5=1(小时).故答案为:1.(3)观察函数图象,可知:B第二次出发后1.5小时与A相遇.(4)设A行走的路程S与时间t的函数关系式为S=kt+b(k≠0),将(0,10),(3,22.5)代入S=kt+b,得:,解得:,∴A行走的路程S与时间t的函数关系式为S=x+10.设若B的自行车不发生故障,则B行走的路程S与时间t的函数关系式为S=mt.∵点(0.5,7.5)在该函数图象上,∴7.5=0.5m,解得:m=15,∴设若B的自行车不发生故障,则B行走的路程S与时间t的函数关系式为S=15t.联立两函数解析式成方程组,得:,解得:,∴若B的自行车不发生故障,保持出发时的速度前进,小时与A相遇.6.解:(1)甲登山上升的速度是:(300﹣100)÷20=10(米/分钟),乙提速后的速度为:10×3=30(米/分钟),b=15÷1×2=30;t=2+(300﹣30)÷30=11,故答案为:30;11;(2)设甲在登山全程中,距离地面高度y(米)与登山时间x(分)之间的函数关系式为y=kx+100,根据题意,得20k+100=300,解得k=10,故y=10x+100(0≤x≤20);(3)根据题意,得:当10x+100﹣(30x﹣30)=70时,解得:x=3;当30x﹣30﹣(10x+100)=70时,解得:x=10;当300﹣(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.7.解:(1)设该店11月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:,解得,答:该店11月份购进甲种水果100千克,购进乙种水果50千克;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(130﹣a)千克,根据题意得:w=10a+20(130﹣a)=﹣10a+2600;(3)根据题意得,a≤80,由(2)得,w=﹣10a+2600,∵﹣10<0,w随a的增大而减小,∴a=80时,w有最小值w最小=﹣10×80+2600=1600(元).答:12月份该店需要支付这两种水果的货款最少应是1600元.8.解:(1)由图可得,甲的速度为:25÷(1.5﹣0.5)=25÷1=25(km/h),乙的速度为:25÷2.5=10(km/h),故答案为:25,10;(2)由图可得,a=25×(1.5﹣0.5)﹣10×1.5=10,b=1.5,故答案为:10;1.5;(3)由题意可得,前0.5h,乙行驶的路程为:10×0.5=5<7.5,则甲、乙两人路程差为7.5km是在甲乙相遇之后,设乙出发xh时,甲、乙两人路程差为7.5km,25(x﹣0.5)﹣10x=7.5,解得,x=,25﹣10x=7.5,得x=;即乙出发或时,甲、乙两人路程差为7.5km.9.解:(1)当0≤x≤200时,y与x的函数解析式是y=0.55x;当x>200时,y与x的函数解析式是y=0.55×200+0.7(x﹣200),即y=0.7x﹣30;(2)小明家4月份用电250度,月用电量超过200度,所以应交电费为:0.7×250﹣30=145(元),(3)因为小明家6月份的电费超过110元,所以把y=117代入y=0.7x﹣30中,得x=210.答:小明家6月份用电210度.10.解:(1)依题意得,乙队开挖到30m时,用了2h,开挖6h时甲队比乙队多挖了60﹣50=10(m);故答案为:2;10;(2)设甲队在0≤x≤6的时段内y与x之间的函数关系式y甲=k1x,由图可知,函数图象过点(6,60),∴6k1=60,解得k1=10,∴y甲=10x,设乙队在2≤x≤6的时段内y与x之间的函数关系式为y乙=k2x+b,由图可知,函数图象过点(2,30)、(6,50),∴,解得,∴y乙=5x+20;当0≤x≤2时,设y乙与x的函数解析式为y乙=kx,可得2k=30,解得k=15,即y=15x;乙∴y乙=,(3)依题意得,开挖2小时,甲、乙两队挖的河渠的长度相差10m,开挖6小时,甲、乙两队挖的河渠的长度相差10m;故答案为:10;10;(4)当0≤x≤2时,15x﹣10x=5,解得x=1.当2<x≤4时,5x+20﹣10x=5,解得x=3,当4<x≤6时,10x﹣(5x+20)=5,解得x=5.答:当两队所挖的河渠长度之差为5m时,x的值为1h或3h或5h.11.解:(1)由图可知,升级前A生产线的日产量为:32÷8=4(万个),∵升级后,日产能提高20%,∴技术升级后,每条A生产线每天生产口罩4×(1+20%)=4.8(万个),故答案为:4.8;(2)A生产线技术升级后,A生产线的产量由32万到56万,所用的时间为(56﹣32)÷4.8=5(天),故B生产线从第8天开始生产到第15天的产能为56万个,所以每条B生产线每天生产口罩:56÷(15﹣8)=8(万个),故答案为:8;(3)设B生产线有x条,根据题意得:15×4.8+8x=136,解得:x=8,故答案为:8;(4)A生产线升级后每小时产能为:4.8÷8=0.6(万个),B生产线的每小时产能为:8÷8=1(万个),根据题意得:0.6×(8+m)×15+(8+m)(8+k)=260,整理得:(8+m)(17+k)=260,∵m、k为正整数,∴8+m为大于8的正整数,17+k为大于17的正整数,∴(8+m)(17+k)=260=10×26=13×20,∴8+m=10,17+k=26或8+m=13,17+k=20,∴m=2,k=9或m=5,k=3,∴每日工作时长增加2小时,B生产线增加9条或每日工作时长增加5小时,B生产线增加3条即可使公司口罩日总产量达到260万个,∴正整数k的值为9或3.答:正整数k的值为9或3.12.解:(Ⅰ)在A商店,购买5个费用=5×50=250(元),购买15个费用为15×50=750(元),在B商店,购买5个费用=5×60=300(元),购买15个费用为10×60+60×0.8(15﹣10)=840(元),故答案为:250,750,300,840;(Ⅱ)由题意可得:y1=50x(x≥0),当0≤x≤10时,y2=60x,当x>10时,y2=60×10+60×0.8×(x﹣10)=48x+120(x>10),∴y2=;(Ⅲ)①由题意可得:50x=48x+120,解得x=60,故答案为:60;②∵50×50<48×50+120,∴在A商店购买花费少,故答案为:A;③若在A商店,=36(个),若在B商店,=35(个),∵36>35,∴在A商店购买的数量多,故答案为:A.13.解:(1)由图象可得小明家与外婆家的距离为300km,小明经过2小时到达点A,点A到小明外婆家的距离=(300﹣2×90)=120(km),∴小明爸爸驾车返回时平均速度==60(km/h),故答案为:300,60;(2)点P表示小明出发2小时到达A地与小明爸爸相遇;(3)设s与t之间的函数关系式为s=kt+b,且过点(2.5,180),(4.5,300),∴,解得,∴s与t之间的函数关系式为s=60t+30(2.5≤t≤4.5).14.解:(1)每天生产口罩y(万个)与生产时间x(天)之间的函数表达式为:y=(x>4);(2)由题意可得:+20=,解得:x1=20,x2=﹣16,经检验,x1=20,x2=﹣16是原分式方程的解,但x=﹣16不合题意舍去,∴20﹣4=16(天),答:实际生产时间为16天.15.解:(1)a=5×5=25,b=5×10+(20﹣10)×0.8×5=90;(2)y=5×10+5×0.8(x﹣10)=4x+10;(3)购买35千克付款金额=4×35+10=150(元),购买8千克付款金额=5×8=40(元),一起购买付款金额=4×(35+8)+10=182(元),∴150+40﹣182=8(元),答:一起购买可省8元.。

2020——2021学年人教版 八年级数学下册 第十九章 一次函数 培优训练(含答案)

2020——2021学年人教版 八年级数学下册 第十九章 一次函数 培优训练(含答案)

人教版 八年级下册 第十九章 一次函数 培优训练一、选择题1. (2019•陕西)在平面直角坐标系中,将函数3y x 的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为 A .(2,0) B .(–2,0) C .(6,0) D .(–6,0)2. 函数y =kx +b 的图象如图,则当y <0时,x 的取值范围是( ) A .x <-2 B .x >-2 C .x <-1 D .x >-13. 设点A (a ,b )是正比例函数y =-32x 图象上的任意一点,则下列等式一定成立的是( )A. 2a +3b =0B. 2a -3b =0C. 3a -2b =0D. 3a +2b =04. 若k ≠0,b <0,则y =kx +b 的图象可能是( )5. 如图,一次函数y 1=x +b与一次函数y 2=kx +4的图象交于点P (1,3),则关于x 的不等式x +b >kx +4的解集是( ) A. x >-2 B. x >0 C. x >1 D. x <16. 某通信公司就上宽带网推出了A ,B ,C 三种月收费方式,这三种收费方式每月所需的费用y (元)与上网时间x (h)的函数关系如图所示,则下列判断错误..的是( )A .每月上网时间不足25 h 时,选择A 方式最省钱B .每月上网费用为60元时,B 方式可上网的时间比A 方式多C .每月上网时间为35 h 时,选择B 方式最省钱D .每月上网时间超过70 h 时,选择C 方式最省钱7. 在坐标平面上,某个一次函数的图象经过(5,0)、(10,-10)两点,则此函数图象还会经过下列哪点( )A. (17,947)B. (18,958)C. (19,979)D. (110,9910)8. 如图所示,向一个半径为R ,容积为V 的球形容器内注水,则能够反映容器内水的体积y 与容器内水深x 间的函数关系的图象可能是( )二、填空题9. 已知3a y ax -=,若y 是x 的正比例函数,则a 的值是 .10. 若一次函数y =-2x +b (b 为常数)的图象经过第二、三、四象限,则b 的值可以是________(写出一个即可).11. 如图所示的是函数y kx b =+与y mx n =+的图象,求方程组kx b ymx n y +=⎧⎨+=⎩的解关于原点对称的点的坐标是________.12. (2019•上海)在登山过程中,海拔每升高1千米,气温下降6 °C,已知某登山大本营所在的位置的气温是2 °C,登山队员从大本营出发登山,当海拔升高x 千米时,所在位置的气温是y °C,那么y关于x的函数解析式是__________.13. 某油桶内有油20升,它有一个进油管和一个出油管,进油管每分钟进油4升,出油管每分钟出油6升.现同时打开两管,则油桶中剩余油量Q(升)与开管时间t (分)之间的函数关系式是,自变量t的取值范围是.14. 若点M(k-1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k-1)x +k的图象不经过...第________象限.15. 甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发.在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示.则乙到终点时,甲距终点的距离是________米.16. 如图所示,已知点C(1,0),直线y=-x+7与两坐标轴分别交于A,B两点,D,E分别是AB,OA上的动点,则△CDE周长的最小值是________.三、解答题17. 某商品的进价为每件40元,在销售过程中发现,每周的销售量y(件)与销售单价x(元)之间的关系可以近似看作一次函数y=kx+b,且当售价定为50元/件时,每周销售30件,当售价定为70元/件时,每周销售10件. (1)求k ,b 的值;(2)求销售该商品每周的利润w (元)与销售单价x (元)之间的函数解析式,并求出销售该商品每周可获得的最大利润.18. 小明同学骑自行车去郊外春游,下图表示他离家的距离y (千米)与所用的时间x (时)之间关系的函数图象.⑴根据图象回答:小明到达离家最远的地方需几小时?此时离家多远? ⑵小明出发两个半小时离家多远? ⑶小明出发多长时间距家12千米?时间(小时)4653212051015253019. 公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆.已知每辆甲种货车一次最多运送机器45台,租车费用为400元,每辆乙种货车一次最多运送机器30台,租车费用为280元.(1)设租用甲种货车x 辆(x 为非负整数),试填写表格:(2)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.20. 阅读:我们知道,在数轴上,1x =表示一个点,而在平面直角坐标系中,1x =表示一条直线;我们还知道,以二元一次方程210x y -+=的所有解为坐标的点组成的图形就是一次函数21y x =+的图象,它也是一条直线,如图①.观察图①可以得出:直线1x =与直线21y x =+的交点P 的坐标(1,3)就是方程组1210x x y =⎧⎨-+=⎩的解,所以这个方程组的解为13x y =⎧⎨=⎩; 在直角坐标系中,1x ≤表示一个平面区域,即直线1x =以及它左侧的部分,如图②;21y x ≤+也表示一个平面区域,即直线21y x =+以及它下方的部分,如图③.(1)y=2x+1x=1yxO P (1,3)Ox yx=1(2)O xyy=2x+1(3)回答下列问题.⑴在下面的直角坐标系中,用作图象的方法求出方程组122x y x =-⎧⎨=-+⎩的解;O xyO xy2O x yy 1=2x+1(4)⑵在上面的直角坐标系中,用阴影表示2220x y x y ≥-⎧⎪≤-+⎨⎪≥⎩所围成的区域.⑶如图⑷,表示阴影区域的不等式组为: .人教版 八年级下册 第十九章 一次函数 培优训练-答案一、选择题 1. 【答案】B【解析】根据函数图象平移规律,可知3y x =向上平移6个单位后得函数解析式应为36y x =+,此时与x 轴相交,则0y =, ∴360x +=,即2x =-, ∴点坐标为(–2,0), 故选B .2. 【答案】B3. 【答案】D【解析】把点A (a ,b )代入y =-32x ,得b =-32a ,即2b =-3a ,∴3a +2b =0.4. 【答案】B 【解析】由k ≠0可知y =kx +b 是一次函数,图象不是上升就是下降,排除D ,由b <0可知,直线y =kx +b 与y 轴交于负半轴,排除A 、C ,故选B.5. 【答案】C 【解析】结合题图可知不等式x +b >kx +4的解集为函数图象y 1在y 2上方的函数图象所对的自变量取值,即x >1.6. 【答案】D [解析] 当x ≥50时,由(50,50)和(55,65)求得B 方式的解析式为y =3x-100.令y=120,得120=3x-100,解得x=.所以当x>时,选C 方式更省钱,可见选项D 错误.故选D .7. 【答案】C【解析】设该一次函数的解析式为y =kx +b (k ≠0),将点(5,0)、(10,-10)代入到y =kx +b 中得,⎩⎨⎧0=5k +b -10=10k +b ,解得⎩⎨⎧k =-2b =10,∴该一次函数的解析式为y =-2x +10.A.y =-2×17+10=957≠947,该点不在直线上;B.y =-2×18+10=934≠958,该点不在直线上;C.y =-2×19+10=979,该点在直线上;D.y =-2×110+10=945≠9910,该点不在直线上.8. 【答案】A【解析】在函数图象上,图象越靠近y 轴正半轴,则容器内水体积增大的速度越大;当x <R 时,球形容器中水平面圆的半径逐渐增大,故随着x 的增大,容器内水的体积增大的速度为先小后大,故排除B 、C 、D ;当x >R 时,球形容器中水平面圆的半径逐渐减小,故随着x 的增大,容器内水的体积增大的速度为先大后小,故选A.二、填空题 9. 【答案】4【解析】正比例函数的比例系数0a ≠且31a -=10. 【答案】-1(答案不唯一,满足b <0即可) 【解析】∵一次函数y =-2x +b 的图象经过第二、三、四象限,∴b <0,故b 的值可以是-1.11. 【答案】()34--,【解析】考察一次函数与二元一次方程组的关系,在平面直角坐标系内可知两个直线的交点坐标为()34,,所以它关于远点的对称的点的坐标是()34--,12. 【答案】y=-6x+2【解析】根据题意得y=–6x+2,故答案为:y=–6x+2.13. 【答案】Q=20-2t0≤t ≤1014. 【答案】一【解析】依据题意,M 关于y 轴对称点在第四象限,则M 点在第三象限,即k -1<0,k +1<0, 解得k<-1.∴一次函数y =(k -1)x +k 的图象过第二、三、四象限,故不经过第一象限.15. 【答案】175 【解析】由图象可知,甲前30秒跑了75米,则甲的速度为7530=2.5米/秒,甲出发180秒时,两人相离0千米,这说明甲出发后180秒时,乙追上了甲,此时两人所行路程相等为180×2.5=450米,乙用的时间为180-30=150秒,所以乙的速度为:450150=3米/秒,由此可以求出乙跑到终点所用时间为:15003=500秒,此时甲跑的时间为500+30=530秒,甲已跑路程为530×2.5=1325米,甲距终点的距离为1500-1325=175米.16. 【答案】10 【解析】作点C 关于y 轴的对称点C 1(-1,0),点C 关于直线AB 的对称点C 2,连接C 1C 2交OA 于点E ,交AB 于点D ,则此时△CDE 的周长最小,且最小值等于C 1C 2的长.∵OA =OB =7,∴CB =6,∠ABC =45°.∵AB 垂直平分CC 2,∴∠CBC 2=90°,∴C 2的坐标为(7,6).在Rt △C 1BC 2中,C 1C 2=C 1B 2+C 2B 2=82+62=10.即△CDE 周长的最小值是10.三、解答题17. 【答案】解:(1)根据题意,得 .k b k b =+⎧⎨=+⎩3050,1070 解得,.k b =-⎧⎨=⎩180∴k 的值为-1,b 的值为80;(2)∵w = (x -40) ( -x +80) =- (x - 60) 2+400, ∴当x =60时,w 有最大值为400元.答:销售该商品每周可获得的最大利润为400元.18. 【答案】⑴3小时,30千米;⑵22.5千米;⑶48分或5小时12分【解析】⑴由图象可知小明到达离家最远的地方需3小时,此时,他离家30千米.⑵∵小明出发2小时时,离家15千米.由于在CD 段小明走的路程为15千米,时间为1小时,故小明这一段的速度为15千米/时.∴150.57.5⨯=(千米)∴7.51522.5+=(千米)∴小明出发两个半小时离家22.5千米.⑶由图象可以看出小明从出发到距离家12千米有两个时刻,一是在AB段,二是在EF段,故分两种情况:①∵小明出发到1小时时,匀速前行,其速度为15千米/时∴12150.8÷=(时),0.8小时=48分②∵小明出发4小时后返回,∴返回时速度为30215÷=(千米/时)∴301215 1.2-÷=()(时)1.2时=1小时12分∴4小时+1小时12分=5小时12分故小明出发48分和出发5小时12分时离家都为12千米.19. 【答案】解:(1)由题意可得,在表一中,当租用甲种货车7辆时,最多运送的机器数量为45×7=315(台),则租用乙种货车8-7=1(辆),最多运送的机器数量为30×1=30 (台).当租用甲种货车x辆时,最多运送的机器数量为45x台,则租用乙种货车(8 -x)辆,最多运送的机器数量为30(8-x)=(-30x+240)台.在表二中,当租用甲种货车3辆时,租用甲种货车的费用为400×3=1200(元),则租用乙种货车8-3=5(辆),租用乙种货车的费用为280×5=1400(元);当租用甲种货车x辆时,租用甲种货车的费用为400x元,则租用乙种货车(8 -x)辆,租用乙种货车的费用为280(8-x)=(-280x+2240)元.故答案为:表一:315,45x,30,-30x+240;表二:1200,400x,1400,-280x+2240.(2)能完成此项运送任务的最节省费用的租车方案是租用甲种货车6辆,乙种货车2辆.理由:当租用甲种货车x辆时,设租用两种货车的总费用为y元,则y=400x+(-280x+2240)=120x+2240.因为45x+(-30x+240)≥330,所以x≥6.又因为8-x≥0,所以x≤8,所以x的取值范围为6≤x≤8且x为整数.因为在函数y=120x+2240中,120>0,所以在函数y=120x+2240中,y 随x 的增大而增大,所以当x=6时,y 取得最小值.即能完成此项运送任务的最节省费用的租车方案是租用甲种货车6辆,乙种货车2辆.20. 【答案】⑴如图⑸,解为14x y =-⎧⎨=⎩;⑵如图⑹;⑶根据图示信息求得2332y x =-+,则021332x y x y x ⎧⎪⎪+⎨⎪⎪-+⎩≥≥≤x=-1x(5)x(6)。

(完整版)八年级数学下第19章一次函数知识点专题练习(含人教版答案)

(完整版)八年级数学下第19章一次函数知识点专题练习(含人教版答案)

八年级数学下第19章一次函数知识点专题练习(含人教版答案)一次函数知识点专题练习题(时间:90分钟总分120分)一、相信你一定能填对!(每小题3分,共30分)知识点:求自变量的取值范围 1.下列函数中,自变量x的取值范围是x≥2的是() A.y= B.y= C.y= D.y= ? 知识点:由一次函数的特点来求字母的取值5.若函数y=(2m+1)x2+(1-2m)x(m为常数)是正比例函数,则m的值为() A.m> B.m= C.m< D.m=- 11.已知自变量为x的函数y=mx+2-m是正比例函数,则m=________,?该函数的解析式为_______ 知识点:函数图像的意义2.下面哪个点在函数y= x+1的图象上() A.(2,1) B.(-2,1)C.(2,0) D.(-2,0) 15.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_________.18.已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______.17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组的解是________.知识点:判断是否为一次函数或正比例函数 3.下列函数中,y是x 的正比例函数的是() A.y=2x-1 B.y= C.y=2x2 D.y=-2x+1 知识点:k.、b定位4.一次函数y=-5x+3的图象经过的象限是() A.一、二、三 B.二、三、四 C.一、二、四 D.一、三、四 6.若一次函数y=(3-k)x-k 的图象经过第二、三、四象限,则k的取值范围是() A.k>3 B.0<k≤3 C.0≤k<3 D.0<k<3 知识点:确定一次函数的表达式 7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为() A.y=-x-2 B.y=-x-6 C.y=-x+10 D.y=-x-1 10.一次函数y=kx+b的图象经过点(2,-1)和(0,3),?那么这个一次函数的解析式为() A.y=-2x+3 B.y=-3x+2 C.y=3x-2 D.y= x-3 12.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为________. 13.已知一次函数y=kx+b的图象经过点A(1,3)和B (-1,-1),则此函数的解析式为_________.20.如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△AOC的面积为_________.知识点:函数图象的理解 8.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间t(时)的函数关系用图象表示应为下图中的() 9.李老师骑自行车上班,最初以某一速度匀速行进,?中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y?(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是()二、你能填得又快又对吗?(每小题3分,共30分)知识点:双直线的观察图象 14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+?2?上的点在直线y=3x-2上相应点的上方.知识点:一次函数(或正比例函数)的增减性16.若一次函数y=kx+b交于y?轴的负半轴,?且y?的值随x?的增大而减少,?则k____0,b______0.(填“>”、“<”或“=”)知识点:一次函数与坐标轴围成三角形的面积问题19.如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.三、认真解答,一定要细心哟!(共60分)知识点:确定一次函数的表达式 21.(14分)根据下列条件,确定函数关系式:(1)y与x成正比,且当x=9时,y=16;(2)y=kx+b的图象经过点(3,2)和点(-2,1).22.(12分)一次函数y=kx+b的图象如图所示:(1)求出该一次函数的表达式;(2)当x=10时,y的值是多少?(3)当y=12时,?x的值是多少?23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆? 24.(10分)如图所示的折线ABC?表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t?之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?知识点:双函数经济型应用题的解决方案问题 25.(12分)已知雅美服装厂现有A种布料70米,B种布料52米,?现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.?1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.?9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?答案: 1.D 2.D 3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.16 16.<;< 17. 18.0;7 19.±6 20.y=x+2;4 21.①y= x;②y= x+ 22.y=x-2;y=8;x=14 23.①5元;②0.5元;③45千克 24.①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.②2.4元;6.4元 25.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.?6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。

八年级数学(下)第十九章《一次函数》同步练习题(含答案)

八年级数学(下)第十九章《一次函数》同步练习题(含答案)

八年级数学(下)第十九章《一次函数》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数中,y 是x 的一次函数的是①y =x -6;②y =-3x –1;③y =-0.6x ;④y =7-x .A .①②③B .①③④C .①②③④D .②③④ 【答案】C【解析】根据一次函数的定义,可知是一次函数的有①y =x -6;②y =-3x –1;③y =-0.6x ;④y =7-x ,故选C . 2.如果23(2)2my m x -=-+是一次函数,那么m 的值是 A .2B .-2C .±2D .±1 【答案】B【解析】由题意得:22031m m -≠⎧⎨-=⎩,解得m =-2,故选B . 3.下列说法中正确的是A .一次函数是正比例函数B .正比例函数不是一次函数C .不是正比例函数就不是一次函数D .不是一次函数就不是正比例函数 【答案】D【解析】A .一次函数不一定是正比例函数,故本选项说法错误;B .正比例函数是一次函数,故本选项说法错误;C .不是正比例函数,但有可能是一次函数,故本选项说法错误;C .不是一次函数就不是正比例函数,故本选项说法正确,故选D .4.一次函数y =-2x +1的图象经过A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限【答案】B【解析】在一次函数y =-2x +1中,k =-2<0,b =1>0,∴一次函数y =-2x +1的图象经过第一、二、四象限,故选B .5.把直线3y x =-+向上平移m 个单位后,与直线24y x =+的交点在第一象限,则m 的取值范围是A .1<m <7B .3<m <4C .m >1D .m <4【答案】C 【解析】直线3y x =-+向上平移m 个单位后可得:3y x m =-++,联立两直线解析式得:324y x m y x =-++⎧⎨=+⎩,解得132103m x m y -⎧=⎪⎪⎨+⎪=⎪⎩,∴交点坐标为1210()33m m -+,, ∵交点在第一象限,∴10321003m m -⎧>⎪⎪⎨+⎪>⎪⎩,解得m >1,故选C . 6.如果函数y =3x +m 的图象一定经过第二象限,那么m 的取值范围是A .m >0B .m ≥0C .m <0D .m ≤0【答案】A【解析】图象一定经过第二象限,则函数一定与y 轴的正半轴相交,因而0m >,故选A . 7.关于函数y =-x +1,下列结论正确的是A .图象必经过点(-1,1)B .y 随x 的减小而减小C .当x >1时,y <0D .图象经过第二、三、四象限 【答案】C【解析】选项A ,∵当x =-1时,y =2,∴图象不经过点(-1,1),选项A 错误;选项B ,∵k =-1<0,∴y 随x 的增大而减小,选项B 错误;选项C ,∵y 随x 的增大而减小,当x =1时,y =0,∴当x >1时,y <0,选项C 正确;选项D ,∵k =-1<0,b =1>0,∴图象经过第一、二、四象限,选项D 错误.故选C .8.一次函数y =kx +b 的图象如图所示,则k 、b 的值分别为A .k =−12,b =1B .k =-2,b=1C.k=12,b=1 D.k=2,b=1【答案】B【解析】由图象可知:过点(0,1),(12,0),代入一次函数的解析式得:112bk b=⎧⎪⎨=+⎪⎩,解得:k=−2,b=1,故选B.二、填空题:请将答案填在题中横线上.9.已知一次函数y=(m-3)x-2的图象经过一、三、四象限,则m的取值范围为__________.【答案】m>3【解析】∵y=(m-3)x-2的图象经过一、三、四象限,∴m-3>0,解得m>3.故答案为:m>3.10.点(-1,y1),(2,y2)是直线y=2x+1上的两点,则y1__________y2(填“>”或“=”或“<”).【答案】<【解析】∵k=2>0,y将随x的增大而增大,2>−1,∴y1<y2,故y1与y2的大小关系是:y1<y2,故答案为:<.11.已知一次函数的图象与直线y=12x+3平行,并且经过点(-2,-4),则这个一次函数的解析式为__________.【答案】y=12x-3【解析】∵一次函数的图象与直线y=12x+3平行,∴设一次函数的解析式为y=12x+b.∵一次函数经过点(-2,-4),∴12×(-2)+b=-4,解得b=-3,所以这个一次函数的表达式是:y=1 2x-3.故答案为:y=12x-3.12.若点M(x1,y1)在函数y=kx+b(k≠0)的图象上,当-1≤x1≤2时,-2≤y1≤1,则这条直线的函数解析式为__________.【答案】y=x-1或y=-x【解析】∵点M(x1,y1)在在直线y=kx+b上,-1≤x1≤2时,-2≤y1≤1,∴点(-1,-2)、(2,1)或(-1,1)、(2,-2)都在直线上,则有:221k bk b-+=-⎧⎨+=⎩,或122k bk b-+=⎧⎨+=-⎩,解得11kb=⎧⎨=-⎩或1kb=-⎧⎨=⎩,∴y=x-1或y=-x,故答案为:y=x-1或y=-x.三、解答题:解答应写出文字说明、证明过程或演算步骤.13.已知一次函数经过点A(3,5)和点B(-4,-9).(1)求此一次函数的解析式;(2)若点C(m,2)是该函数上一点,求C点坐标.【解析】(1)设其解析式为y=kx+b(k、b是常数,且k≠0),则5394k bk b=+⎧⎨-=-+⎩,∴k=2,b=−1.∴其解析式为y=2x-1,(2)∵点C(m,2)在y=2x-1上,∴2=2m-1,∴m=32,∴点C的坐标为(32,2).14.已知一次函数的图象经过点A(2,1),B(-1,-3).(1)求此一次函数的解析式;(2)求此一次函数的图象与x轴、y轴的交点坐标;(3)求此一次函数的图象与两坐标轴所围成的三角形面积.【解析】(1)根据一次函数解析式的特点,可得出方程组213 k bk b+=⎧⎨-+=-⎩,解得4353 kb⎧=⎪⎪⎨⎪=-⎪⎩,则得到y=43x-53.(2)根据一次函数的解析式y=43x-53,得到当y=0,x=54;当x=0时,y=-53.所以与x轴的交点坐标(54,0),与y轴的交点坐标(0,-53).(3)在y=43x-53中,令x=0,解得:y=-53,在y=43x-53中,令y=0,解得:x=54.因而此一次函数的图象与两坐标轴所围成的三角形面积是:15525 23424⨯⨯=.15.已知一次函数y=(4-k)x-2k2+32.(1)k为何值时,它的图象经过原点;(2)k为何值时,它的图象经过点(0,-2);(3)k为何值时,它的图象平行于直线y=-x;(4)k为何值时,y随x的增大而减小.【解析】(1)∵一次函数y=(4-k)x-2k2+32的图象经过原点,∴-2k2+32=0,解得:k=±4,∵4-k≠0,∴k=-4.(2)∵一次函数y=(4-k)x-2k2+32的图象经过(0,-2),∴-2k2+32=-2,解得:k.(3)∵一次函数y=(4-k)x-2k2+32的图象平行于直线y=-x,∴4-k=-1,∴k=5.(4)∵一次函数y=(4-k)x-2k2+32中y随x的增大而减小,∴4-k<0,∴k>4.16.已知一次函数图象经过(-4,-9)和(3,5)两点.(1)求一次函数解析式.(2)求图象和坐标轴交点坐标.并画出图象.(3)求图象和坐标轴围成三角形的面积.(4)若点(2,a)在函数图象上,求a的值.【解析】(1)设一次函数解析式为y=kx+b,把点(3,5),(-4,-9)分别代入解析式,则3549 k bk b+=⎧⎨-+=-⎩,解得21 kb=⎧⎨=-⎩,∴一次函数解析式为y=2x-1.(2)当x=0时,y=-1,当y=0时,2x-1=0,解得:x=0.5,∴与坐标轴的交点为A(0,-1)、B(0.5,0),图象如图,(3)S△AOB1122=⨯⨯|-1|=0.25.(4)∵点(2,a)在图象上,∴a=2×2-1=3,∴a=3.。

【三套打包】厦门市人教版初中数学八年级下册第十九章一次函数单元试卷及答案(1)

【三套打包】厦门市人教版初中数学八年级下册第十九章一次函数单元试卷及答案(1)

人教版八年级数学下册第十九章一次函数单元试卷题(含答案)一、选择题1. 下列各图象分别给出了x与y的对应关系,其中y是x的函数的是().2 . 已知一次函数的图象如图2 所示,那么的取值范围是()A .B .C .D .3. 如果一次函数的图象经过第一象限,且与轴负半轴相交,那么()A .,B .,C .,D .,4. 如图3 ,一次函数图象经过点,且与正比例函数的图象交于点,则该一次函数的表达式为()A .B .C .D .5. 如图4 ,把直线y =-2x 向上平移后得到直线AB ,直线AB 经过点(m ,n) ,且2m +n =6 ,则直线AB 的解析式是().A 、y =-2x -3B 、y =-2x -6C 、y =-2x +3D 、y =-2x +66. 图5 中的三角形是有规律地从里到外逐层排列的.设为第层(为正整数)三角形的个数,则下列函数关系式中正确的是()A.B.C.D.7 .已知一次函数的图象与直线y=-x+1 平行,且过点(8 ,2 ),那么此一次函数的解析式为()A .B .C .D .8. 下列四个点中,有三个点在同一条直线上,不在这条直线上的点是()A .B .C .D .9. 如果一次函数的图象经过第一象限,且与轴负半轴相交,那么()A .,B .,C .,D .,10.李老师骑自行车上班,最初以某一速度匀速行进,• 中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y• (千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是()二、填空题1已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________ ,该函数的解析式为_________ .2 .若点(1 ,3 )在正比例函数y=kx 的图象上,则此函数的解析式为________ .3 .已知一次函数y=kx+b 的图象经过点A (1 ,3 )和B (-1 ,-1 ),则此函数的解析式为_________ .4 .若解方程x+2=3x-2 得x=2 ,则当x_________ 时直线y=x+•2• 上的点在直线y=3x-2 上相应点的上方.5 .已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8 ),则a+b=_________ .6 .若一次函数y=kx+b 交于y• 轴的负半轴,• 且y• 的值随x• 的增大而减少,• 则k____0 ,b______0 .(填“ > ”、“ < ”或“=”)8 .已知一次函数y=-3x+1 的图象经过点(a ,1 )和点(-2 ,b ),则a=________ ,b=______ .三、解答题1 .根据下列条件,确定函数关系式:( 1 ) y+1 与 x -2 成正比,且当 x=9 时, y=16 ;( 2 ) y=kx+b 的图象经过点( 3 , 2 )和点( -2 , 1 ).2 .已知一次函数y=kx-4,当x=2时,y=-3.(1)求一次函数的解析式;(2)将该函数的图象向上平移6个单位,求平移后的图象与x轴交点的坐标.3 .如图所示的折线 ABC• 表示从甲地向乙地打长途电话所需的电话费 y (元)与通话时间t (分钟)之间的函数关系的图象.( 1 )写出 y 与 t• 之间的函数关系式.( 2 )通话 2 分钟应付通话费多少元?通话 7 分钟呢?4.为表彰学习进步的同学,某班生活委员到文具店买文具作为奖品.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.(1)求每个笔记本和每支钢笔的售价.(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受八折优惠,若买x(x>0)支钢笔需要花y元,求y与x的函数关系式.5.我校为开展研究性学习,准备购买一定数量的两人学习桌和三人学习桌,若购买1张两人学习桌,1张三人学习桌需230元;若购买2张两人学习桌,3张三人学习桌需590元.(1)求两人学习桌和三人学习桌的单价;(2)学校欲投入资金不超过6600元,购买两种学习桌共60张,以至少满足137名学生的需求,有几种购买方案?并求哪种购买方案费用最低?参考答案一、 1-5AABBD 6 - 10 BCDBB二、1 . 2 ; y=2x 2 . y=3x 3 . y=2x+1 4 . <2 5 . 166 . < ; <7 . 0 ; 7三、1. ① y=17/7x ;② y= x+2 .解:(1)将x=2,y=-3代入y=kx-4,得-3=2k-4,解得12k=.故一次函数的解析式为142y x=-.(2)将142y x=-的图象向上平移6个单位得122y x=+,当y=0时,x=-4,故平移后的图象与x轴交点的坐标为(-4,0).3.①当0 ≤ 3 时, y=2.4 ;当 t>3 时, y=t-0.6 .② 2.4 元; 6.4 元4.5.解:(1)设两人桌每张x元,三人桌每张y元,根据题意得,解得x=100,y=130.(2)设两人桌m张,则三人桌(60﹣m)张,人教版八年级数学下册第十九章一次函数单元练习题一、填空题(每题4分,共24分):1、一次函数y=kx+b(k≠0)的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第____________象限.2、已知y-3与x+5成正比例,且当x=2时,y=17.则y与x的函数解析式为 .3、若点A(m,n)在直线y=kx(k≠0)上,当-1≤m≤1时,-1≤n≤1,则这条直线的函数解析式为________.4、某人沿直路行走,设此人离出发地的距离s(千米)与行走时间t(分钟)的函数关系如图,则此人在这段时间内最快的行走速度是____________千米/小时.5、弹簧挂上物体后会伸长(物体重量在0~10千克范围内),测得一弹簧的长度y(厘米)与所挂物体的质量x(千克)有如下关系:(1)此弹簧的原长度是____________厘米;(2)物体每增加1千克重量,弹簧伸长____________厘米;(3)直接写出弹簧总长度y(厘米)与所挂物体的重量x(千克)的函数解析式为____________.6、如图,在平面直角坐标系中,点M是直线y=﹣x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为.二、选择题(每题4分,共32分):7、正比例函数y=kx(k≠0)的图象经过第二、四象限,则一次函数y=x+k的图象大致是( )8、若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(﹣2,0)B.(2,0) C.(﹣6,0)D.(6,0)9、在平面直角坐标系中,将直线l1:y=-2x-2平移后,得到直线l2:y=-2x+4,则下列平移作法正确的是( )A.将l1向右平移3个单位长度 B.将l1向右平移6个单位长度C.将l1向上平移2个单位长度 D.将l1向上平移4个单位长度10、如图,平面直角坐标系xOy中,点A的坐标为(9,6),AB⊥y轴,垂足为B,点P从原点O出发向x轴正方向运动,同时,点Q从点A出发向点B运动,当点Q到达点B时,点P、Q同时停止运动,若点P与点Q的速度之比为1:2,则下列说法正确的是()A.线段PQ始终经过点(2,3)B.线段PQ始终经过点(3,2)C.线段PQ始终经过点(2,2)D.线段PQ不可能始终经过某一定点11、已知函数y= -x+m与y= mx- 4的图象的交点在x轴的负半轴上那么m的值为().A.±2 B.±4 C.2 D. -212、如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,一次函数的表达式为().A. y=x+2B. y=x-2C. y=2x+1D. y=-x+213、甲、乙两名自行车运动员同时从A地出发到B地,在直线公路上进行骑自行车训练.如图,反映了甲、乙两名自行车运动员在公路上进行训练时的行驶路程s(千米)与行驶时间t(小时)之间的关系,下列四种说法:①甲的速度为40千米/小时;②乙的速度始终为50千米/小时;③行驶1小时时乙在甲前10千米;④3小时时甲追上乙.其中正确的个数有( )A.1个 B.2个 C.3个 D.4个14、已知直线y1=x,y2=1/3x+1,y3=﹣4/5x+5的图象如图所示,若无论x取何值,y总取y1,y2,y3中的最小值,则y的最大值为( )A.37/17B.3.7C.5/4D.81/16三、解答题(共44分):15、(8分)已知关于x的一次函数y=(1-3k)x+2k-1,试回答:(1)k 为何值时,图象交x 轴于点(34,0)?(2)k 为何值时,y 随x 增大而增大?16、(6分)已知两个正比例函数y 1=k 1x 与y 2=k 2x ,当x =2时,y 1+y 2=-1;当x =3时,y 1-y 2=12.求这两个正比例函数的解析式.17、(8分)已知y -3与x 成正比例,且当x =-2时,y 的值为7. (1)求y 与x 之间的函数解析式;(2)若点(-2,m),点(4,n)是该函数图象上的两点,试比较m ,n 的大小,并说明理由.18、(10分)一辆汽车在某次行驶过程中,油箱中的剩余油量y (升)与行驶路程x (千米)之间是一次函数关系,其部分图象如图所示. (1)求y 关于x 的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?19、(12分)因为一次函数y=kx+b与y=-kx+b(k≠0)的图象关于y轴对称,所以我们定义:函数y=kx+b与y=-kx+b(k≠0)互为“镜子”函数.(1)请直接写出函数y=3x-2的“镜子”函数:____________;(2)如果一对“镜子”函数y=kx+b与y=-kx+b(k≠0)的图象交于点A,且与x轴交于B,C两点,如图所示,若△ABC是等腰直角三角形,∠BAC=90°,且它的面积是16,求这对“镜子”函数的解析式.参考答案一、填空题:1、三2、y =2x +13.3、y=x 或y=-x4、85、(1)12 (2)0.5 (3)y =0.5x +126、﹣4≤m ≤4二、选择题:7、B 8、B 9、A 10、B 11、D 12、A 13、C 14、A三、解答题:15、(1)∵关于x 的一次函数y =(1-3k)x +2k -1的图象交x 轴于点(34,0), ∴34(1-3k)+2k -1=0,解得k =-1. (2)1-3k >0时,y 随x 增大而增大,解得k <13. 16、根据题意,得⎩⎪⎨⎪⎧2k 1+2k 2=-1,3k 1-3k 2=12.解得⎩⎪⎨⎪⎧k 1=74,k 2=-94. ∴这两个正比例函数的解析式人教版初中数学八年级下册第十九章一次函数单元测试第十九章一次函数单元测试一、选择题(每小题3分,共30分)1.下列曲线中不能表示y 是x 的函数的是( )A B C D2.函数y =1x -3+x -1的自变量x 的取值范围是( ) A .x ≥1 B .x ≥1且x ≠3 C .x ≠3 D .1≤x ≤33.下列各点在函数y =3x +2的图象上的是( )A .(1,1)B .(-1,-1)C .(-1,1)D .(0,1)4.下面的表格列出了一个实验的统计数据,表示将皮球从高h 处落下,弹跳高度m 与下降高度h 的关系.则m 关于h A .m =h 2 B .m =2h C .m =h 2D .m =h +25 5.如图,直线y =ax +b 与x 轴交于点A(7,0),与直线y =kx 交于点B(2,4),则不等式kx ≤ax +b 的解集为( )A .x ≤2B .x ≥2C .0<x ≤2D .2≤x ≤66.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h 与注水时间t 之间的函数关系图象可能是( )A B C D7.已知一次函数y =kx +b ,y 随着x 的增大而减小,且kb <0,则在平面直角坐标系内它的大致图象是( )A B C D8.已知:将直线y =x -1向上平移2个单位长度后得到直线y =kx +b ,则下列关于直线y =kx +b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于点(1,0)C .与y 轴交于点(0,1)D .y 随x 的增大而减小9.已知一次函数的图象过点(0,3),且与两坐标轴所围成的三角形的面积为3,则其解析式为( )A .y =1.5x +3B .y =-1.5x +3C .y =1.5x +3或y =-1.5x +3D .y =1.5x -3或y =-1.5x -310.如图,平面直角坐标系xOy 中,点A 的坐标为(9,6),AB ⊥y 轴,垂足为B ,点P 从原点O 出发向x 轴正方向运动,同时,点Q 从点A 出发向点B 运动,当点Q 到达点B 时,点P ,Q 同时停止运动.若点P 与点Q 的速度之比为1∶2,则下列说法正确的是( )A .线段PQ 始终经过点(2,3)B .线段PQ 始终经过点(3,2)C .线段PQ 始终经过点(2,2)D .线段PQ 不可能始终经过某一定点二、填空题(每小题3分,共15分) 11. 直线y =2x -4与y 轴的交点坐标是 。

(人教版)厦门八年级数学下册第十九章《一次函数》经典测试卷(提高培优)

一、选择题1.若关于x 的不等式组20210x x a ->⎧⎨-+<⎩有解,则一次函数()32y a x =-+的图象一定不经过的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限2.如图,点O 为平面直角坐标系的原点,点A 在x 轴正半轴上,四边形OABC 是菱形.已知点B 坐标为(3,3),则直线AC 的函数解析式为( )A .y =33x+3 B .y =3x+23C .y =﹣33x+3 D .y =﹣3x+23 3.小明和小华同时从小华家出发到球场去.小华先到并停留了8分钟,发现东西忘在了家里,于是沿原路以同样的速度回家去取.已知小明的速度为180米/分,他们各自距离小华家的路程y (米)与出发时间x (分)之间的函数关系如图所示,则下列说法正确的是( )A .小明到达球场时小华离球场3150米B .小华家距离球场3500米C .小华到家时小明已经在球场待了8分钟D .整个过程一共耗时30分钟4.若实数k 、b 满足0k b +=,且k b >,则一次函数y kx b =+的图象可能是( )A .B .C .D .5.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( )A .20210x y y x +-=⎧⎨-+=⎩B .20210x y y x -+=⎧⎨+-=⎩C .20210x y y x -+=⎧⎨--=⎩D .2010x y y x ++=⎧⎨+-=⎩6.如图,A 、M 、N 三点坐标分别为A (0,1),M (3,4),N (5,6),动点P 从点A 出发,沿y 轴以每秒一个单位长度的速度向上移动,且过点P 的直线l :y=-x+b 也随之移动,设移动时间为t 秒,若点M 、N 分别位于l 的异侧,则t 的取值范围是( )A .611t <<B .510t <<C .610t <<D .511t <<7.已知点()1,4P 在直线2y kx k =-上,则k 的值为( ) A .43B .43-C .4D .4-8.如图,已知在平面直角坐标系xOy 中.以(О为圆心,适当长为半径作圆弧,与x 轴交于点A ,与y 轴交于点,B 再分别以A B 、为圆心.大于12AB 长为半径作圆弧,两条圆弧在第四象限交于点C .以下四组x 与y 的对应值中,能够使得点(),1P x y -在射线OC 上的是( )A.2和1-B.2和2-C.2和2D.2和39.甲,乙两车分别从A,B两地同时出发,相向而行.乙车出发2h后休息,当两车相遇时,两车立即按原速度继续向目的地行驶.设甲车行驶的时间为x(h),甲,乙两车到B地的距离分别为y1(km),y2(km),y1,y2关于x的函数图象如图.下列结论:①甲车的速度是45akm/h;②乙车休息了0.5h;③两车相距a km时,甲车行驶了53h.正确的是( )A.①②B.①③C.②③D.①②③10.某游泳馆新推出了甲、乙两种消费卡,设游泳次数为x时两种消费卡所需费用分别为y甲,y乙元,y甲,y乙与x的函数图象如图所示,当游泳次数为30次时选择哪种消费卡更合算()A.甲种更合算B.乙种更合算C.两种一样合算D.无法确定11.在直角坐标系中,点P在直线x+y-4=0上,O为原点,则OP的最小值为()A.2B.2 C6D1012.如图,直线443y x =+与x 轴,y 轴分别交于A ,B 两点,点C 在OB 上,若将ABC 沿AC 折叠,使点B 恰好落在x 轴上的点D 处,则点C 的坐标是( )A .(0,1)B .20,3⎛⎫ ⎪⎝⎭C .30,2⎛⎫ ⎪⎝⎭D .(0,2)13.若点P 在一次函数31y x =-+的图象上,则点P 一定不在( ) A .第一象限B .第二象限C .第三象限D .第四象限14.如图,直线y =kx (k≠0)与y =23x+2在第二象限交于A ,y =23x+2交x 轴,y 轴分别于B 、C 两点.3S △ABO =S △BOC ,则方程组0236kx y x y -=⎧⎨-=-⎩的解为( )A .143x y =-⎧⎪⎨=⎪⎩B .321x y ⎧=-⎪⎨⎪=⎩C .223x y =-⎧⎪⎨=⎪⎩D .3432x y ⎧=-⎪⎪⎨⎪=⎪⎩15.若一次函数()231y m x =-+-的图象经过点()11,A x y ,()22,B x y ,当12x x <时,12y y >时,则m 的取值范围是( )A .32m >B .32m >-C .32m <D .32m <-二、填空题16.正方形111A B C O 、2221A B C C 、3332A B C C ……按如图的方式放置,点1A ,2A ,3A …和点1C ,2C ,3C …分别在直线()0y kx b k =+>和x 轴上,已知点1(1,1)B ,2(3,2)B ,按此规律,则点4B 的坐标是______.17.如图,两个一次函数y =kx+b 与y =mx+n 的图象分别为直线l 1和l 2,l 1与l 2交于点A (1,p ),l 1与x 轴交于点B (-2,0),l 2与x 轴交于点C (4,0),则不等式组0<mx+n <kx+b 的解集为_____.18.已知一次函数6y x =-+的图象上有两点()11,A y -,()22,A y ,则1y 与2y 的大小关系是______.19.如图,已知直线l:y =12x ,点A 1(2,0),过点A 1作x 轴的垂线交直线l 于点B 1,以A 1B 1为边,向右侧作正方形A 1B 1C 1A 2,延长A 2C 1交直线l 于点B 2;以A 2B 2为边,向右侧作正方形A 2B 2C 2A 3,延长A 3C 2交直线l 于点B 3;……;按照这个规律进行下去,点B n 的横坐标为______.(结果用含正整数n 的代数式表示)20.函数1y x =-中自变量x 的取值范围是________. 21.已知y 是x 的一次函数,下表中列出了部分对应值,则m 的值是________.x-1 0 my 1-2-522.已知一次函数(2) 3y m x m =-+-的图象经过第一、二、四象限,则化简244m m -+296m m -+=__________.23.若函数y =kx+b(k≠0)的图像平行于直线y =3x+2,且与直线y =-x -1交x 轴于同一点,则其函数表达式是_____.24.为减少代沟,增强父子感情,父子二人决定在100米跑道上,以“相向而跑”的形式来进行交流.儿子从100米跑道的A 端出发,父亲从另一端B 出发,两人同时起跑,结果儿子赢得比赛.设父子间的距离S (米)与父亲奔跑的时间(秒)之间的函数关系如图所示,则儿子奔跑的速度是______米/秒.25.已知y 是关于x 的正比例函数,当1x =-时,2y =,则y 关于x 的函数表达式为____.26.如图,平面直角坐标系中,点A 在直线333y x =+上,点C 在直线142y x =-+上,点A ,C 都在第一象限内,点B ,D 在x 轴上,若AOB 是等边三角形,BCD △是以BD 为底边的等腰直角三角形,则点D 的坐标为____________.三、解答题27.甲、乙两人计划8:00一起从学校出发,乘坐班车去博物馆参观,乙乘坐班车准时出发,但甲临时有事没赶上班车,8:45甲沿相同的路线自行驾车前往,结果比乙早1小时到达.甲、乙两人离学校的距离y (千米)与甲出发时间x (小时)的函数关系如图所示.(1)求甲、乙两人的速度. (2)求OC 和BD 的函数关系式. (3)求学校和博物馆之间的距离.28.科学研究发现.地表以下岩层的温度y (℃)与所处深度x (千米)之间近似地满足一次函数关系.经测量,在深度2千米的地方,岩层温度为90℃;在深度5千米的地方,岩层温度为195℃.(1)求出y 与x 的函数表达式;(2)求当岩层温达到1805℃时,岩层所处的深度.29.某商店需要购进甲、乙两种商品共200件,其进价和售价如表:甲 乙 进价(元/件) 14 35 售价(元/件)2045(1)若商店计划销售完这批商品后能获利1680元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金小于5320元,且销售完这批商品后获利大于1660元,请问有几种购货方案?并求出其中获利最大的购货方案.30.如图直线:x 6=+l y k 与x 轴、y 轴分别交于点B C 、两点,点B 的坐标是()8,0-,点A 的坐标为()6,0-.(1)求k 的值.(2)若点P 是直线l 上的一个动点且在第二象限,当PAC ∆的面积为3时,求出此时点P 的坐标.(3)在x 轴上是否存在点M ,使得BCM ∆为等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.。

第19章一次函数单元试卷(福建省厦门一中八年级下).doc

AB第十九章 《一次函数》单元考试卷(完卷时间:45分钟,满分100分)班级: 座号 姓名: 成绩: 一、精心选一选,慧眼识金!(每小题4分,共36分)1.函数)1(+=x a y 是正比例函数,则a 的值是【 】A .2B .1-C . 2或1-D .2- 2.一次函数32+-=x y 的图象不经过的象限是【 】 A .第一象限 B .第二象限 C .第三象限D .第四象限3.一次函数b kx y +=的图象如图,则【 】A .⎪⎩⎪⎨⎧-=-=131b kB .⎪⎩⎪⎨⎧==131b kC .⎩⎨⎧==13b kD .⎪⎩⎪⎨⎧-==131b k 4.一次函数b kx y +=的图象经过点(m , 1)和点(1-, m ),其中m >1,则k , b 应满足的条件是【 】D .k >0且b >0 D .k <0且b >0 D .k >0且b <0 D .k <0且b <05.若一次函数k x k y --=)21(的函数值y 随x 的增大而增大,且此函数的图象不经过第二象限,则k 的取值范围是【 】D .k <21 D .k >0 D . 0<k <21 D .k <0或k >216.下列说法正确的是【 】A .一次函数也是正比例函数B .一个函数不是一次函数就是正比例函数C .正比例函数也是一次函数D .一个函数不是正比例函数就不是一次函数7.一次函数n mx y +-=的图象经过二、三、四象限,则化简22)(n n m +-所得的结果是【 】 A .m B .m - C .n m -2 D .n m 2-8.在同一平面直角坐标系中,若一次函数533-=+-=x y x y 与图象交于点M ,则点M 的坐标为【 】 A .(1-,4)B .(1-,2)C .(2,1-)D .(2,1)9.如图,点P 是等边△ABC 的边上的一个作 匀速运动的动点,其由点A 开始沿AB 边运动到 B 再沿BC 边运动到C 为止,设运动时间为t , △ACP 的面积为S ,S 与t 的大致图象是【 】二、耐心填一填,一锤定音!(每小题3分,共21分)10.函数yx 的取值范围是___________ 11.写一个图象经过点(1-,2)的一次函数的解析式 .12.已知y 与12+x 成正比例,当5=x 时,2-=y ,则y 与x 之间的函数关系 式为 .13.若直线a x y +-=和直线b x y +=的交点坐标为(m ,8),则=+b a . 14.若点A (5-,1y ),B (2-,2y )都在直线x y 21-=上,则1y 2y (填“>”或“<”).15.如图,先观察图形,然后填空: (1)当x 时,1y >0; (2)当x 时,2y <0; (3)当x 时,1y ≥2y . 16.如图,已知直线l :x y 3=,过点M (1,0)作x 轴的垂线交直线l于点N ,过点N 作直线l 的垂线交x 轴于点M 1;过点M 1作x 轴的垂线交直线l 于N 1,过点N 1作直线l 的垂线交x 轴于点M 2,…;按此作法继续下去,则点M 5的坐标为 .三、用心做一做,马到成功!(共44分)17.(本题8分)已知,函数()1321y k x k =-+-,试回答: (1)k 为何值时,图象过原点? (2)k 为何值时,y 随x 增大而增大?ABCD18.(本题9分)右图是某汽车行驶的路程S(km)与时间t(分钟) 的函数关系图。

人教版初中数学培优系列八年级下册之第19章一次函数题目和详解(40题)

人教版初中数学培优系列八年级下册之第19章一次函数题目和详解(40题)重要说明:1、本资料系本人多年教学经验的总结,力求每一道题目代表一种题型或一种思维,力求穷尽本章所有相关知识的培优,内容主要立足于课程标准,少部分奥赛内容,掌握此培优系列内容则中考无忧,同时具备参加重点高中学校的自主招生考试的能力。

2、本资料仅供优生(百分制下得分80分以上学生)使用,其余学生不得使用,每道题目后面附有详细解答及点评,学生至少做两遍资料方能理解其中真谛和得到能力提升。

3、本资料主要根据人教版教材编写,其它版本的教材都是在国家同一个课程标准下编写的,只是编排顺序不同,因此该内容也适用于其它版本的教材的对应章节。

4、编者简介:杨小云,男,1998年任教至今。

初中一线数学和物理教师,同时一直担任班主任,有丰富的教学经验和教学资源。

编有《人教版初中数学培优系列》和《人教版初中物理培优系列》,值得你收藏并推荐给好友。

一.选择题(共11小题)1.下列函数中,与y=|x|表示同一个函数的是()A.y=B.y=C.y=D.y=2.下图中,能表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的大致图象的是()A.B.C.D.3.已知四条直线y=kx﹣3,y=﹣1,y=3和x=1所围成的四边形的面积是12,则k的值为()A.1或2 B.1或﹣2 C.﹣1或2 D.﹣1或﹣24.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点A6的坐标是()A.(63,64)B.(63,32)C.(32,33)D.(31,32)5.明明和亮亮都在同一直道A、B两地间做匀速往返走锻炼.明明的速度小于亮亮的速度(忽略掉头等时间).明明从A地出发,同时亮亮从B地出发.图中的折线段表示从开始到第二次相遇止,两人之间的距离y(米)与行走时间x(分)的函数关系的图象,则()A.明明的速度是80米/分B.第二次相遇时距离B地800米C.出发25分时两人第一次相遇D.出发35分时两人相距2000米6.甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的有()A.4个 B.3个 C.2个 D.1个7.若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(﹣2,0)B.(2,0) C.(﹣6,0)D.(6,0)8.将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=﹣|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为()A.﹣4≤b≤﹣2 B.﹣6≤b≤2 C.﹣4≤b≤2 D.﹣8≤b≤﹣29.如图1,在矩形ABCD中,动点P从点B出发,沿B→C→D→A方向运动至点A处停止.设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则三角形ABC的面积为()A.20 B.10 C.30 D.不能确定10.如图,小亮在操场上玩,一段时间内沿M﹣A﹣B﹣M的路径匀速散步,能近似刻画小亮到出发点M的距离y与时间x之间关系的函数图象是()A.B.C. D.11.甲、乙两人沿同一方向去B地,途中都使用两种不同的速度v1,v2(v1<v2).甲一半路程使用速度v1,另一半路程使用速度v2,乙一半时间使用速度v1,另一半时间使用速度v2,甲、乙两人从A地到B地的路程与时间的函数图象及关系,有下面图中4个不同的图示分析(其中横轴t表示时间,纵轴S表示路程),其中正确的图示分析为()A.(1)B.(3)C.(1)或(4)D.(1)或(2)二.填空题(共10小题)12.如果y﹣3与x+2成正比例,且当x=﹣1时,y=2.则y与x的函数关系式为.13.已知一次函数y=(2m﹣1)x+1的图象上两点A(x1,y1),B(x2,y2),当x1<x2时,有y1<y2,那么m的取值范围是.14.若一次函数y=kx+b的图象与y轴交点的纵坐标为﹣2,且与两坐标轴围成的直角三角形面积为1,则此一次函数的表达式为.15.已知一次函数y=2x﹣a与y=3x+b的图象交于x轴上原点外一点,则=.16.在平面直角坐标系中,点A(2,0)到动点P(x,x+2)的最短距离是.17.已知直线y=x+(n为正整数)与两坐标轴围成的三角形面积为S n,则S1+S2+S3+…S n=.18.如图,已知直线l:,过点M(2,0)作x轴的垂线交直线l于点N,过点N 作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l 的垂线交x轴于点M2,…;按此作法继续下去,则点M6的坐标为.19.如图,直线y=﹣x+1与两坐标轴分别交于A,B两点,将线段OA分成n等份,分点,过每个分点作x轴的垂线分别交直线AB于点T1,T2,T3,…,分别为P1,P2,P3,…,P n﹣1T n﹣1,用S1,S2,S3,…,S n﹣1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△T n﹣1P n﹣2P n﹣1的面积,则S1+S2+S3+…+S n=.﹣120.如图,在平面直角坐标系中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B、BA为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1、B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C2017的坐标是.21.如图,在平面直角坐标系xOy中,点A1(2,2)在直线y=x上,过点A1作A1B1∥y轴,交直线y=x于点B1,以A1为直角顶点,A1B1为直角边,在A1B1的右侧作等腰直角三角形A1B1C1;再过点C1作A2B2∥y轴,分别交直线y=x和y=x于A2,B2两点,以A2为直角顶点,A2B2为直角边,在A2B2的右侧作等腰直角三角形A2B2C2…,按此规律进行下去,点C1的横坐标为,点C2的横坐标为,点C n的横坐标为.(用含n的式子表示,n为正整数)三.解答题(共19小题)22.已知一次函数y=kx+b的自变量的取值范围是﹣3≤x≤6,相应的函数值的取值范围是﹣5≤y≤﹣2,求这个一次函数的解析式.23.等腰三角形的周长为30cm.(1)若底边长为xcm,腰长为ycm,写出y与x的关系式,并注明自变量的取值范围.(2)若腰长为xcm,底边长为ycm,写出y与x的关系式,并注明自变量的取值范围.24.已知函数y=(2m+1)x+m﹣3(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的交点的纵坐标为(0,﹣2),求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.25.已知一次函数y=kx+2b+4的图象经过点(﹣1,﹣3),k满足等式|k﹣3|﹣4=0,且y随x的增大而减小,求这个一次函数解析式.26.已知一次函数y=kx+b的图象过P(1,4),Q(4,1)两点,且与x轴交于A点.(1)求此一次函数的解析式;(2)求△POQ的面积;(3)已知点M在x轴上,若使MP+MQ的值最小,求点M的坐标及MP+MQ的最小值.27.如图,直线AB:y=﹣x﹣b分别与x、y轴交于A(6,0)、B两点,过点B的直线交x轴的负半轴于点C,且OB:OC=3:1.(1)求点B的坐标;(2)求直线BC的函数关系式;(3)若点P(m,2)在△ABC的内部,求m的取值范围.28.如图,平面直角坐标系中,直线AB:y=﹣x+b交y轴于点A(0,4),交x轴于点B.(1)求直线AB的表达式和点B的坐标;(2)直线l垂直平分OB交AB于点D,交x轴于点E,点P是直线l上一动点,且在点D的上方,设点P的纵坐标为n.①用含n的代数式表示△ABP的面积;②当S=8时,求点P的坐标;△ABP③在②的条件下,以PB为斜边在第一象限作等腰直角△PBC,求点C的坐标.29.在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ 时,试用含t的式子表示m.30.如图①,我们在“格点”直角坐标系上可以看到,要求AB或CD的长度,可以转化为求Rt△ABC或Rt△DEF的斜边长.例如:从坐标系中发现:D(﹣7,3),E(4,﹣3),所以DF=|5﹣(﹣3)|=8,EF=|4﹣(﹣7)|=11,所以由勾股定理可得:.(1)在图①中请用上面的方法求线段AB的长:AB=;(2)在图②中:设A(x1,y1),B(x2,y2),试用x1,x2,y1,y2表示:AC=,BC=,AB=;(3)试用(2)中得出的结论解决如下题目:已知:A(2,1),B(4,3);①直线AB与x轴交于点D,求线段BD的长;②C为坐标轴上的点,且使得△ABC是以AB为边的等腰三角形,请求出C点的坐标.31.一条笔直的公路上依次有A、B、C三地,甲、乙两车同时从B地出发,匀速驶往C 地.乙车直接驶往C地,甲车先到A地取一物件后立即调转方向追赶乙车(甲车取物件的时间忽略不计).已知两车间距离y(km)与甲车行驶时间x(h)的关系图象如图1所示.(1)求两车的速度分别是多少?(2)填空:A、C两地的距离是:,图中的t=(3)在图2中,画出两车离B地距离y(km)与各自行驶时间x(h)的关系图象,并求两车与B地距离相等时行驶的时间.32.甲船从A港出发顺流匀速驶向B港,行至某处,发现船上一救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B港.乙船从B港出发逆流匀速驶向A港.已知救生圈漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船到A港的距离y1、y2(km)与行驶时间x(h)之间的函数图象如图所示.(1)写出乙船在逆流中行驶的速度;(2)求甲船在逆流中行驶的路程;(3)求甲船到A港的距离y1与行驶时间x之间的函数关系式;(4)求救生圈落入水中时,甲船到A港的距离.33.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)34.某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)请填写下表(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m 元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.35.甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每付定价20元,乒乓球每盒定价5元.现两家商店搞促销活动.甲店:每买一付球拍赠一盒乒乓球;乙店:按定价的9折优惠.某班级需购球拍4付,乒乓球若干盒(不少于4盒).(1)设购买乒乓球盒数为x(盒),在甲店购买的付款数为y(元),在乙店购买的付甲(元),分别写出在两家商店购买的付款数与乒乓球盒数x之间的函数关系式.款数为y乙(2)就乒乓球盒数讨论去哪家商店买合算?36.为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有A,B两种型号的挖掘机,已知3台A型和5台B型挖掘机同时施工一小时挖土165立方米;4台A型和7台B型挖掘机同时施工一小时挖土225立方米.每台A型挖掘机一小时的施工费用为300元,每台B型挖掘机一小时的施工费用为180元.(1)分别求每台A型,B型挖掘机一小时挖土多少立方米?(2)若不同数量的A型和B型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元,问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?37.日照市是中国北方最大的对虾养殖产区,被国家农业部列为对虾养殖重点区域;贝类产品西施舌是日照特产.沿海某养殖场计划今年养殖无公害标准化对虾和西施舌,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种苗每投放一吨的先期投资、养殖期间的投资以及产值如下表:(单位:千元/吨)养殖场受经济条件的影响,先期投资不超过360千元,养殖期间的投资不超过290千元.设西施舌种苗的投放量为x吨(1)求x的取值范围;(2)设这两个品种产出后的总产值为y(千元),试写出y与x之间的函数关系式,并求出当x等于多少时,y有最大值?最大值是多少?38.某食品批发部准备用10000元从厂家购进一批出厂价分别为16元和20元的甲、乙两种酸奶,然后将甲、乙两种酸奶分别加价20%和25%向外销售.如果设购进甲种酸奶为x(箱),全部售出这批酸奶所获销售利润为y(元).(1)求所获销售利润y(元)与x(箱)之间的函数关系式;(2)根据市场调查,甲、乙两种酸奶在保质期内销售量都不超过300箱,那么食品批发部怎样进货获利最大,最大销售利润是多少?39.某销售商准备在南充采购一批丝绸,经调查,用10000元采购A型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.(1)求一件A型、B型丝绸的进价分别为多少元?(2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.①求m的取值范围.②已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n元/件.如果50≤n≤150,求销售这批丝绸的最大利润w(元)与n(元)的函数关系式(每件销售利润=售价﹣进价﹣销售成本).40.为了节约资源,科学指导居民改善居住条件,小王向房管部分提出了一个购买商品房的政策性方案.根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x 的函数关系式(m为常数);(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元且102<y≤105时,求m的取值范围.人教版初中数学培优系列八年级下册之第19章一次函数题目和详解(40题)参考答案与试题解析一.选择题(共11小题)1.【分析】分别分析四个选项的自变量和函数的取值范围,与y=|x|相同者为正确答案.【解答】解:A、x不能为0,故错误;B、y==|x|,故正确;C、x不能为负数,故错误;D、对应关系不同,故错误.故选:B.【点评】函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数.2.【分析】根据m、n同正,同负,一正一负时利用一次函数的性质进行判断.【解答】解:①当mn>0时,m、n同号,y=mnx过一三象限,同正时,y=mx+n经过一、二、三象限;同负时,过二、三、四象限;②当mn<0时,m、n异号,y=mnx过二四象限,m>0,n<0时,y=mx+n经过一、三、四象限;m<0,n>0时,过一、二、四象限;故选:A.【点评】本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.3.【分析】首先根据四条直线的解析式画出示意图,从而发现四边形是梯形,求得梯形的四个顶点的坐标,再进一步根据梯形的面积公式进行计算.【解答】解:如图所示,根据题意,得A(1,3),B(1,﹣1),C(,﹣1),D(,3).显然ABCD是梯形,且梯形的高是4,根据梯形的面积是12,则梯形的上下底的和是6,则有①当k<0时,1﹣+1﹣=6,∴2﹣=6,∴=﹣4,解得k=﹣2;②当k>0时,﹣1+﹣1=6,∴=8,解得k=1.综上所述,则k=﹣2或1.故选:B.【点评】此题考查了用图象法表示函数、两条直线的交点坐标和梯形的面积公式,注意此题的两种情况.4.【分析】先根据题意得出以A n为顶点的正方形边长的规律,进而可得出点A6的坐标.【解答】解:∵直线y=x+1,当x=0时,y=1,当y=0时,x=﹣1,∴OA1=1,OD=1,∴∠ODA1=45°,∴∠A2A1B1=45°,∴A2B1=A1B1=1,∴A2为顶点的正方形边长A2C1=2=21,同理得:A3为顶点的正方形边长A3C2=4=22,…,∴顶点为A6的正方形的边长=25=32,∴点A6的纵坐标为32,当y=32时,32=x+1,解得x=31,即点A6的横坐标为31,∴A6的坐标是(31,32).故选:D.【点评】本题考查了一次函数图象上点的坐标特征以及正方形的性质的运用;求出以A n为顶点的正方形边长的变化规律是解决问题的关键.5.【分析】C、由二者第二次相遇的时间结合两次相遇分别走过的路程,即可得出第一次相遇的时间,进而得出C选项错误;A、当x=35时,出现拐点,显然此时亮亮到达A地,利用速度=路程÷时间可求出亮亮的速度及两人的速度和,二者做差后可得出明明的速度,进而得出A选项错误;B、根据第二次相遇时距离B地的距离=明明的速度×第二次相遇的时间﹣A、B两地间的距离,即可求出第二次相遇时距离B地800米,B选项正确;D、观察函数图象,可知:出发35分钟时亮亮到达A地,根据出发35分钟时两人间的距离=明明的速度×出发时间,即可求出出发35分钟时两人间的距离为2100米,D选项错误.【解答】解:∵第一次相遇两人共走了2800米,第二次相遇两人共走了3×2800米,且二者速度不变,∴c=60÷3=20,∴出发20分时两人第一次相遇,C选项错误;亮亮的速度为2800÷35=80(米/分),两人的速度和为2800÷20=140(米/分),明明的速度为140﹣80=60(米/分),A选项错误;第二次相遇时距离B地距离为60×60﹣2800=800(米),B选项正确;出发35分钟时两人间的距离为60×35=2100(米),D选项错误.故选:B.【点评】本题考查了一次函数的应用,观察函数图象,逐一分析四个选项的正误是解题的关键.6.【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【解答】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选:B.【点评】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.7.【分析】根据对称的性质得出两个点关于x轴对称的对称点,再根据待定系数法确定函数关系式,求出一次函数与x轴的交点即可.【解答】解:∵直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,∴两直线相交于x轴上,∵直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,∴直线l1经过点(3,﹣2),l2经过点(0,﹣4),把(0,4)和(3,﹣2)代入直线l1经过的解析式y=kx+b,则,解得:,故直线l1经过的解析式为:y=﹣2x+4,可得l1与l2的交点坐标为l1与l2与x轴的交点,解得:x=2,即l1与l2的交点坐标为(2,0).故选:B.【点评】此题主要考查了待定系数法求一次函数解析式以及坐标与图形的性质,正确得出l1与l2的交点坐标为l1与l2与x轴的交点是解题关键.8.【分析】先解不等式2x+b<2时,得x<;再求出函数y=2x+b沿x轴翻折后的解析式为y=﹣2x﹣b,解不等式﹣2x﹣b<2,得x>﹣;根据x满足0<x<3,得出﹣=0,=3,进而求出b的取值范围.【解答】解:∵y=2x+b,∴当y<2时,2x+b<2,解得x<;∵函数y=2x+b沿x轴翻折后的解析式为﹣y=2x+b,即y=﹣2x﹣b,∴当y<2时,﹣2x﹣b<2,解得x>﹣;∴﹣<x<,∵x满足0<x<3,∴﹣=0,=3,∴b=﹣2,b=﹣4,∴b的取值范围为﹣4≤b≤﹣2.故选:A.【点评】本题考查了一次函数图象与几何变换,求出函数y=2x+b沿x轴翻折后的解析式是解题的关键.9.【分析】本题难点在于应找到面积不变的开始与结束,得到BC,CD的具体值.【解答】解:动点P从点B出发,沿BC、CD、DA运动至点A停止,而当点P运动到点C,D之间时,△ABP的面积不变,函数图象上横轴表示点P运动的路程,x=4时,y开始不变,说明BC=4,x=9时,接着变化,说明CD=9﹣4=5.∴△ABC的面积为=×4×5=10.故选:B.【点评】本题考查了动点问题的函数图象,解决本题应首先看清横轴和纵轴表示的量.10.【分析】考查点的运动变化后根据几何图形的面积确定函数的图象,图象需分段讨论.【解答】解:分析题意和图象可知:当点M在MA上时,y随x的增大而增大;当点M在半圆上时,y不变,等于半径;当点M在MB上时,y随x的增大而减小.而D选项中:点M在半圆上运动的时间相对于点M在MB上来说比较短,所以C正确,D错误.故选:C.【点评】要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义选出正确的图象.11.【分析】甲一半路程使用速度v1,另一半路程使用速度v2,因为v1<v2,所以走一半路程所用时间大于,同时,乙一半时间使用速度v1,另一半时间使用速度v2,在t1时间里所走的路程小于总路程是一半.【解答】解:根据题意,从A 到B 地,甲用的时间为t 1=+=S , 乙用的时间2121222v v s tt v t v s v st +=+==- 用21t t -分析可得t 1>t 2,即乙比甲先到B 地,进而可排除图(3)、(4);当甲前一半路程速度为V 1,后一半路程为V 2时,因为v 1<v 2,所以走一半路程所用时间大于,图(2)正确,当甲前一半路程速度为V 2,后一半路程为V 1时,因为v 1<v 2,所以走一半路程所用时间小于,图(1)正确,则图(1)、(2)都正确;故选D .【点评】本题考查函数图象的变化趋势,是一道非常好的题目.二.填空题(共10小题)12.【分析】首先设y ﹣3=k (x +2),然后再把x=﹣1时,y=2代入可得k 的值,进而可得函数解析式.【解答】解:设y ﹣3=k (x +2),∵当x=﹣1时,y=2,∴2﹣3=k (﹣1+2),﹣1=k ,∴y ﹣3=﹣(x +2),y=﹣x +1,故答案为:y=﹣x +1.【点评】此题主要考查了待定系数法求函数解析式,关键是掌握待定系数法求一次函数解析式一般步骤是:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx +b ;(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.13.【分析】先根据x1<x2时,y1<y2,得到y随x的增大而增大,所以x的比例系数大于0,那么2m﹣1>0,解不等式即可求解.【解答】解:∵当x1<x2时,有y1<y2∴y随x的增大而增大∴2m﹣1>0,∴m>.故答案是:m>.【点评】本题考查一次函数的图象性质:当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.14.【分析】根据题意,画出一次函数y=kx+b的大体图象所在的位置,然后根据直角三角形的面积公式求得该函数图象与x轴的交点,再将其代入函数解析式,求得k值.【解答】解:根据题意,知一次函数y=kx+b的图象如图所示:∵S=1,OC=2,△AOC∴1=×OA•OC,∴OA=1;①∴一次函数y=kx+b的图象经过点(0,﹣2)、(﹣1,0),∴,解得,k=﹣2,∴一次函数的表达式是y=﹣2x﹣2;②同理求得OB=1,∴一次函数y=kx+b的图象经过点(0,﹣2)、(1,0),,∴k=2,∴一次函数的表达式是y=2x﹣2.故答案为:y=2x﹣2或y=﹣2x﹣2;【点评】本题考查了用待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,注意:一次函数图象上的点,一定满足该函数的关系式,题目比较好,注意要进行分类讨论.15.【分析】可分别用a、b表示出两函数与x轴的交点横坐标,由于两函数交x轴于同一点,因此它们与x轴的交点横坐标相同,可求得a、b的比例关系式,进而可求出的值.【解答】解:在一次函数y=2x﹣a中,令y=0,得到x=,在一次函数y=3x+b中,令y=0,得到x=﹣,由题意得:=﹣,图象交于x轴上原点外一点,则a≠0,且b≠0,可以设=﹣=k,则a=2k,b=﹣3k,代入=﹣2.故填﹣2.【点评】正确理解本题的含义是解决问题的关键,难度不大,注意细心运算即可.16.【分析】先判断P点在函数y=x+2上,过A作直线y=x+2的垂线交直线于点P,再根据勾股定理可求得AP的长.【解答】解:∵点P坐标为(x,x+2),∴点P在直线y=x+2上,如图,设直线交x轴于点B,过A作直线的垂线交直线于点P,则AP的长即为最短距离,在y=x+2中,令y=0可知x=﹣2,∴B点坐标为(﹣2,0),又点B在直线y=x+2上,∴∠PBA=45°,∵OA=2,∴AB=4,在Rt△ABP中,则AP=AB•sin45°=4×=2,故答案为:2.【点评】本题主要考查一次函数图象上点的特征,确定出点P所在的直线是解题的关键,注意数形结合.17.【分析】令x=0,y=0分别求出与y轴、x轴的交点,然后利用三角形面积公式列式表示出S n,再利用拆项法整理求解即可.【解答】解:∵直线AB的解析式为:y=﹣x+,∴当x=0时,y=,令y=0,则﹣x+=0,解得x=,所以,S n=••=(﹣),所以,S1+S2+S3+…+S n=(﹣+﹣+…+﹣)=(﹣)=×=.故答案为:.【点评】本题考查的是一次函数图象上点的坐标特点,表示出S n,再利用拆项法写成两个数的差是解题的关键,也是本题的难点.18.【分析】根据直线l的解析式求出∠MON=60°,从而得到∠MNO=∠OM1N=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出OM1=22•OM,然后表示出OM6与OM 的关系,再根据点M6在x轴上写出坐标即可.【解答】解:∵直线l:y=x,∴∠MON=60°,∵NM⊥x轴,M1N⊥直线l,∴∠MNO=∠OM1N=90°﹣60°=30°,∴ON=2OM,OM1=2ON=4OM=22•OM,同理,OM2=22•OM1=(22)2•OM,…,OM6=(22)6•OM=212•2=213,所以,点M6的坐标为(213,0).故答案为:(213,0).【点评】本题考查了一次函数图象上点的坐标特征,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质并求出变化规律是解题的关键.19.【分析】如图,作T1M⊥OB于M,T2N⊥P1T1.由题意可知:△BT1M≌△T1T2N≌△T n﹣。

人教版数学八年级下册第十九章一次函数 单元培优(含答案)

人教版数学八年级下册第十九章一次函数单元培优一、单选题1.下列各曲线中,不能表示y是x的函数的是()A.B.C.D.x+2上,则y1与y2的大小关系是2.已知点(a,y1), (a+1,y2)都在直线y=−12A.y1>y2B.y1=y2C.y1<y2D.不能确定x图象上的任意一点,则下列等式一定成立的是()3.点A(a,b)是正比例函数y=−43A.3a+4b=0B.3a−4b=0C.4a−3b=0D.4a+3b=04.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)之间有下面的关系,下列说法不正确的是()x/kg012345y/cm2020.52121.52222.5A.弹簧不挂重物时的长度为0cmB.x与y都是变量,且x是自变量,y是因变量C.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为23.5cm5.已知一次函数y=(m -1)x + m的图象分别交x轴负半轴、y轴负半轴于点A、B,则m的取值范围是()A.m>1B.m<1C.m < 0D.m > 06.一次函数y=ax+b(a≠0),当x<3时,y都大于0,则下列各点可能在一次函数y=ax+b 的图象上的是( )A.(2,0)B.(−1,−3)C.(1,2)D.(2,−3)7.某计算器每个定价80元,若购买不超过20个,则按原价付款:若一次购买超过20个,则超过部分按七折付款.设一次购买数量为x(x>20)个,付款金额为y元,则y与x之间的表达式为()A.y=0.7×80(x−20)+80×20B.y=0.7x+80(x−10)C.y=0.7×80⋅x D.y=0.7×80(x−10)8.如果一次函数y=2x﹣4的图象与另一个一次函数y1的图象关于y轴对称,那么函数y1的图象与x轴的交点坐标是( )A.(2,0)B.(﹣2,0)C.(0,﹣4)D.(0,4)9.如图,l1,l2分别表示甲、乙两人在越野登山比赛整个过程中,所走的路程y(m)与甲出发时间x(min)的函数图像,下列说法正确的有()①越野登山比赛的全程为1000m;②乙的速度为20m/min;③a的值为750;④乙到达终点时,甲离终点还有100mA.1个B.2个C.3个D.4个10.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置,其中点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B2023的坐标是( )A.(22022−1,22023)B.(22023−1,22022)C.(22021,22022−1)D.(22022−1,2021)二、填空题11.每张电影票的售价为10元,某日共售出x张票,票房收入为y元,在这一问题中,是常量,是变量.12.已知函数y=3+(m﹣2)x m2−3是一次函数,则m=.13.将函数y=2x+3的图象向下平移6个单位长度后,得到新图像的函数表达式为.14.如果一次函数y=(m−3)x−1的函数值y随着x的值增大而减小,那么m取值范围是.15.同一平面直角坐标系中,一次函数y=k1x+b与正比例函数y=k2x的图象如图所示,则满足k1x+b<k2x的x取值范围是.16.如图所示的折线ABC为某地出租汽车收费y(元)与乘坐路程x(千米)之间的图象,当x≥3千米时,该函数的解析式为,乘坐2千米时,车费为元,乘坐8千米时,车费为元.17.一列高铁列车从甲地匀速驶往乙地,一列特快列车从乙地匀速驶往甲地,两车同时出发,设特快列车行驶的时间为x(单位:时),特快列车与高铁列车之间的距离为y(单位:千米),y与x之间的函数关系如图所示,则图中线段CD所表示的y与x之间的函数关系式是.18.如图,A(1,0),B(3,0),M(4,3),动点P从点A出发,以每秒1个单位长的速度向右移动,且经过点P的直线l:y=−x+b也随之移动,设移动时间为t秒.若l与线段BM有公共点,则t 的取值范围为.三、解答题19.水龙头关闭不严会造成滴水,小明用可以显示水量的容器做如图①的试验,并根据试验数据绘制出如图②的容器内盛水量y(L)与滴水时间t(h)的函数关系图象,请结合图象解答下列问题:(1)求y与t之间的函数关系式;(2)计算在这种滴水状态下一天的滴水量是多少升.20.如图,一次函数y=k1x+b的图象与y轴交于点B(0,﹣6),与x轴交于点C,且与正比例函数y=k2x的图象交于点A(1,-4).(1)分别求出这两个函数的表达式及△AOC的面积;(2)将正比例函数y=k2x的图象沿y轴向下平移3个单位长度后得到直线l,请写出直线l 对应的函数表达式.21.某市自来水公司收费是阶段性收费,每个月用水不超过10m3时收费标准为2.8元/m3,每个月用水超过10m3,超过部分收费为4.3元/m3.设某用户该月用水x m3,交费y元.(1)请写出y关于x的函数关系式;(2)若该用户本月用水交费62.4元,则该用户本月用水多少m3?22.“双十一”期间,甲、乙两家商场以相同价格销售同样的商品,它们的优惠方案分别为:甲商场,一次购物中不超过m元无优惠,超过m元后的价格部分打n折;乙商场,一次购物中不超过600元无优惠,超过600元后的价格部分打六折.设商品原价为x元(x≥0),购物应付金额为y元.(1)求在乙商场购物时y2与x之间的函数关系;(2)如图所示,在甲商场购物时y1与x之间的函数图象为线段OA和射线AC,在乙商场购物时y2与x之间的函数图象为线段OB和射线BC,且点A在OB上,请直接写出AC与BC的交点C的坐标,以及甲商场的优惠方案;(3)根据函数图象,请直接写出“双十一”期间选择哪家商场购物更优惠.23.某苹果种植户现有22吨苹果需要销售,经市场调查,采用批发、零售两种销售方式,这两种销售方式每天的销量及每顿所获得利润如表:销售方式批发零售销量(吨/天)52利润(元/吨)12002000假设该种植户售完22吨苹果,共批发了x吨,所获总利润为y元,(1)求出x与y之间的函数关系式;(2)因人手不够,该种植户每天只能采用一种销售方式销售,且正好5天销售完所有的苹果,计算该种植户所获总利润是多少元?x+4分别与x,y轴交于点A、B,与直线y=kx相交于点C 24.如图,已知直线y=−43(2,n),点P为直线y=−4x+4上一点.3(1)n= ,k= ;(2)若点P在射线CA上,且S△POC=2S△AOC,求点P的坐标.(3)若△POC的面积为1,求点P的坐标.(4)点Q在函数y=|−43x+4|的图象上,若△QOC的面积为m(m为常数且m>0),试确定满足条件的点Q的个数(直接写出结果).参考答案1.C2.A3.D4.A5.C6.C7.A8.B9.B10.B11.电影票的售价电影票的张数,票房收入.12.-213.y=2x−314.m<315.x>−316.y=x 3 817.y=100x(4≤x≤12)18.2≤t≤619.(1)y=0.4t+0.3(2)9.6L20.(1)y=2x-6 ,y=﹣4x,6;(2)y=﹣4x﹣3;21.(1){y=2.8x(0≤x≤10)y=4.3x−15(x>10)(2)18m322.(1)y2={x(0≤x≤600)240+0.6x(x>600);(2)点C的坐标(900,780).甲商场,一次购物中不超过300元无优惠,超过300元后的价格部分打八折;(3)当0≤x≤300或x=900时,选择甲、乙两商场付费相同;当300<x<900时,选择甲商场购物更优惠;当x>900时,选择乙商场购物更优惠.23.(1)y=−800x+44000(2)28000元24.(1)43,23(2)P(4,−43)(3)点P 的坐标为(52,23)或(32,2)(4)当m =2时,满足条件的点Q 有3个,当m >2时,满足条件的点有2个,当0<m <2时,满足条件的点有4个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.点()1,A a y 、()22,B a y 都在一次函数0)(2y ax a a =-+≠的图象上,则1y 、2y 的大小关系是( )A .12y y >B .12y y =C .12y y <D .不确定A解析:A【分析】根据题意,分别表示出1y ,2y ,再判断12y y -的正负性,即可得到答案.【详解】∵点()1,A a y 、()22,B a y 都在一次函数0)(2y ax a a =-+≠的图象上,∴212y a a =-+,224y a a =-+,∴22212(2)(4)2y y a a a a a -=-+--+=>0, ∴12y y >,故选A .【点睛】本题主要考查一次函数图像上点的坐标特征,掌握作差法比较大小,是解题的关键. 2.如图,点O 为平面直角坐标系的原点,点A 在x 轴正半轴上,四边形OABC 是菱形.已知点B 坐标为(3,3),则直线AC 的函数解析式为( )A .y =333B .y 33C .y =﹣333 D .y 33D 解析:D【分析】过B 点作BH ⊥x 轴于H 点,菱形的对角线的交点为P ,如图,设菱形的边长为t ,则OA =AB =t ,在Rt △ABH 中利用勾股定理得到(3﹣t )2+32=t 2,解方程求出t ,得到A (2,0),再利用P 为OB 的中点得到P (323AC 的解析式即可.【详解】解:过B 点作BH ⊥x 轴于H 点,菱形的对角线的交点为P ,如图,∵四边形ABCO为菱形,∴OP=BP,OA=AB,设菱形的边长为t,则OA=AB=t,∵点B坐标为(33∴BH3AH=3﹣t,在Rt△ABH中,(3﹣t)2+32=t2,解得t=2,∴A(2,0),∵P为OB的中点,∴P(323设直线AC的解析式为y=kx+b,把A(2,0),P(32320332k bk b+=⎧⎪⎨+=⎪⎩,解得:323kb⎧=-⎪⎨=⎪⎩,∴直线AC的解析式为y33故选:D.【点睛】本题主要考查菱形的性质,勾股定理以及一次函数的待定系数法,熟练掌握菱形的性质和待定系数法,是解题的关键.3.若正比例函数y=(m﹣2)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1>y2,则m的取值范围是()A.m>0 B.m<0 C.m>2 D.m<2D解析:D【分析】根据正比例函数的大小变化规律判断k的符号.【详解】解:根据题意,知:y随x的增大而减小,则k<0,即m﹣2<0,m<2.故选:D.【点睛】本题考查了一次函数的性质:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.4.一次函数y=-3x-2的图象和性质,表述正确的是( )A .y 随x 的增大而增大B .函数图象不经过第一象限C .在y 轴上的截距为2D .与x 轴交于点(-2,0)B 解析:B【分析】根据一次函数y=kx+b (k≠0)的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,即可判断A 项,解析式特点找到函数通过的象限即可判断B 项;使y=0时,对应的横坐标即可判断C ;使x=0时,对应的纵坐标即可判断D .【详解】A. 因为k=-3,所以y 随x 的增大而减小,故此项不正确;B. 根据函数解析式y=-3x-2特点,函数图象经过第二、三、四象限,故此项正确;C. y=-3x-2与y 轴的交点坐标(0,-2),那么在y 轴上的截距为-2,故此项不正确;D. y=-3x-2与x 轴交于点(23-,0),故此项不正确; 故选B【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的图象,一次函数的性质,正确掌握一次函数图象的增减性和一次函数的性质是解题的关键.5.如图①,E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿折线B E D --运动到点D 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们的运动速度都是1/cm s .现P ,Q 两点同时出发,设运动时间为()x s ,BPQ 的面积为2()y cm ,若y 与x 的对应关系如图②所示,则矩形ABCD 的面积是( )A .296cmB .284cmC .272cmD .256cm C解析:C【分析】 过点E 作EH BC ⊥,由三角形面积公式求出EH=AB=6,由图2可知当14x =时,点P 与点D 重合,则12AD =,可得出答案.【详解】解:从函数的图象和运动的过程可以得出:当点P 运动到点E 时,10x =,30y =, 过点E 作EH BC ⊥,由三角形面积公式得:11103022y BQ EH EH =⋅=⨯⨯=,解得:EH=AB=6, ∴BE=10×1=10,228BH AE BE AB ==-=, 由图2可知:当14x =时,点P 与点D 重合,4ED ∴=,8412BC AD ∴==+=,矩形的面积=12672⨯=.故选:C .【点睛】本题考查动点问题的函数图象,三角形的面积等知识,从图像中得出当10x =,14x =时,点P 的位置,熟练掌握数形结合思想方法是解题的关键.6.已知点P (m ,n )在第二象限,则直线y =nx +m 图象大致是下列的( ) A . B .C .D .C解析:C【分析】根据点P 在第二象限,确定m <0,n >0,根据k ,b 的符号,确定图像的分布即可.【详解】∵点P (m ,n )在第二象限,∴m <0,n >0,∴图像分布在第一,第三象限,第四象限,故选C.【点睛】本题考查了根据k ,b 的符号确定一次函数图像的分布,熟记k ,b 的符号与图像分布的关系是解题的关键.7.函数2y x x=+-()P x,y 一定在第( )象限A .第一象限B .第二象限C .第三象限D .第四象限B解析:B【分析】 由二次根式和分式有意义的条件,得到0x <,然后判断得到0y >,即可得到答案.【详解】解:根据题意,则 ∵00x x -≥⎧⎪⎨-≠⎪⎩,解得:0x <, ∴20x >,10x >-, ∴210y x x=+>-, ∴点(,)P x y 一定在第二象限;故选:B .【点睛】本题考查了二次根式和分式有意义的条件,以及判断点所在的象限,解题的关键是熟练掌握所学的知识进行解题.8.甲、乙两人从公司去健身房,甲先步行前往,几分钟后乙乘出租车追赶,出租车的速度是甲步行速度的5倍,乙追上甲后,立刻带上甲一同前往,结果甲比预计早到4分钟,他们距公司的路程y (米)与时间x (分)间的函数关系如图所示,则下列结论中正确的个数为( )①甲步行的速度为100米/分;②乙比甲晚出发7分钟;③公司距离健身房1500米;④乙追上甲时距健身房500米.A .1个B .2个C .3个D .4个C解析:C【分析】 根据一次函数的图象获取信息,可得到距公司的路程y (米)与时间x (分)间的函数关系,进而对四个结论进行判断,即可得出结果.【详解】解:观察图象,得:甲步行的速度为1000÷10=100米/分,故①正确;10−1000500=10−2=8,即乙比甲晚出发8分钟,故②错误; 设公司距离健身房x 米,依题意得x 100−(10+x 1000500-)=4, 解得x =1500,∴公司距离健身房1500米,故③正确;乙追上甲时距健身房1500−1000=500米,故④正确.故选:C .【点睛】本题考查了一次函数图象的应用,熟练掌握一次函数图象与性质及利用数形结合的思想是解题的关键.9.关于x 的一次二项式ax+b 的值随x 的变化而变化,分析下表列举的数据,若ax+b =11,则x 的值是( )A .3B .﹣5C .6D .不存在C解析:C【分析】设y=ax+b ,把x=0,y=-1和x=1,y=1代入求出a 与b 的值,即可求出所求.【详解】解:设y =ax+b , 把x=0,y=-1和x=1,y=1代入得:11a b b +=⎧⎨=-⎩, 解得:21a b =⎧⎨=-⎩, ∴2x ﹣1=11,解得:x =6.故选:C .【点睛】此题考查了解二元一次方程组以及代数式求值,一次函数的解析式,熟练掌握解二元一次方程组是解本题的关键.10.下列命题中,①()1,2A -关于y 轴的对称点为()1,2--;②2±;③2y x =-+与x 轴交于点()2,0;④22x y =-⎧⎨=⎩是二元一次方程23x y +=-的一个解.其中正确的个数有( )A .1B .2C .3D .4A解析:A【分析】根据关于y 轴对称的坐标特征判断①;根据平方根定义判断②;根据直线与x 轴交点坐标判断③;根据方程的解的定义判断④.【详解】解:①()1,2A -关于y 轴的对称点为(1,2); ②216的平方根是22±;③2y x =-+与x 轴交于点(2,0);④21x y =-⎧⎨=⎩是二元一次方程23x y +=-的一个解. ∴正确的是:③,1个故选:A【点睛】本题考查关于y 轴对称的坐标特征、平方根定义、直线与x 轴交点坐标、方程的解,考查学生的辨析能力,熟知以上知识点是解答此题的关键.二、填空题 11.如图,直线1:22l y x =-+交x 轴于点A ,交y 轴于点B ,直线21:12y l x =+交x 轴于点D ,交y 轴于点C ,直线1l 、2l 交于点M .(1)点M 坐标为________;(2)若点E 在y 轴上,且BME 是以BM 为一腰的等腰三角形,则E 点坐标为________.()()或()或()【分析】(1)联立两个方程组求解即可(2)根据题意有以M 为顶点和以B 为顶点两种情况分别求解即可【详解】解:(1)联立两个方程组得将①代入②得:解得:将代入①得:∴点坐标为()故答解析:(25,65) (0,25)或(0,252-或(0,252+ 【分析】(1)联立两个方程组求解即可(2)根据题意有以M 为顶点和以B 为顶点两种情况,分别求解即可【详解】解:(1)联立两个方程组得22112y x y x =-+⎧⎪⎨=+⎪⎩①② 将①代入②得:22=112x x -++ 解得:2=5x 将2=5x 代入①得:5=6y ∴点M 坐标为(25,65) 故答案为:(25,65) (2)由22y x =-+得当x=0时,y=2故B(0,2)以BM 为一腰时,有两种情况当BME 以M 为顶点时,设E 点坐标为(0,y ) 则66255y -=- 解得:25y = 故E 点坐标为(0,25) 当BME 以B 为顶点时,设E 点坐标为(0,y ) ∵5= 若E 在B 下方则y=2若E 在B 上方 则y=25+ 故E 点坐标为(0,2)或(0,2+ 故答案为:(0,25)或(0,2-或(0,2+ 【点睛】本题考查两直线相交问题及等腰三角形的性质,熟练掌握等要三角形的定义及性质是解本题的关键12.已知y +3与x 成正比例,且x =2时,y =7,则y 与x 的函数关系式为______________________.【分析】根据题意设把x =2时y =7代入求出k 的值即可求解【详解】解:根据题意可得把x =2时y =7代入可得解得∴故答案为:【点睛】本题考查正比例函数的定义根据题意求出k 的值是解题的关键 解析:53y x =-【分析】根据题意设3y kx ,把x =2时,y =7代入求出k 的值,即可求解. 【详解】解:根据题意可得3y kx , 把x =2时,y =7代入可得732k +=,解得5k =, ∴53y x =-,故答案为:53y x =-.【点睛】本题考查正比例函数的定义,根据题意求出k 的值是解题的关键.13.直线1:l y kx =与直线2:l y ax b =+在同一平面直角坐标系中的图形如图所示,两条直线相交于点A ,直线x m =分别与两条直线交于M ,N 两点,若AMN 的面积不小于12时,则m 的取值范围是_______. 或【分析】把点A (12)代入直线方程先求出两条直线的解析式然后求出点MN 的坐标再求出MN 的长度利用三角形的面积公式即可求出答案【详解】解:由图可知点A 为(12)直线与y 轴的交点为(01)把点A (12解析:0m ≤或2m ≥【分析】把点A (1,2)代入直线方程,先求出两条直线的解析式,然后求出点M 、N 的坐标,再求出MN 的长度,利用三角形的面积公式,即可求出答案.【详解】解:由图可知,点A 为(1,2),直线2:l y ax b =+与y 轴的交点为(0,1),把点A (1,2)代入1:l y kx =,则2k =;∴12:l y x =;把点A (1,2)和点(0,1)代入2:l y ax b =+,21a b b +=⎧⎨=⎩,解得:11a b =⎧⎨=⎩; ∴2:1=+l y x ;把x m =分别代入两条直线方程,则12y m =,21y m =+,∴点M 的坐标为(m ,2m ),点N 的坐标为(m ,m+1), ∴2(1)1MN m m m =-+=-,∴△AMN 边MN 上的高为:1m - ∵1112AMN S m m ∆=•-•-, 当AMN 的面积等于12时,则 211111(1)222AMN S m m m ∆=•-•-=-=, ∴2m =或0m =, 结合AMN 的面积不小于12, ∴0m ≤或2m ≥;故答案为:0m ≤或2m ≥.【点睛】本题考查了一次函数的性质,解一元一次不等式,求一次函数的解析式,解题的关键是正确的理解题意,掌握一次函数的性质进行解题.14.在平面直角坐标系中,直线6y kx =+与x 轴交于点A ,与y 轴交于点B ,若AOB 的面积为12,则k 的值为_________.或【分析】求出AB 点坐标在Rt △AOB 中利用面积构造方程即可解得k 值【详解】由直线与y 轴于B 则则∴直线与x 轴于A 令则∴∴∴∴∴解得:由k≠0符合题意则k 的值为或故答案为:或【点睛】本题主要考查了一次 解析:32-或32【分析】 求出A 、B 点坐标,在Rt △AOB 中,利用面积构造方程即可解得k 值.【详解】由直线6y kx =+与y 轴于B ,则0x =,则6y =,∴(0,6)B ,直线6y kx =+与x 轴于A ,令0y =,则60kx +=,6x k =-, ∴6,0A k ⎛⎫- ⎪⎝⎭, ∴6OA k =-,6OB =, ∴1122AOB S OA OB =⋅=△, ∴64k -=, ∴64k-=±, 解得:132k =-,232k =, 由k≠0,符合题意, 则k 的值为32-或32. 故答案为:32-或32. 【点睛】本题主要考查了一次函数问题,掌握图象上点的坐标特征以及利用面积构造方程,会解方程是解题关键.15.如图,一个直角三角形与一个正方形在同一水平线上,此三角形从图①的位置开始,匀速向右平移,到图③的位置停止运动.如果设运动时间为x ,三角形与正方形重叠部分的面积为y ,在下面的平面直角坐标系中,线段AB 表示的是三角形在正方形内部移动的面积图象,C 点表示的是停止运动后图象的结束点,下面有三种补全图象方案,正确的方案是______.①②③乙【分析】由题意可知三角形没全进入正方形之前重叠部分为直角三角形当三角形即将出正方形之后重叠部分为直角梯形利用面积公式求出两个图形的面积即可判断其图象【详解】设直角三角形的底为a 高为b 运行速度为v 由解析:乙【分析】由题意可知三角形没全进入正方形之前,重叠部分为直角三角形.当三角形即将出正方形之后,重叠部分为直角梯形.利用面积公式求出两个图形的面积即可判断其图象.【详解】设直角三角形的底为a ,高为b ,运行速度为v .由题意可知当三角形没全进入正方形之前,重叠部分为与原三角形相似的直角三角形. ∵重叠部分的直角三角形的底为vx ,∴根据三角形相似,可知:vx a b =重叠直角三角形的高 , 即重叠直角三角形的高=bvx a, ∴22122bvx bv y vx x a a==, ∵a , b , v 都为常数且大于0,∴222bv y x a=是一个开口向上的曲线. 当三角形即将出正方形之后,重叠部分为去掉与原三角形相似的直角三角形的直角梯形.设正方形边长为l ,则该梯形的高为()l vx a --,下底为b , 根据三角形相似可知:vx l b a -=梯形上底, 即梯形上底()b vx l a -=, ∴[]1()()2b vx l y b l vx a a -⎡⎤=⨯+⨯--⎢⎥⎣⎦. ∵a , b , v ,l 都为常数且大于0, ∴[]1()()2b vx l y b l vx a a -⎡⎤=⨯+⨯--⎢⎥⎣⎦中2x 项的系数为202bv a-<, ∴[]1()()2b vx l y b l vx a a -⎡⎤=⨯+⨯--⎢⎥⎣⎦是一个开口向下的曲线. ∴只有乙符合.故答案为:乙.【点睛】本题考查动点问题的函数图象.理解三角形运动过程中的分界点,利用三角形和梯形的面积公式列出关于x 的方程来判断其图象是解题关键.16.已知:一次函数()21y a x =-+的图象不经过第三象限,化简=_________.【分析】首先根据一次函数y=(a-2)x+1的图象不经过第三象限可得a-2<0进而得到a <2再根据二次根式的性质进行计算即可【详解】解:∵一次函数的图象不经过第三象限∴解得:故答案为:【点睛】本题考解析:52a -【分析】首先根据一次函数y=(a-2)x+1的图象不经过第三象限,可得a-2<0,进而得到a <2,再根据二次根式的性质进行计算即可.【详解】解:∵一次函数()21y a x =-+的图象不经过第三象限,∴20a -<,解得:2a <,=23a a =-+-23a a =-+-故答案为:52a -.【点睛】本题考查了一次函数图象与系数的关系,以及二次根式的化简,关键是掌握:①k >0,b>0⇔y=kx+b 的图象在一、二、三象限;②k >0,b <0⇔y=kx+b 的图象在一、三、四象限;③k <0,b >0⇔y=kx+b 的图象在一、二、四象限;④k <0,b <0⇔y=kx+b 的图象在二、三、四象限.17.若点()14,y -,()22,y 都在直线2y x =-+上,则1y __________2y (填“>”或“=”或“<”)>【分析】由y =−x +2可知k =−1<0故y 随x 的增大而减小由−4<2可得y1y2的大小关系【详解】解:∵k =−1<0∴y 随x 的增大而减小∵−4<2∵y1>y2故答案为:>【点睛】本题主要考查一次函解析:>【分析】由y =−x +2可知k =−1<0,故y 随x 的增大而减小,由−4<2,可得y 1,y 2的大小关系.【详解】解:∵k =−1<0,∴y 随x 的增大而减小,∵−4<2,∵y 1>y 2故答案为:>【点睛】本题主要考查一次函数的增减性,熟练掌握一次函数的增减性是解题的关键. 18.如图,在平面直角坐标系xOy 中,一次函数12y x b =--与正比例函数32y x =的图象交于点()2,A m ,与x 轴交于点B (5,0),则△OAB 的面积是________.【分析】先求出A 点坐标再过点A 作AC ⊥OB 垂足为C 用三角形面积公式即可求出面积【详解】解:把点代入得解得∴A 点坐标为(23)过点A 作AC ⊥OB 垂足为C ∵点B 坐标为(50)∴S △OAB=故答案为:【点解析:152先求出A 点坐标,再过点A 作AC ⊥OB ,垂足为C ,用三角形面积公式即可求出面积.【详解】解:把点()2,A m 代入32m x =,得 322m =⨯, 解得,3m =,∴A 点坐标为(2,3),过点A 作AC ⊥OB ,垂足为C ,∵点B 坐标为(5,0),∴S △OAB =111553222OB AC ⨯⨯=⨯⨯=, 故答案为:152.【点睛】本题考查了求正比例函数图象上点的坐标和利用坐标求三角形面积,解题关键是求出A 点坐标.19.如图,在平面直角坐标系中,直线l :y =x +2交x 轴于点A ,交y 轴于点A 1,点A 2,A 3...在直线l 上,点B 1,B 2,B 3..在x 轴的正半轴上,若△A 1OB 1,△A 2B 1B 2,△A 3B 2B 3...,依次均为等腰直角三角形,直角顶点都在x 轴上,则第2021个等腰直角三角形A 2021B 2020B 2021顶点B 2021的横坐标为__________.【分析】先求出…的横坐标探究总结得到即可根据规律解决问题【详解】解:探究规律:令则令则∴∴…发现并总结规律:∴运用规律:当时故答案为【点睛】本题考查规律型:点的坐标等腰直角三角形的性质等知识解题的关解析:202222-先求出123,,B B B …的横坐标,探究总结得到122,n n B x +=-,即可根据规律解决问题.【详解】解:探究规律: :2,l y x =+令0,x = 则2,y =()10,2,A ∴令0,y = 则2,x =-()2,0,A ∴-12,OA OA ∴==∴11121223232,4,8,OB OA B B B A B A B B ======∴12222,B x ==- 23622,B x ==-341422,B x ==-…,发现并总结规律:∴122,n n B x +=-运用规律:当2021n =时,202120222 2.B x ∴=-故答案为20222 2.-【点睛】本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题.20.已知直线()0y kx b k =+≠过()1,0和()0,2-,则关于x 的不等式0kx b +<的解集是______.【分析】由题意可以求得k 和b 的值代入不等式即可得到正确答案【详解】解:由题意可得:∴k=2b=-2∴原不等式即为2x-2<0解之可得:x<1故答案为x<1【点睛】本题考查一次函数与一元一次不等式的综解析:1x <【分析】由题意可以求得k 和b 的值,代入不等式即可得到正确答案 .【详解】解:由题意可得:02k b b =+⎧⎨-=⎩,∴ k=2,b=-2,∴原不等式即为2x-2<0,解之可得:x<1,故答案为x<1 .【点睛】本题考查一次函数与一元一次不等式的综合应用,利用直线与坐标轴的交点求出不等式的系数是解题关键.三、解答题21.已知y 与1x -成正比例,当3x =时,4y =,求y 与x 之间的函数关系式. 解析:22y x =-【分析】首先根据题意设出关系式:y=k (x-1),再利用待定系数法把x=3,y=4代入,可得到k 的值,再把k 的值代入所设的关系式中,可得到答案;【详解】解:因为y 与1x -成正比例,所以设()1y k x =-(0k ≠)∵当3x =时,4y =,∴()431k =-解得2k =所以, y 与x 之间的函数关系式为:22y x =-【点睛】此题主要考查了对正比例的理解,关键是设出关系式,代入x ,y 的值求k .22.如图,在平面直角坐标系中,O 为坐标原点,一次函数y kx b =+与x 轴交于点A ,与y 轴交于点(0,4)B ,与正比例函数3y x =-交于点(1,)C m -.(1)求直线AB 的函数表达式.(2)在y 轴上找点P ,使OCP △为等腰三角形,直接写出所有满足条件的P 点坐标. (3)在直线AB 上找点Q ,使得78COQ APB S S =,求点Q 的坐标.解析:(1)4y x =+;(2)1234510),(0,10),(0,6),0,3P P P P ⎛⎫- ⎪⎝⎭;(3)513,22Q ⎛⎫ ⎪⎝⎭或91,22Q ⎛⎫-- ⎪⎝⎭. 【分析】(1)由题意易得()1,3C -,然后把点B 、C 的坐标代入y kx b =+求解即可;(2)由题意易得可分①当OC OP =时,②当C 为等腰OCP △的顶点时,则C 在OP 的中垂线上,③当P 为等腰OCP △的顶点时设(0,)P a ,进而根据等腰三角形的性质进行求解即可;(3)过Q 作x 轴平行线交CO 于点D ,设(,4)Q m m +,则4,43m D m +⎛⎫-+ ⎪⎝⎭,由题意可得8AOB S =△,进而可得()12COQ c o S QD y y =⋅-,然后可得441433m +=,进而求解即可.【详解】解:(1)由题意得:3y x =-过 (1,)C m -,3(1)3m ∴=-⨯-=,(1,3)C ∴-,∵直线:AB y kx b =+过(0,4),(1,3)B C -,代入可得43bk b =⎧⎨=-+⎩,解得14k b =⎧⎨=⎩,∴直线AB 的解析式为4y x =+;(2)①当O 为等腰OCP △的顶点时,则OC OP =,(OC ==OP ∴=12(0,P P ∴.②当C 为等腰OCP △的顶点时,则C 在OP 的中垂线上,C ∴的纵坐标为OP 纵坐标的中点,3(0,6)P ∴.③当P 为等腰OCP △的顶点时设(0,)P a ,22CP OP ∴=,22a ∴=,解得53a =,综上所述12345(0,(0,6),0,3P P P P ⎛⎫⎪⎝⎭;(3)4y x =+与x 轴交于点A ,(4,0)A ∴-,1144822AOB A B Sx y ∴=⨯⨯=⨯⨯=, 778COQ AOB S S ==,过Q 作x 轴平行线交CO 于点D ,设(,4)Q m m +,则4,43m D m +⎛⎫-+ ⎪⎝⎭, ()12COQ c o S QD y y ∴=⋅-, 14323m m +=⨯+⨯, 143723m m +∴⨯+⨯=, 441433m +∴=, 441433m +∴=或441433m +=-, 解得52m =或92m =-, 513,22Q ⎛⎫∴ ⎪⎝⎭或91,22Q ⎛⎫-- ⎪⎝⎭. 【点睛】本题主要考查一次函数与几何的综合,熟练掌握一次函数的性质及等腰三角形的性质是解题的关键.23.地表以下岩层的温度()y ℃随着所处深度() km x 的变化而变化,在某个地点y 与x 之间满足如下关系: 深度() km x1 2 3 4 温度()y ℃ 55 90 125 160y x (2)当8x =时,求出相应的y 值.(3)若岩层的温度是510℃,求相应的深度是多少?解析:(1)3520y x =+;(2)300;(3)相应的深度是14km .【分析】(1)根据图表可知,深度每增加1km ,温度增加35℃,据此直接直接写出y 与x 之间的关系式即可;(2)根据(1)所得关系式,令x=8,求得y 的值即可;(3)根据(1)所得关系式,令y=510,求得x 的值即可.【详解】(1)由图表可知,深度每增加1km ,温度增加35℃,5535(1)y x ∴=+-553535x =+-3520x =+,即y 与x 之间的关系式为:3520y x =+;(2)由3520y x =+令8x =时,则35820300y =⨯+=;(3)由3520y x =+令510y =时,则3520510x +=,解得14x =故相应的深度是14km .【点睛】本题主要考查一次函数的应用,明确题意、正确列出函数解析式成为解答本题的关键. 24.某商品经销店欲购进A 、B 两种纪念品,用160元购进的A 种纪念品与用240元购进的B 种纪念品的数量相同,每件B 种纪念品的进价比A 种纪念品的进价贵10元. (1)求A 、B 两种纪念品每件的进价分别为多少元?(2)若这两种纪念品共购进1000件,由于A 种纪念品销量较好,进购时A 不少于B 种纪念品的数量,且不超过B 种纪念品的1.5倍,问共有多少种进购方案?(3)该商店A 种纪念品每件售价24元,B 种纪念品每件售价35元,在(2)的条件下求出哪种方案获利最多,并求出最大利润.解析:(1)A 、B 两种纪念品每件进价分别为20元、30元;(2)101种;(3)A 种500件,B 种中500件时,最大利润为4500元【分析】(1) 设A 种纪念品每件进价a 元,则B 种纪念品每件进价(10)x +元,根据题意列方程求解即可;(2)设A 种纪念品购进y 件,则B 种纪念品购进(1000)y -件,依据题意列不等式组,求出y 的整数取值范围,即可得出进购方案;(3)根据题意得出利润的关系式,再结合第二问y 的取值范围求出最大利润.【详解】解:(1)设A 种纪念品每件进价a 元,则B 种纪念品每件进价(10)x +元. 根据题意得16024010x x =+,去分母, 得:160(10)240x x +=,解得:20x , 经检验,20x 是原方程的解,1030x +=(元),∴A 种纪念品每件进价20元,B 种纪念品每件进价30元.(2)设A 种纪念品购进y 件,则B 种纪念品购进(1000)y -件,根据题意得:10001.5(1000)y y y y ≥-⎧⎨≤-⎩,解得:500600y ≤≤. 又y 只能取整数,500y ∴=,501, (600)则共有101种购进方案.(3)由题意得,最大利润为:(2420)(3530)(1000)5000W y y y =-+--=-+,在500600y ≤≤时,当500y =时,max 4500W =(元),∴当A 种购进500件,B 种购进500件时,利润最大为4500元.【点睛】本题考查分式方程、一元一次不等式组及一次函数的综合应用,解题关键在于充分理解题意,根据题意列出相关关系式进行求解.25.一次函数()0y kx b k =+≠满足,当112x -≤≤,121y -≤≤,求这条直线的函数解析式.解析:1y x =-或y x =-.【分析】分点()1,2--,()2,1或()1,1-,()2,2-在直线上两种情形,分别解答即可.【详解】解:∵112x -≤≤时,121y -≤≤,∴点()1,2--,()2,1或()1,1-,()2,2-在直线上.∵点()11,x y 在直线y kx b =+上,∴221k b k b -+=-⎧⎨+=⎩或122k b k b -+=⎧⎨+=-⎩, ∴11k b =⎧⎨=-⎩或10k b =-⎧⎨=⎩ ∴1y x =-或y x =-.【点睛】本题主要考查运用待定系数法求一次函数解析式,掌握分类讨论思想是解答本题的关键. 26.已知一次函数y kx b =+,在0x =时的值为4,在1x =-时的值为2,(1)求一次函数的表达式.(2)求图象与x 轴的交点A 的坐标,与y 轴交点B 的坐标;(3)在(2)的条件下,求出△AOB 的面积;解析:(1)24y x =+;(2)A (-2,0)B (0)4,;(3)4 【分析】(1)把两组x 和y 值代入解析式,求出k 和b 值,即可得到结论;(2)利用函数解析式分别代入x=0和y=0的情况就可求出A 、B 两点坐标;(3)通过A 、B 两点坐标即可算出直角三角形AOB 的面积.【详解】(1)把0x =,4y =和1x =-,2y =代入y kx b =+得42b k b =⎧⎨-+=⎩解得24k b =⎧⎨=⎩ 所以这个一次函数的表达式为24y x =+.(2)把0y =代入24y x =+,得:2x =-则A 点坐标为(20)-,把x=0代入24y x =+,得y=4,则B 点坐标为(0)4,; (3)根据题意作函数大致图像:由图可知:2OA =,4OB =, 所以11 24422OAB S OA O B =⋅=⨯⨯=△ 【点睛】本题考查一次函数解析式求法和一次函数图象上点的坐标特点,正确求出一次函数与x 轴和y 轴的交点是解题的关键.27.某商店需要购进甲、乙两种商品共200件,其进价和售价如表:甲 乙 进价(元/件)14 35 售价(元/件) 20 45件?(2)若商店计划投入资金小于5320元,且销售完这批商品后获利大于1660元,请问有几种购货方案?并求出其中获利最大的购货方案.解析:(1)甲种商品购进80件,乙种商品购进120件;(2)共有4种购货方案,甲种商品购进81件、乙种商品购进119件时,获利最大【分析】(1)设甲种商品购进x 件,乙种商品购进y 件,根据该商品购进两种商品共200件且销售完这批商品后能获利1680元,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设甲种商品购进m 件,则乙种商品购进(200﹣m )件,根据“该商店计划投入资金小于5320元,且销售完这批商品后获利大于1660元”,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,结合m 为非负整数即可得出购货方案的数量,设销售完这批商品后获利w 元,根据总利润=每件的利润×销售数量(购进数量),即可得出w 关于m 的函数关系式,再利用一次函数的性质即可解决最值问题.【详解】解:(1)设甲种商品购进x 件,乙种商品购进y 件,依题意得:200(2014)(4535)1680x y x y +=⎧⎨-+-=⎩, 解得:80120x y =⎧⎨=⎩. 答:甲种商品购进80件,乙种商品购进120件.(2)设甲种商品购进m 件,则乙种商品购进(200)m -件,依题意得:1435(200)5320(2014)(4535)(200)1660m m m m +-<⎧⎨-+-->⎩, 解得:8085m <<,又m 为非负整数,m ∴可以为81,82,83,84,∴该商店共有4种购货方案.设销售完这批商品后获利w 元,则(2014)(4535)(200)42000w m m m =-+--=-+, 40-<,w ∴随m 的增大而减小,∴当81m =时,w 取得最大值,即甲种商品购进81件、乙种商品购进119件时,该商店销售完这批商品后获利最大.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.28.一次函数23y x =-+的图像经过点P (1,n ).(1)求n 的值;(2)若一次函数1y mx =-的图像经过点P (2n -1,n ),求m 的值.解析:(1)1;(2)m =2【分析】(1)把点P (1, n )代入一次函数 y=−2x+3 即可求出n 的值;(2)由(1)可得P (1,1),由一次函数 y=mx−1 的图像经过点P (1,1),可得m 的值.【详解】(1)一次函数23y x =-+的图像经过点P (1,n ),n =-2+3=1;(2)由n =1,P (2n -1,n ),可得P (1,1),一次函数1y mx =-的图像经过点P (1,1),11m =-,解得m=2.【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.。

相关文档
最新文档