达朗伯原理和动静法

合集下载

达朗贝尔原理动静法课件

达朗贝尔原理动静法课件
静力学分析
动力学分析
振动分析
通过动静法的应用,可以将动力学问题转化为静态问题,例如求物体的加速度、速度等。
动静法也可以用于研究物体的振动问题,例如求物体的固有频率、振型等。
03
02
01
03
达朗贝尔原理在动静法中的应用
总结词:达朗贝尔原理在动力学中用于描述物体运动规律,特别是对于复杂系统或非线性系统的运动分析。
达朗贝尔原理动静法课件
目录
contents
达朗贝尔原理概述动静法的基本概念达朗贝尔原理在动静法中的应用动静法的实际应用案例动静法的优缺点及未来发展
01
达朗贝尔原理概述
达朗贝尔原理是经典力学中的一个基本原理,它指出一个完整的保守系统在平衡点附近的小振动可以用线性弹簧模型来描述。
达朗贝尔原理具有普适性,适用于各种保守系统,如单摆、弹簧振荡器等。它提供了一种将复杂的非线性振动问题简化为线性问题的有效方法。
详细描述
建筑结构的动静法分析包括对建筑物在地震、风载、雪载等动态载荷和静载荷作用下的响应进行分析。通过模拟和分析建筑物的动力和静力行为,可以评估建筑物的安全性和稳定性,并预测其在各种载荷下的性能。这对于建筑物的设计和维护具有重要的意义。
VS
机械设备的动静法分析利用达朗贝尔原理对机械设备进行动力学和静力学的分析,以确保机械设备的正常运行和安全性。
结合虚拟现实技术
利用人工智能技术,为学生提供个性化的学习指点和反馈。
智能化辅助教学
将动静法应用于其他学科,如化学、生物等,促进跨学科的学习和整合。
跨学科整合
随着教育理念和技术的不断更新,动静法也需要不断改进和完善,以适应时代发展的需求。
持续改进教学方法
THANKS

理论力学 第10章 达朗贝尔原理(动静法)

理论力学 第10章  达朗贝尔原理(动静法)

RAn mgsin0
,
RA

mg 4
c
os0
22
[例2] 牵引车的主动轮质量为m,半径为R,沿水平直线轨道
滚动,设车轮所受的主动力可简化为作用于质心的两个力S 、T 及驱动力偶矩M,车轮对于通过质心C并垂直于轮盘的轴的回
转半径为,轮与轨道间摩擦系数为f , 试求在车轮滚动而不滑
动的条件下,驱动力偶矩M 之最大值。
27
[例1] 质量为m1和m2的两重物,分别挂在两条绳子上,绳又分 别绕在半径为r1和r2并装在同一轴的两鼓轮上,已知两鼓轮对于 转轴O的转动惯量为J,系统在重力作用下发生运动,求鼓轮的 角加速度。
解: 方法1 用达朗贝尔原理求解 取系统为研究对象
28
虚加惯性力和惯性力偶:
RQ1 m1a1 , RQ2 m2a2 , MQO JO J
[例1] 均质杆长l ,质量m, 与水平面铰接, 杆由与平面成0角位
置静止落下。求开始落下时杆AB的角加速度及A点支座反力。
解: 选杆AB为研究对象
虚加惯性力系:

RQ

ml
2
RQn
man
0
,
M QA
J A

ml 2
3
根据动静法,有
20
F 0 , RA mgcos0 RQ 0 (1)
Fi Ni Qi 0 mO (Fi )mO (Ni )mO (Qi )0
注意到 Fi(i) 0 , mO (Fi(i) )0 , 将质点系受力按内力、外力
划分, 则
Fi(e) Qi 0 mO (Fi(e) )mO (Qi )0
8
表明:对整个质点系来说,动静法给出的平衡方程,只 是质点系的惯性力系与其外力的平衡,而与内力无关。

理论力学第十四章 达朗贝尔原理与动静法 教学PPT

理论力学第十四章 达朗贝尔原理与动静法 教学PPT
Fi Ni Qi 0
mO (Fi ) mO (Ni ) mO (Qi ) 0
质点系达朗贝尔原理
Fi Ni Qi 0 mO (Fi ) mO (Ni ) mO (Qi ) 0
上式表明,在任意瞬时,作用于质点系的主动力、约束力和该点 的惯性力所构成力系的主矢等于零,该力系对任一点O的主矩也等于 零。
达朗贝尔原理一方面广泛应用于刚体动力学求解 动约束力;另一方面又普遍应用于弹性杆件求解 动应力。
工程实例
工程实例
爆破时烟囱怎样倒塌
工程实例
爆破时烟囱怎样倒塌
达郎贝尔原理
质点达朗贝尔原理
设质量为m的非自由质点M,在主动 力F和约束力N作用下沿曲线运动,
该质点的动力学基本方程为
N B
ma F N
考虑到式上式中的求和可以对质点系中任何一部分进行,而不限于 对整个质点系,因此,该式并不表示仅有6个平衡方程,而是共有3n个 独立的平衡方程。同时注意,在求和过程中所有内力都将自动消去。
达朗贝尔原理提供了按静力学平衡方程的形式给出质点系动力学 方程的方法,这种方法称为动静法。这些方程也称为动态平衡方程。
这表明,在质点系运动的任一瞬时,作用于每一质 点上的主动力、约束力和该质点的惯性力在形式上构成一 平衡力系。
这就是质点系的达朗贝尔原理。
质点系达朗贝尔原理
Fi Ni Qi 0
对于所讨论的质点系,有n个形式如上式的平衡方程, 即有n个形式上的平衡力系。将其中任何几个平衡力系合在 一起,所构成的任意力系仍然是平衡力系。根据静力学中 空间任意力系的平衡条件,有
Mac Mrc Macn Mrc 2
显然,当质心C在转轴上时,刚 体的惯性力主矢必为零。
z
RQn

达朗贝尔原理

达朗贝尔原理

aA l1
O
1
2
A C B
aA
由加速度基点法有
A
aCA 2
B C
aC aA aCA
aA
aA aC
1 aC l1 l 2 2
(2) 取AB 杆为研究对象
FgR2
Mg2
2
B
A
9g 1 , 7l
FgR 2
3g 2 7l
FAx
l 1 m(l1 2 ) M g 2 ml 2 2 2 12
研究整体
F
解得
x
0
F Fs m1 m2 a 0
3 F m1 m2 3 g 2 3 Fs m1 g F 2
M IA
A
FN
Fs f s FN f s m1 m2 g
解得
Fs 3m1 fs FN 2m1 m2
D m2 g

mr 2 mgr (3 4 ) 3
n gR 2
2
FgR 2mr , F 2mr , M gO
7 2 mr 3
(2)将惯性力系向质心C简化,其 主矢主矩分别为: F ma 2mr
gR C
MA
FAy
MgC
F ma 2mr
n gR n C
2
mg
例题
已知:两均质且长度为l直杆 自水平位置无初速地释放。 求: 两杆的角加速度和 O、A处的约束反力。 解: (1) 取系统为研究对象
FOx
O
A
B
FgR1
FgR2
Mg1
1
Mg2
2
B
A O
mg

13第十三章-达朗贝尔原理(动静法)解析

13第十三章-达朗贝尔原理(动静法)解析
常见的刚体运动有平动、定轴转动和平面运动。
13
一、刚体作平动
刚体内各点的加速度都与质心C的加速度 aC相等,任一
质点的惯性力 FIi mi aC ,组成一同向的平行力系。
这个惯性力系简化为通过质心C的合力:
FIR FIi miaC ( mi )aC FIR mac
FI1 aC
FI2
附加动约束力); 2 推出消除附加动约束力的条件。
定轴转动刚体,角速度 ,角加速度 。
坐标系oxyz如图示,o点为转轴上的一点。
取简化中心:转轴上一点O。
z
所有主动力向O点简化的结果: 主矢:FR 主矩:M O
A FAx
惯性力系向O点简化的结果:
主矢:FIR
主矩:M IO
MO O
惯性力没有Z方向的分量(Z方向无加
第九章 质点动力学的基本方程 第十章 动量定理 第十一章 动量矩定理 第十二章 动能定理 ★ 第十三章 达朗贝尔原理 第十四章 虚位移原理
本章介绍动力学的一个重要原理——达朗贝尔原 理。应用这一原理,就将动力学问题从形式上转化 为静力学问题,从而根据关于平衡的理论来求解。 这种用静力学解答动力学问题的方法,也称为动静 法。
FOx
(m1 m2 )g (m1 m2 )a
FIB
B
a 在本题中不计滑轮的质量,如果要
考虑滑轮的质量,则如何计算?
A
a
m2g
m1g
加上滑轮的惯性力和重力。
FIA
§13-3 刚体惯性力系的简化
应用达朗贝尔原理求解质点系动力学问题必须给各质点虚 加上它的惯性力。对于运动的刚体每个质点加上它的惯性力, 这些惯性力组成一惯性力系。因为刚体有无限个质点,在每个 质点上加惯性力是不可能的,为了应用方便,按照静力学中力 系的简化方法将刚体的惯性力系加以简化,这样在解题时就可 以直接施加其简化结果,使动静法切实可行。

理论力学第十四章达朗贝尔原理(动静法)课件

理论力学第十四章达朗贝尔原理(动静法)课件

动静法的物理意义
物理背景
实际应用
达朗贝尔原理反映了牛顿第二定律在 静力学中的应用,通过引入惯性力, 将动力学因素考虑到平衡问题中。
在工程实际中,达朗贝尔原理广泛应 用于分析高速旋转的机械、振动系统 以及瞬态动力学问题。
意义阐述
通过动静法,我们可以分析在某一瞬 时,运动系统由于惯性作用而产生的 力,从而更准确地描述系统的平衡条 件。
03
在应用动静法时,要确 保惯性力与主动力相平 衡,避免出现误差。
04
在求解方程时,要注意 解的物理意义和实际情 况是否相符。
04
CATALOGUE
达朗贝尔原理的应用实例
简单实例解析
总结词
通过一个简单的实例,介绍达朗 贝尔原理的基本应用。
详细描述
以一个单摆为例,运用达朗贝尔 原理分析其运动状态,通过对比 理论计算和实验结果,验证达朗 贝尔原理的正确性。
具体推导过程
在受力分析的基础上,列出系统的平 衡方程。
解出未知数,得到系统的运动状态。
将动静法应用于平衡方程,将惯性力 与主动力相平衡。具体来说,就是在 平衡方程中加入惯性力项,使得该力 与主动力相平衡。
推导过程中的注意事项
01
确定研究对象和系统时 要明确,避免出现混淆 。
02
在建立平衡方程时,要 确保所有力的方向和大 小都正确。
理论力学第十四章 达朗贝尔原理(动静 法)课件
contents
目录
• 达朗贝尔原理概述 • 达朗贝尔原理的基本概念 • 达朗贝尔原理的推导过程 • 达朗贝尔原理的应用实例 • 达朗贝尔原理的扩展与深化
01
CATALOGUE
达朗贝尔原理概述
达朗贝尔原理的定义

知识资料理论力学(十四)(新版)(1)

知识资料理论力学(十四)(新版)(1)

五、达朗伯原理达朗伯原理是一种解决非自由质点系动力知识题的普遍主意。

这种主意将质点系的惯性力虚加在质点系上,使动力知识题可以应用静力学写平衡方程的主意来求解,故称为动静法,动静法在工程技术中得到广泛的应用。

(一)惯性力当质点受到其他物体的作用而改变其本来运动状态时,因为质点的惯性产生对施力物体的反作使劲,称为质点的惯性力。

惯性力的大小等于质点的质量与其加速度的乘积,方向与加速度的方向相反,并作用在施力物体上。

惯性力的表达式为(二)达朗伯原理在非自由质点M运动中的每一瞬时,作用于质点的主动力F、约束反力N和该质点的惯性力FI构成一假想的平衡力系。

这就是质点达朗伯原理,其表达式为在非自由质点系运动中的每一瞬时,作用于质点系内每一质点的主动力Fi、约束反力N,和该质点的惯性力FiI构成一假想的平衡力系。

这就是质点系达朗伯原理。

即(三)刚体运动时惯性力系的简化对刚体动力知识题,可以将刚体上每个质点惯性力组成惯性力系,使劲系简化的主意,得出简化结果。

这些简化结果与刚体的运动形式有关。

详细结果见表4-3-9。

(四)动静法按照达朗伯原理,在质点或质点系所受的主动力、约束反力以外,假想地加上惯性力或惯第1 页/共7 页性力系的简化结果,则可用静力学建立平衡方程的主意求解动力知识题,这种求解动力知识题的主意称为动静法。

必须指出,动静法只是解决动力知识题的一种主意,它并不改变动力知识题的性质,因为惯性力并不作用在质点或质点系上,质点或质点系也不处于平衡状态。

动静法中“平衡”只是形式上的平衡,并没有实际意义。

应用动静法列出的平衡方程,实质上就是运动微分方程。

(五)例题[例4—3—13] 长方形匀质薄板重W,以两根等长的软绳支持如图4—3—37所示。

设薄板在图示位无初速地开始运动,图中α=30°。

求此时绳子中的拉力。

[解](1)对象以平板的为研究对象。

(2)受力分析运动开始时板受重力w、软绳约束反力T1、T2。

第十四章 达朗贝尔原理(动静法)

第十四章 达朗贝尔原理(动静法)

第一节 质点的达朗贝尔原理
设一质点质量为m, 加速度为a, 作用于质点的主动力为F, 约束 反力为FN 。由牛顿第二定律,有
ma F FN
将上式改写成
FI m F a
F FN ma 0

FI ma
FN
FI具有力的量纲, 且与质点的质量有关,称其为质点的惯性力。它 的大小等于质点的质量与加速度的乘积, 方向与质点加速度的方向 相反。
w
A
an (x sin q )w 2
微元段的质量dm=Pdζ/gl。在该微元 段虚加惯性力dFI, 它的大小为
q
an B FAy FAx A
dFI
Pw 2 dFI d m an sin q x d x gl
于是整个杆的惯性力的合力的大小为
x
q
P
Pw 2 P 2 FI sin q x d x lw sin q 0 gl 2g
(i 1, 2, , n)
即:质点系中每个质点上作用的主动力、约束力和它的惯性力在 形式上组成平衡力系。这就是质点系的达朗贝尔原理。
第二节 质点系的达朗贝尔原理
把作用在第i个质点上的所有力分为外力的合力为Fi , 内力的
(e)
合力为Fi ,则有
(i)
(e) (i) F i F i FI i 0
第二节
质点系的达朗贝尔原理
例4 重P长l的等截面均质细杆AB, 其A端铰接于铅直轴AC上, 并以
匀角速度w 绕该轴转动, 如图。求角速度w 与角q 的关系。
y C
w
A
q
an B
dFI
x
第二节
质点系的达朗贝尔原理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

● 主矩 M *=0
刚体平移时,惯性力系简化为通过刚体质心的合力。
第五章 达朗贝尔原理
§ 5-2 惯性力系的简化
刚体做定轴转动
2. 刚体做定轴转动
具有质量对称平面的刚体绕垂直于对称平面的固定轴转动。
设刚体绕固定轴Oz转动,在任意瞬 时的角速度为ω,角加速度为α。
● 主矢 F *= (-miai ) =-maC
第五章 达朗贝尔原理
第五章 达朗贝尔原理
工程实际问题
第五章 达朗贝尔原理
第五章 达朗贝尔原理
车底盘距路面的高度为什么不同?
第五章 达朗贝尔原理
§ 5-1 达朗贝尔原理
质点达朗贝尔原理 质点系达朗贝尔原理
第五章 达朗贝尔原理
§ 5-2 达朗贝尔原理
一、质点达朗伯原理
设质量为m的非自由质点M,在主
的达朗伯原理。
第五章 达朗贝尔原理
§ 5-2 达朗贝尔原理 质点达朗贝尔原理
质点达朗贝尔原理
F FN F* 0
质点达朗贝尔原理的投影形式
Fx FNx Fx* 0 Fy FNy Fy* 0 Fz FNz Fz* 0
第五章 达朗贝尔原理
§ 5-2 达朗贝尔原理
二、质点系达朗贝尔原理 上述质点的达朗贝尔原理可以直接推广到质点系。将
不限于对整个质点系,因此,该式并不表示仅有6个平衡方程,
而是共有3n个独立的平衡方程。同时注意,在求和过程中所
有内力都将自动消去。
达朗伯原理提供了按静力学平衡方程的形式给出质点系动 力学方程的方法,这种方法称为动静法。这些方程也称为动态 平衡方程。
第五章 达朗贝尔原理
§ 5-2 惯性力系的简化
惯性力系的简化 刚体常见运动情况下
对于所讨论的质点系,有n个形式如上式的平衡方程, 即有n个形式上的平衡力系。将其中任何几个平衡力系合在 一起,所构成的任意力系仍然是平衡力系。根据静力学中 空间任意力系的平衡条件,有
Fi FNi Fi* 0 MO (Fi ) MO (FNi ) MO (Fi* ) 0
第五章 达朗贝尔原理
§ 5-2 达朗贝尔原理 质点系达朗贝尔原理
Fi FNi Fi* 0
MO (Fi ) MO (FNi ) MO (Fi* ) 0
上式表明,在任意瞬时,作用于质点系的主动力、约束
力和该点的惯性力所构成力系的主矢等于零,该力系对任一 点O的主矩也等于零。
考虑到上式中的求和可以对质点系中任何一部分进行,而
达朗贝尔原理应用于每个质点,得到n个矢量平衡方程。
Fi FNi Fi* 0
这表明,在质点系运动的任一瞬时,作用于每一质 点上的主动力、约束力和该质点的惯性力在形式上构成一 平衡力系。
这就是质点系的达朗贝尔原理。
第五章 达朗贝尔原理
§ 5-2 达朗贝尔原理 质点系达朗贝尔原理
Fi FNi Fi* 0
惯性力的主矢和主矩
第五章 达朗贝尔原理
§ 5-2 惯性力系的简化
一、 惯性力系的简化
对于作任意运动的质点系,把实际所受的力和虚加惯性 力各自向任意点O简化后所得的主矢、主矩分别记作F,MO
和F* ,M*O ,于是,由力系平衡条件,可得
F F* 0
1.惯性力系的主矢
MO
M
* O
0
由质心运动定理有 F = maC ,得 F* maC
惯性力系的主矩与刚体的运动形式有关。
第五章 达朗贝尔原理
§ 5-2 惯性力系的简化
二、刚体常见运动情况下惯性力的主矢和主矩 1. 刚体作平动 刚体平移时,惯性力系向质心简化
● 主矢
F*2
m2 F*1
m1 a2
a1
F *= (-miai )
F* M aC F*n mn an
= (-miaC )=-maC
M
* C
dLC dt
以及它在通过质心C的某一平动轴 Cz上的投影表达式
M
* z
dLz dt
上式表明:质点系的惯性力对质心(或通过质心的平动轴) 的主矩,等于质点系对质心(或该轴)的动量矩对时间的导数, 并冠以负号。
第五章 达朗贝尔原理
§ 5-2 惯性力系的简化 惯性力系的主矩
注意
惯性力系的主矢与刚体的运动形式无关。
动力学
达朗贝尔原理
西北工业大学 支希哲 朱西平 侯美丽
第五章 达朗贝尔原理
达朗贝尔原理
达朗贝尔原理提供了研究动力学问题的一 个新的普遍方法,即用静力学中研究平衡问 题的方法来研究动力学问题,因此又称为动 静法。
第五章 达朗贝尔原理
动力学



§5– 1 达朗贝尔原理

§5–2 惯性力系的简化


* z
dLz dt
上式表明:质点系的惯性力对于任一固定点(或固定轴)
的主矩,等于质点系对于该点(或该轴)的动量矩对时间的导 数,并冠以负号。
第五章 达朗贝尔原理
§ 5-2 惯性力系的简化 惯性力系的主矩
● 对质心点
利用相对于质心的动量矩定理,可以得到质点系的惯性力
对质心C的主矩表达式
● 对质心轴
FN
动力F和约束力FN作用下沿曲线运动,
B
该质点的动力学基本方程为
F* M
ma a
ma F FN

AF
F FN (ma) 0
引入质点的惯性力F* =-ma 这一概念,于是上式可改写成
F FN F* 0
上式表明,在质点运动的每一瞬时,作用于质点的主动力、
约束力和质点的惯性力在形式上构成一平衡力系。这就是质点
aC aCt aCn
设质心C的转动半径为rC,则 Ft*
和 Fn* 的大小可分别表示为
x
F * Ft* Fn*
Ft* maCt ; Fn* maCn ;
z
Fn*
即,质点系惯性力的主矢恒等于质点系总质量与质心加速度 的乘积,而取相反方向。
第五章 达朗贝尔原理
§ 5-2 惯性力系的简化
2.惯性力系的主矩
● 对任意固定点
由对任意固定点O的动量矩定理有
MO
d LO dt

代入
MO
M
* O
0

M
* O
d LO dt
● 对固定轴
现将上式两端投影到任一固定轴Oz上,
M

§5–3 动静法应用举例


第五章 达朗贝尔原理Fra bibliotek目录第五章 达朗贝尔原理
引言
达朗贝尔原理为解决非自由质点系的动力学问题提供了 有别于动力学普遍定理的另外一类方法。
引进惯性力的概念,将动力学系统的二阶运动量表示为惯 性力,进而应用静力学方法研究动力学问题 —— 达朗贝 尔原理。
达朗贝尔原理一方面广泛应用于刚体动力学求解动约束 力;另一方面又普遍应用于弹性杆件求解动应力。
相关文档
最新文档