层次分析法之判断矩阵计算
层次分析法判断矩阵求权值以及一致性检验程序

fun cti on [w,CR]=mycom(A,m,RI)[x,lumda]二eig(A);r二abs(sum(lumda));n二fin d(r==max(r));max_lumda_A=lumda( n,n);max_x_A=x(:,n);w=A/sum(A);CR=(max_lumda_A-m)/(m-1)/RI;end本matlab程序用于层次分析法中计算判断矩阵给出的权值已经进行一致性检验。
其中A为判断矩阵,不同的标度和评定A将不同。
m为A的维数RI为判断矩阵的平均随机一致性指标:根据m的不同值不同。
RI值当CRV0.1时符合一致性检验,判断矩阵构造合理。
下面是层次分析法的简介,以及判断矩阵构造方法。
一•层次分析法的含义层次分析法(The analytic hierarchy process简称AHP,在20世纪70年代中期由美国运筹学家(「L.Saaty正式提出。
它是一种定性和定量相结合的、系统化、层次化的分析方法。
由于它在处理复杂的问题上的实用性和有效性,很快在世界范围得到重视。
它的应用已遍及经济和、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。
二.层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。
层次分析法的原理层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。
这里所谓优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。
层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。
其用法是构造判断矩阵,求出其最大特征值。
专家咨询基础上的层次分析法

AHP一、层次分析法概述。
层次分析法(Analytic Hierarchy Process简称AHP)是美国运筹学家T. L. Saaty教授于70年代初期提出的,AHP是对定性问题进行定量分析的一种简便、灵活而又实用的多准则决策方法。
它的特点是把复杂问题中的各种因素通过划分为相互联系的有序层次,使之条理化,根据对一定客观现实的主观判断结构(主要是两两比较)把专家意见和分析者的客观判断结果直接而有效地结合起来,将一层次元素两两比较的重要性进行定量描述。
而后,利用数学方法计算反映每一层次元素的相对重要性次序的权值,通过所有层次之间的总排序计算所有元素的相对权重并进行排序。
该方法自1982年被介绍到我国以来,以其定性与定量相结合地处理各种决策因素的特点,以及其系统灵活简洁的优点,迅速地在我国社会经济各个领域内,如能源系统分析、城市规划、经济管理、科研评价等,得到了广泛的重视和应用。
二、层次分析法的用途举例。
例如,某人准备选购一台电冰箱,他对市场上的6种不同类型的电冰箱进行了解后,在决定买那一款式是,往往不是直接进行比较,因为存在许多不可比的因素,而是选取一些中间指标进行考察。
例如电冰箱的容量、制冷级别、价格、型式、耗电量、外界信誉、售后服务等。
然后再考虑各种型号冰箱在上述各中间标准下的优劣排序。
借助这种排序,最终作出选购决策。
在决策时,由于6种电冰箱对于每个中间标准的优劣排序一般是不一致的,因此,决策者首先要对这7个标准的重要度作一个估计,给出一种排序,然后把6种冰箱分别对每一个标准的排序权重找出来,最后把这些信息数据综合,得到针对总目标即购买电冰箱的排序权重。
有了这个权重向量,决策就很容易了。
三、层次分析法的步骤。
(1)通过对系统的深刻认识,确定该系统的总目标,弄清规划决策所涉及的范围、所要采取的措施方案和政策、实现目标的准则、策略和各种约束条件等,广泛地收集信息。
(2)建立一个多层次的递阶结构,按目标的不同、实现功能的差异,将系统分为几个等级层次。
层次分析法

基于层次分析法的权重评价机制 1 建立层次结构模型一般分为三层,最上面为目标层,最下面为方案层,中间是准则层或指标层。
递阶层次结构中的层次数与问题的复杂程度及需要分析的详尽程度有关,一般地层次数不受限制。
每一层次中各元素所支配的元素一般不要超过9个。
这是因为支配的元素过多会给两两比较判断带来困难。
例如:2 构造判断矩阵设j i x x ,分别为指标Z 的影响因素,记ij a 为i x 和j x 对Z 的影响大小之比,其值为表1所示,记 n n ij a A ⨯=)(为X Z -之间的成对比较判断矩阵(简称判断矩阵)。
矩阵n n ij a A ⨯=)(中的元素ij a 与ji a 具有1ji ija a =关系。
表1 1~9标度的含义 标度含 义 1表示两个因素相比,具有相同重要性 3表示两个因素相比,前者比后者稍重要 5表示两个因素相比,前者比后者明显重要 7表示两个因素相比,前者比后者强烈重要 9表示两个因素相比,前者比后者极端重要 2,4,6,8 表示上述相邻判断的中间值计算方法:用近似计算法求各判断矩阵的最大特征值和特征向量。
其计算步骤为:Step1 计算判断矩阵每行所有元素的几何平均值:1,2,3,i w i n ==得到121(,,,)T n n w w w w w -=⋅⋅⋅,。
Step2 将i w 归一化,即计算:11,2,3,i i n i i w w i n w===∑ 得到121(,,,)T n n w w w w w -=⋅⋅⋅,,即为所求特征向量的近似值,这也是第三类各批次的相对权重。
3 一致性检验Step1 计算判断矩阵的最大特征值max λmax 1()n i i iAw nw λ==∑ 其中i w A )(为向量Aw 的第i 个元素。
Step2 计算判断矩阵一致性指标CI :max 1nCI n λ-=-Step3 计算一致性率CR :CI CR RI=在这里RI是自由度指标,下面我们引入修正值RI表2 RI的一致性检验维数(n) 1 2 3 4 5 6 7 8 9 RI 0.00 0.00 0.58 0.96 1.12 1.24 1.32 1.41 1.45 一致性规定当CR≤0.1时,认为两两比较矩阵的一致性可以接受,否则就认为两两比较矩阵一致性太差,必须重新进行两两比较判断。
层次分析法的计算步骤

层次分析法的计算步骤
一、定义层次分析法
层次分析法(Analytic Hierarchy Process,AHP)是由梅尔·拉斯
菲尔德(M.L. Saaty)于1977年提出的一种多层结构和多维度的层次分
析方法。
它是一种评估决策者面临复杂决策的基于层次结构逻辑的决策分
析方法,可以很轻松地将复杂的主观问题转换为客观的量化问题,从而求
解复杂的决策问题。
二、层次分析法计算流程
(1)决策问题的分类和层次结构的确定
首先,根据决策者的要求,将决策问题确定为一个有层次结构(AHP)和深度(hierarchy)的问题,将决策问题的内容分为n个层次。
(2)建立层次分析矩阵
将决策问题中的n个层次按从上至下的顺序,建立起一个n×n的层
次分析矩阵,称之为层次分析矩阵。
(3)确定层次分析矩阵的元素
在层次分析矩阵中,每一对元素的值都由决策者给出,即根据决策者
的判断,确定每个元素在n个层次层次中的比较的优劣。
(4)计算层次分析矩阵的均值尺度指数
均值尺度指数是由每行元素进行加权求和结果和n相除而得到的。
它
表示每个元素在此行的平均相对权重。
(5)分析层次分析矩阵
一旦层次分析矩阵计算完毕。
层次分析法-判断矩阵的构造-德尔菲法

德尔菲法实施注意事项
① 由于专家组成成员之间存在身份和地位上的差别以及其他社会原因, 有可能使其中一些人因不愿批评或否定其他人的观点而放弃自己的合理主张。 要防止这类问题的出现,必须避免专家们面对面的集体讨论,而是由专家单 独提出意见。 ② 对专家的挑选应基于其对企业内外部情况的了解程度。专家可以是第 一线的管理人员,也可以是企业高层管理人员和外请专家。例如,在估计未 来企业对劳动力需求时,企业可以挑选人事、计划、市场、生产及销售部门 的经理作为专家。 其他注意事项: (1) 为专家提供充分的信息,使其有足够的根据做出判断。例如,为 专家提供所收集的有关企业人员安排及经营趋势的历史资料和统计分析结果 等等。 (2) 所提问的问题应是专家能够回答的问题。 (3) 允许专家粗略的估计数字,不要求精确。但可以要求专家说明预 计数字的准确程度。 (4) 尽可能将过程简化,不问与预测无关的问题。 (5) 保证所有专家能够从同一角度去理解员工分类和其他有关定义。 (6) 向专家讲明预测对企业和下属单位的意义,以争取他们对德尔菲 法的支持。
中位数预测: 用中位数计算,可将第三次判断按预测值高低 排列如下: 最低销售量: 300 370 400 500 550 最可能销售量: 410 500 600 700 750 最高销售量: 600 610 650 750 800 900 1250 最高销售量的中位数为第四项的数字,即750。 将可最能销售量、最低销售量和最高销售量分 别按0.50、0.20和0.30的概率加权平均,则预测平 均销售量为: 600*0.5+400*0.2+750*0.3=695
德尔菲法
德尔菲法,又名专家意见法,是依据系统的程序,采用 匿名发表意见的方式,即团队成员之间不得互相讨论,不发 生横向联系,只能与调查人员发生关系,以反覆的填写问卷, 以集结问卷填写人的共识及搜集各方意见,可用来构造团队沟 通流程,应对复杂任务难题的管理技术。 德尔菲法是在20世纪 40年代由O.赫尔姆和N.达尔克首创,经过T.J.戈尔登和兰德 公司进一步发展而成的。德尔菲这一名称起源于古希腊有关太阳神阿 波罗的神话。传说中阿波罗具有预见未来的能力。因此,这种预测方 法被命名为德尔菲法。1946年,兰德公司为避免集体讨论存在的屈 从于权威或盲目服从多数的缺陷,首次用这种方法用来进行定性预测, 采用匿名发表意见的方式,即专家之间不得互用这种方法用来进行预 测,20世纪中期,当美国政府执意发动朝鲜战争的时候,兰德公司 又提交了一份预测报告,预告这场战争必败。政府完全没有采纳,结 果一败涂地,从此以后该方法被迅速广泛的采用。 德尔菲是古希腊地名。相传太阳神阿波罗(Apollo)在德尔菲杀死了一 条巨蟒,成了德尔菲主人。在德尔菲有座阿波罗神殿,是一个预卜未 来的神谕之地,于是人们就借用此名,作为这种方法的名字。 德尔 菲法最初产生于科技领域,后来逐渐被应用于任何领域的预测,如军 事预测、人口预测、医疗保健预测、经营和需求预测、教育预测等。 此外,还用来进行评价、决策、管理沟通和规划工作。
层次分析法

C1 布拉 德皮特
C2 休格 兰特
C3 凯文科 斯特纳
C1 布拉 德皮特 0.59
0.29
0.12
C2 休格 兰特 0.57
0.29
0.14
C3 凯文科 斯特纳 0.63
0.25
0.13
各列 之和
C1 布拉 德皮特
C2 休格 兰特
C3 凯文科 斯特纳
1.78 0.83 0.39
C1 布拉 德皮特
C2 休格 兰特
λ
1.29
3.00
0.43
1.29
3.00
9.00
3.00
0.14
0.43
3.00
9.00
3.00
特征 向量WB5
0.17
B5*W (B5*W)/W ∑((B5*W)/W)
λ
0.50
3.00
0.17
0.50
3.00
9.00
3.00
0.67
2.00
3.00
:层次总排序 案层在各准则下的特征向量合为特征矩阵C
第六步:一致性检验
1、CI一致性检验指标:CI=(λ -n)/(n-1), CI越大,判断矩阵的不一致性越严重。
相貌堂堂 0.59 0.28 0.13
生活情趣 志趣相投 心胸宽广 学识渊博
0.63
0.08
0.43
0.17
0.19
0.24
0.43
0.17
0.17
0.68
0.14
0.67
CI=
0.018
A5 学识 渊博
A1 相貌 堂堂
A2 生活 情趣
A3 志趣 相投
A4 心胸 宽广
A5 学识 渊博
(完整版)层次分析法的计算步骤

(完整版)层次分析法的计算步骤8.3.2 层次分析法的计算步骤⼀、建⽴层次结构模型运⽤AHP进⾏系统分析,⾸先要将所包含的因素分组,每⼀组作为⼀个层次,把问题条理化、层次化,构造层次分析的结构模型。
这些层次⼤体上可分为3类1、最⾼层:在这⼀层次中只有⼀个元素,⼀般是分析问题的预定⽬标或理想结果,因此⼜称⽬标层;2、中间层:这⼀层次包括了为实现⽬标所涉及的中间环节,它可由若⼲个层次组成,包括所需要考虑的准则,⼦准则,因此⼜称为准则层;3、最底层:表⽰为实现⽬标可供选择的各种措施、决策、⽅案等,因此⼜称为措施层或⽅案层。
层次分析结构中各项称为此结构模型中的元素,这⾥要注意,层次之间的⽀配关系不⼀定是完全的,即可以有元素(⾮底层元素)并不⽀配下⼀层次的所有元素⽽只⽀配其中部分元素。
这种⾃上⽽下的⽀配关系所形成的层次结构,我们称之为递阶层次结构。
递阶层次结构中的层次数与问题的复杂程度及分析的详尽程度有关,⼀般可不受限制。
为了避免由于⽀配的元素过多⽽给两两⽐较判断带来困难,每层次中各元素所⽀配的元素⼀般地不要超过9个,若多于9个时,可将该层次再划分为若⼲⼦层。
例如,⼤学毕业的选择问题,毕业⽣需要从收⼊、社会地位及发展机会⽅⾯考虑是否留校⼯作、读研究⽣、到某公司或当公务员,这些关系可以将其划分为如图8.1所⽰的层次结构模型。
图8.1再如,国家综合实⼒⽐较的层次结构模型如图6 .2:图6 .2图中,最⾼层表⽰解决问题的⽬的,即应⽤AHP所要达到的⽬标;中间层表⽰采⽤某种措施和政策来实现预定⽬标所涉及的中间环节,⼀般⼜分为策略层、约束层、准则层等;最低层表⽰解决问题的措施或政策(即⽅案)。
然后,⽤连线表明上⼀层因素与下⼀层的联系。
如果某个因素与下⼀层所有因素均有联系,那么称这个因素与下⼀层存在完全层次关系。
有时存在不完全层次关系,即某个因素只与下⼀层次的部分因素有联系。
层次之间可以建⽴⼦层次。
⼦层次从属于主层次的某个因素。
层次分析法解题过程

根据组合权向量 进行方案…
根据问题的性质和目标, 将问题分解为不同的组成 因素,并根据因素间的相 互关联影响以及隶属关系 将因素按不同的层次聚集 组合,形成一个多层次的 分析结构模型。
对同一层次的各元素关于 上一层次中某一准则的重 要性进行两两比较,构造 两两比较判断矩阵。
通过判断矩阵计算被比较 元素的相对权重,并对判 断矩阵进行一致性检验。
层次分析法解题过程
目录
Contents
• 层次分析法简介 • 建立层次结构 • 构造判断矩阵 • 层次单排序 • 层次总排序 • 层次分析法应用案例
01
层次分析法简介
定义与特点
定义
层次分析法(Analytic Hierarchy Process,AHP)是一种定性与定量相结合的多准则决策 分析方法,主要用于解决结构较为复杂、决策准则较多且不易量化的决策问题。
层次的分析结构模型。
根据专家意见或用户需求, 对同一层次中各因素的相对 重要性进行两两比较,并给 出判断值,形成判断矩阵。
通过一定的计算方法(如特 征根法、和积法等)计算出 判断矩阵的最大特征值对应 的特征向量,即为权向量。
为了确保判断矩阵的一致性,需要进 行一致性检验。通过计算一致性指标 CI和随机一致性指标RI,可以得出一 致性比率CR=CI/RI。如果CR小于0.1, 则认为判断矩阵的一致性可以接受;
定义与特点
所需定量数据信息较少
层次分析法在解决问题时,不需要大量的定量数据信息,只需要对决策因素进 行两两比较和排序即可。
强调决策者的判断和决策能力
层次分析法在解决问题时,需要决策者对决策因素进行两两比较和排序,因此 需要决策者具备一定的判断和决策能力。
应用领域