最新大学物理(简谐振动篇)
大学物理 简谐振动

x A cos( t )
k — 系统属性 m
2
等 价 判 别 式
运动方程
A、 :积分常数 — 初始条件
注
a. x — 平衡位置 量度
b. k、 — 固有性质 与初始条件无关 c. A、 — 初始条件 与固有性质无关
x A cos( t )
dx v A sin(t ) dt vm
A
v
a
v t 图
T
π A cos( t ) 2
a A 2 cos(t )
2
o
A
a t图
T
A 2
A cos(t π ) A 2
o
t
二.简谐运动的运动学描述
1.振幅 A
2.周期与频率 最大位移 A xmax 表征能量
x A cos( t ) A cos[ (t T ) ] A cos( t 2 )
A
Ax
o
v A sin t
A 2
0.26m s
1
(负号表示速度沿 Ox 轴负方向)
(3)如果物体在 x 0.05 m 处时速度不等于零, 1 而是具有向右的初速度 v0 0.30m s ,求其运动方程 . 解 A'
0 ,由旋转矢量图可知 ' π 4 π x A cos(t ) 0.0707 cos( 6.0t )
o
A
x
0 x A cos(t ) 0.05 cos 6.0t m
由旋转矢量图可知
A (2)求物体从初位置运动到第一次经过 处时的 2 速度;
解
x A cos(t ) A cos(t )
大学物理(简谐振动篇)ppt课件

波动方程验证性实验设计思路分享
实验目的通过观察Βιβλιοθήκη 测量波动现象,验证波动方程的正确性。
实验原理
利用波动方程描述波的传播规律,通过实验数据验证理论预测。
波动方程验证性实验设计思路分享
实验设计思路
选择合适的波动源和测量仪器,如振动台、激光 干涉仪等。
01
实验步骤
02
搭建实验装置,包括弹簧、振子、测量仪器等。
调整实验参数,如弹簧劲度系数、振子质量等,以获得不同条
03
件下的振动数据。
弹簧振子实验设计思路分享
使用测量仪器记录振动的位移、速度 、加速度等数据。
对实验数据进行处理和分析,提取简 谐振动的基本特征。
单摆实验数据处理技巧指导
实验目的
通过观察和测量单摆的运动,研究简谐振动的基本规律。
波动传播速度
波动在介质中传播的速度称为波动传播速度。对于简谐振动 形成的机械波而言,波动传播速度与介质的性质有关,如弹 性模量、密度等。同时,波动传播速度还与振动的频率有关 ,频率越高则波动传播速度越快。
02
简谐振动的动力学特征
回复力与加速度关系
回复力定义
指向平衡位置的力,大小与位移成正比,方 向始终指向平衡位置。
1 研究非线性振动现象
通过设计和实施非线性振动实验,探索非线性振动的基 本规律和特性,如混沌现象、分岔行为等。
2 探究复杂系统中的振动传播
研究复杂网络中振动传播的动力学行为,揭示网络结构 对振动传播的影响机制。
3 开发新型振动传感器件
结合微纳加工技术和振动理论,设计并制作具有高灵敏 度、高分辨率的振动传感器件,应用于精密测量和工程 领域。
大学物理简谐振动

A2
A
A2 sin 2
2 -1
2
O
1 A1 x2
A1 sin 1
x2 x
x1x1
x2
x
A1 cos1 A2 cos2
合振动振幅:A A12 A22 2A1A2 cos(2 1)
1. 两个分振动的相位相同(同相)
5 (或 3 )
4
4
第六章
机械波
mechanical wave
6.1 机械波的产生、传播和描述 波动: 振动在空间中的传播过程.
机械波: 机械振动在弹性介质中的传播过程. 波动
电磁波: 交变电磁场在空间中的传播过程. 6.1.1 机械波的产生
当弹性介质中的一部分发生振动时,由于介质各个 部分之间的弹性力作用,振动就由近及远地传播出去. (1) 机械波实质上是介质中大量质点参与的集体振动;
20 0.47
(2) 30为何值时, x1+x3 的振幅为最大; 30为何值时, x2+x3的振幅为最小.
x1 0.05cos10t 3 4
x2 0.06cos10t 4
x3 0.07 cos10t 30
30
10
0 时,x1+x3 振幅最大:30
10
3
4
30 20 时,x2+x3 振幅最小:30 20
t 时刻点 P 的振动状态
P点在
t
时刻的位移
y P ,t
yO ,t x
u
A c os [ (t
x) u
0 ]
波函数 (波方程)
y( x, t )
A cos[ (t
大学物理简谐运动课件

05
简谐运动的应用领域
物理学领域的应用
振动与波动实验
01
简谐运动是振动的基本形式之一,在物理学实验中常被用来研
究振动和波动现象,如共振、干涉和衍射等。
弦的振动
02
弦的振动是一种常见的简谐运动,在研究弦乐器的发声机制、
弦振动方程等方面有重要应用。
电磁波的发射与接收
03
在无线电通信和雷达技术中,信号的发射和接收都涉及到电磁
详细描述
简谐运动的位移公式为x=A*sin(ωt+φ),其中A为振幅,ω为角频率,t为时间,φ为初相角。该公式用于描述简 谐运动物体在任意时刻的位置变化。
简谐运动的速率公式
总结词
描述简谐运动物体速度大小的公式
详细描述
简谐运动的速率公式为v=A*ω*cos(ωt+φ),其中A为振幅,ω为角频率,t为时间,φ为初相角。该公 式用于描述简谐运动物体在任意时刻的速度大小。
简谐运动的加速度公式
总结词
描述简谐运动物体加速度大小的公式
详细描述
简谐运动的加速度公式为a=A*ω^2*sin(ωt+φ),其中A为振幅, ω为角频率,t为时间,φ为初相角。 该公式用于描述简谐运动物体在任意 时刻的加速度大小。
简谐运动的能量定理
总结词
描述简谐运动物体能量变化的定理
详细描述
简谐运动的能量定理指出,一个做简谐运动的物体,其振动能量E与振幅A的平方成正 比,即E=1/2*k*A^2,其中k为弹簧的劲度系数。该定理用于描述简谐运动物体能量的
受迫振动与共振
受迫振动的定义
受迫振动是指振动物体受到周期性外力作用下的振动,其振动频率与外力频率相同或相近 。
共振的原理
大学物理 第9章 简谐振动

9.2 简谐振动的规律 9.3 简谐振动的合成
9.1 简谐振动的定义
9.1.1 弹簧振子的振动
9.1.2 简谐振动的定义
9.1.3 单摆的运动规律
9.1.4 LC振荡回路中电容器 上电量的变化规律
振动是与人类生活和科学技术密切相关的一种 基本运动形式。
广义的振动 一物理量在某一定值附近周期性变化的现象称振动。
下面我们重点对合振动的振幅进行讨论
A A1 A2 2 A1 A2 cos( 2 1 )
2 2
t 2 t 1 2 1
讨论:两种特殊情况
(1) 21=2k (k=0,1,2,…) 两分振动同相
A A1 A 2
o
考虑方向 F mg 简谐振动!
mg
0
F ma mg
t 0
l
又 a
l d
2
dv dt
l
d
2
dt
2
T
F
O
dt
2
g
即
d 2 g 0 2 l dt
d (v l ) dt
mg
g l
2 T 2
2
x
A x A y cos t
2 2
(2)相位差 y x ,轨迹方程为
x Ax y Ay 0
x
2 2
y
2 2
2
xy Ax Ay
cos(
Ax
Ay
y
x ) sin (
2
y
大学物理简谐振动知识点及试题带答案

简谐振动一、基本要求1、掌握简谐振动的定义,描述简谐振动的各物理量及其相互关系,会根据定义来判断一各物体的运动是不是简谐振动。
2、掌握简谐振动的旋转矢量表示法。
3、掌握简谐振动的基本特征,能根据一定的初始条件写出简谐振动的运动方程。
4、掌握同方向频率的两个简谐振动的合成,了解相互垂直同频率的简谐振动的合成。
二、主要内容1、简谐振动的表达式(运动方程) cos()x A t ωϕ=+三个特征量:振幅A ,决定与振动的能量;角频率ω,决定于振动系统的固有属性; 初相位ϕ,决定于振动系统初始时刻的状态。
简谐运动可以用旋转矢量来表示。
2、振动的相位:()t ωϕ+两个振动的相差:同相2k ϕπ∆=,反相(21)k ϕπ∆=+3、简谐振动的运动微粉方程:2220d x x dtω+=4、简谐振动的实例弹簧振子:220,2d x k x T dt m π+==单摆小角度振动:220,2d g T dt l θθ+==LC振荡:2210,2d q q T dt LCπ+== 5、简谐振动的能量:222111()222k P dx E E E m kx kA dt =+=+= 6、两个简谐振动的能量(1)同方向同频率的简谐振动的合成合振动是简谐振动,合振动的振幅和初相位由下式决定A =11221122sin sin tan cos cos A A A A ϕϕϕϕϕ+=+(2)相互垂直的两个同频率的简谐振动的合成合运动的轨迹一般为椭圆,其具体形状决定于两个分振动的相差和振幅。
当2k ϕπ∆=或(21)k π+时,合运动的轨迹为直线,这时质点在做简谐振动。
三、习题与解答1、两个质点各自作简谐振动,它们的振幅相同、周期相同。
第一个质点的振动方程为)cos(1ϕω+=t A x 。
某时刻当第一个质点正在平衡位置向负方向运动时,第二个质点正在最大位移处。
则第二个质点的振动方程为:( B )(A ))2cos(2πϕω++=t A x (B ))2cos(2πϕω-+=t A x(C ))23cos(2πϕω-+=t A x (D ))cos(2πϕω++=t A x 2、一物体做简谐振动,振幅为A ,在起始时刻质点的位移为2A-且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为:( D )3、一质点作简谐振动,振动方程)cos(ϕω+=t A x ,当时间 t =T/4 时,质点的速度为:( C )(A ) ϕωsin A - (B) ϕωsin A (C )ϕωcos A - (D )ϕωcos A4、一质点作谐振动,周期为T ,当它由平衡位置向 x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为( A )(A )T /6(B )T /12 (C)T /4 (D )T /85、有两个沿x 轴做简谐运动的质点,其频率、振幅皆相同,当第一个质点自平衡位置向负方向运动时,第二个质点在处(A 为振幅)也向负方向运动,则两者的相位差(12ϕϕ-)为:( C )2Ax -=(A )2π (B )32π (C )6π (D )65π6、质量为10×10-3 kg 的小球与轻弹簧组成的系统,按20.1cos(8)3x t ππ=+(SI)的规律做谐振动,求:(1)振动的周期、振幅、初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)t 2=5 s 与t 1=1 s 两个时刻的位相差. 解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A 又 πω8.0==A v m 1s m -⋅ 51.2=1s m -⋅2.632==A a m ω2s m -⋅(2) N 63.0==ma F mJ 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=, 即)21(212122kA kx ⋅= ∴ m 20222±=±=A x (3) ππωφ32)15(8)(12=-=-=∆t t7、一个沿x 轴做简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表出.如果t =0时质点的状态分别是:(1)x 0=-A ;(2)过平衡位置向正向运动;(3)过2Ax =处向负向运动; (4)过x =处向正向运动.试求出相应的初位相,并写出振动方程.解:因为 ⎩⎨⎧-==000sin cos ϕωϕA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππϕ+==t T A x)232cos(232πππϕ+==t T A x)32cos(33πππϕ+==t T A x)452cos(454πππϕ+==t T A x8、一质量为10×10-3 kg 的物体做谐振动,振幅为24 cm ,周期为4.0 s ,当t =0时位移为+24 cm.求:(1)t =0.5 s 时,物体所在的位置及此时所受力的大小和方向; (2)由起始位置运动到x =12 cm 处所需的最短时间; (3)在x =12 cm 处物体的总能量. 解:由题已知 s 0.4,m 10242=⨯=-T A ∴ 1s rad 5.02-⋅==ππωT又,0=t 时,0,00=∴+=ϕA x 故振动方程为m )5.0cos(10242t x π-⨯=(1)将s 5.0=t 代入得0.17m m )5.0cos(102425.0=⨯=-t x πN102.417.0)2(10103232--⨯-=⨯⨯⨯-=-=-=πωxm ma F方向指向坐标原点,即沿x 轴负向. (2)由题知,0=t 时,00=ϕ,t t =时 3,0,20πϕ=<+=t v A x 故且 ∴ s 322/3==∆=ππωϕt (3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为J101.7)24.0()2(10102121214223222--⨯=⨯⨯⨯===πωA m kA E9、有一轻弹簧,下面悬挂质量为1.0 g 的物体时,伸长为4.9 cm.用这个弹簧和一个质量为8.0 g 的小球构成弹簧振子,将小球由平衡位置向下拉开1.0 cm 后,给予向上的初速度v 0=5.0 cm·s -1,求振动周期和振动表达式. 解:由题知12311m N 2.0109.48.9100.1---⋅=⨯⨯⨯==x g m k 而0=t 时,-12020s m 100.5m,100.1⋅⨯=⨯-=--v x ( 设向上为正)又 s 26.12,51082.03===⨯==-ωπωT m k 即 m102)5100.5()100.1()(22222220---⨯=⨯+⨯=+=∴ωv x A45,15100.1100.5tan 022000πφωϕ==⨯⨯⨯=-=--即x v ∴ m )455cos(1022π+⨯=-t x10、图为两个谐振动的x -t 曲线,试分别写出其谐振动方程.题10图解:由题10图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ 即 1s rad 2-⋅==ππωT故 m )23cos(1.0ππ+=t x a 由题10图(b)∵0=t 时,35,0,2000πϕ=∴>=v A x 01=t 时,35,0,2000πϕ=∴>=v A x又 ππωϕ253511=+⨯=∴ πω65=故 m t x b )3565cos(1.0ππ+=11、有两个同方向、同频率的简谐振动,其合成振动的振幅为0.20 m ,位相与第一振动的位相差为6π,已知第一振动的振幅为0.173 m ,求第二个振动的振幅以及第一、第二两振动的位相差.解:由题意可做出旋转矢量图如下. 由图知01.02/32.0173.02)2.0()173.0(30cos 222122122=⨯⨯⨯-+=︒-+=A A A A A ∴ m 1.02=A 设角θ为O AA 1,则θcos 22122212A A A A A -+=即 01.0173.02)02.0()1.0()173.0(2cos 2222122221=⨯⨯-+=-+=A A A A A θ 即2πθ=,这说明,1A 与2A 间夹角为2π,即二振动的位相差为2π.12、试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅:(1)125cos(3),375cos(3);3x t cm x t cm ππ⎧=+⎪⎪⎨⎪=+⎪⎩(2)125cos(3),345cos(3).3x t cm x t cm ππ⎧=+⎪⎪⎨⎪=+⎪⎩解: (1)∵ ,233712πππϕϕϕ=-=-=∆ ∴合振幅 cm 1021=+=A A A (2)∵ ,334πππϕ=-=∆∴合振幅 0=A13、一质点同时参与两个在同一直线上的简谐振动,振动方程为120.4cos(2),650.3cos(2).6x t m x t m ππ⎧=+⎪⎪⎨⎪=-⎪⎩试分别用旋转矢量法和振动合成法求合振动的振幅和初相,并写出谐振动方程. 解:∵ πππϕ=--=∆)65(6 ∴ m 1.021=-=A A A 合3365cos 3.06cos 4.065sin3.06sin4.0cos cos sin sin tan 22122211=+-⨯=++=ππππϕϕϕϕφA A A A ∴ 6πϕ=其振动方程为m )62cos(1.0π+=t x14、若简谐运动方程为0.10cos(200.25)()x t m ππ=+,求:(1)振幅、频率、角频率、周期和初相;(2)2t s =时的位移、速度和加速度。
大学物理简谐运动-振幅-周期和频率-相位讲义省公开课获奖课件市赛课比赛一等奖课件

第五版
3 弹簧振子旳运动分析
F
m
Noo
x
x
Image F kx ma
得 d2 x 2 x
dt 2
令 2 k
m 即 a 2 x
具有加速度 a 与位移旳大小x成正比,而方
向相反特征旳振动称为简谐运动
第九章 振 动
8
物理学
9-1 简谐运动 振幅 周期和频率 相位
第五版
解方程
d2 x 2 x
第九章 振 动
2
物理学
9-1 简谐运动 振幅 周期和频率 相位
第五版
提琴弦线旳振动
弓
琴码
•
5 26 3
•
第九章 振 动
3
物理学
9-1 简谐运动 振幅 周期和频率 相位
第五版
2 简谐振动
简谐运动 最简朴、最基本旳振动
简谐运动
合成 分解
复杂振动
谐振子 作简谐运动旳物体
第九章 振 动
4
物理学
9-1 简谐运动 振幅 周期和频率 相位
物理学
9-1 简谐运动 振幅 周期和频率 相位
第五版
一 简谐运动
1 机械振动
a 定义:物体或物体旳某一部分在一定位置
附近来回往复旳运动 b 实例:
平衡位置
心脏旳跳动,
钟摆,乐器, 地震等
c 周期和非周期振动
第九章 振 动
1
物理学
9-1 简谐运动 振幅 周期和频率 相位
第五版
口琴旳发音机理
? ? 1 2 3 4 5 6 7 76 5 4 32 1
A
xt图
Tt
T 2
第九章 振 动
12
大学物理-简谐振动-

FX mg F mg kl kx
其中 m g kl 故 Fx kx 因此该物体作简谐运动 振幅
A
x
2 0
x0 0 A cos
2 v0 2
0.1m
初相位
2 k / m g / l
可知其运动学方程为
角速度
10 rad / s
3 ) 2
运动学方程
简谐运动的 速度
dx v A sin(t ) dt
简谐运动的 加速度
d 2x a 2 A 2 cos(t ) dt
简谐运动方程中的物理量在简谐运动中没有直观的表现, 比如说角速度,所以我们通过圆周运动来直观地研究简谐 运动中的物理量。
圆周运动半径 r—简谐运动振 幅A
难点
• 简谐振动的运动学方 程
动量定理中有很多运动状态相 似的运动。钟摆是最常见的简 谐运动的例子。
右图中可以清晰看出 钟摆的摆动规律
简谐运动的动力学特征
F kx
简谐运动的运动学方程
x A cos(t )
将简谐运动位置的质点运动位 置x放于关于时间t的直角坐标 系中,可以看出简谐振动过程 中质点的运动规律是一个COS 三角函数。
3 2
x 0.1 cos(10t
问题1
• 运动学方程公式中的角速 度如何理解?
问题2
• 知道了运动学方程,如何 求速度和加速度?
运动学方程 特征物理量
速度
加速度
圆周运动角度 —简谐振动相位 t
•
例 一轻弹簧竖直悬挂,弹簧下端系一个质量为 m 1.0kg 的物体,平衡时可使弹 簧伸长 l 9.8 102 m。今使物体在平衡位置获得方向向下的初速度 v0 1m / s,此 后物体将在竖直方向运动。(1)试证物体作简谐运动,并写出运动方程;(2)求物体 的速度和加速度及其最大值;(3)求最大回复力。 解:(1) 选取竖直向下为正向,在任意位置x处所受合力为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m2 k
k m
T 2 2 m
k
1 1 k T 2 m
• T ω ν 的大小由谐振动系统本身性质决定,反映了系统 的固有特性
——固有圆频率、固有周期和固有频率
4. (t 0)—— t 时刻的相位(位相)
(1) 数学上,相位是一个角度,
物理上,相位是描写振动状态的一个参量。
第11章 机械振动
11
O
t
大 , 称 x2 比 x1 超前 (
- A2
或 x1 比 x2 落后 )。
-A1
第11章 机械振动
15
2. 同相和反相
2k
两振动步调相同
(2k1)
两振动步调相反
x
A1
A2
o
- A2
-A1
x
A1
A2
o
- A2
-A1
x1
同相
x2
T
t
x1 反相
T
t
x2
第11章 机械振动
16
三、 谐振动的描述
振动三要素:振幅、周期和相位
简谐振动是最简单、最基本的振动.
合成
简谐运动
分解
复杂振动
振动的理论建立在简谐振动的基础上。
第11章 机械振动
7
一、简谐振动的特征
简谐振动的定义
1 用动力学方程定义
d2x k x m dt2
k m kx
x
0x
d2x k 2dt用2 运动m学x方程0定义
x A2coskt0 或 xAsin m t0
阻尼自由振动 无阻尼自由振动
无阻尼自由非谐振动 无阻尼自由谐振动 (简谐振动)
5
第十一章 机械振动
§11-1 简谐振动
* §11-2 阻尼振动 受迫振动 共振
§11-3 同方向的简谐振动的合成 * §11-4 相互垂直的简谐振动的合成
6
§11-1 简谐振动
物体离开平衡位置的位移按余弦函数(或正弦函数)的规 律随时间变化,这样的振动称为简谐振动,简称谐振动。
大学物理(简谐振动篇)
Attendance Homework
要求
蔡冬梅
dm_cai@ 15234068874 办公室:逸夫楼901
第四篇 振动和波动
振动与波无所不在
振动与波是横跨物理学各分支学科的 最基本的运动形式。
尽管在各学科里振动与波的具体内容不同, 但在形式上却有很大的相似性。
cost 0≤1
x ≤A ——振动的强弱
3. T ——周期
振动状态重复一次所需要的时间,描述振动的快慢.
A c o s [( t T ) 0 ] A c o s (t 0 )
T 2π
T 2π
1 ——振动的频率
T 物体在单位时间内发生完全振动的次数
第11章 机械振动
10
2π ——角频率(圆频率).
当t=0时, x0 1cm, 0 0 , 试写出振动方程。
解 取平衡位置为坐标原点
简谐振动的表达式: xAcos(t0)
由初始条件: x0 1cm, 0 0
x0
Acos0
,cos0
x0 A
1 2
0
3
0Asin00
sin0
0, 0
- 3
振动方程: x 2cos( k t )
m3
第11章 机械振动
21
第11章 机械振动
14
2.对不同一简谐运动 利用相位差可比较两个振动的步调是否一致
x1A 1cos(t10)
x2A 2cos(t20)
同方向、同频率振动
(t2 0 ) (t1 0 )20 10 (初相差)
1. 超前和落后
x
若 = 2- 1> 0 , 则
A1 A2
x2 x1
x2 比 x1 早 达到正最
x
A
= 2
O
-A
t
(2) 用相位描述振动状态更能深刻反映物体运动的周期性。
(3) 0 ——初相,(取决于时间零点的选择)
t 0 0
xAcos(t0)A
A sin (t 0)0 A
O
t
0
2
t
0
3
2
x0
x0
A
A
Ax
第11章 机械振动
12
比较a、b两点: 位移相同,速度 不同,相位 不同 . 比较a、c两点: 位移相同,速度 相同,相位 不同 .
第十一章 机械振动
什么是振动?
一个物理量(如位置、电量、电流、电压、温度……) 在某一确定值附近随时间作周期性的变化,则该物理量的 运动形式称为振动。
机械振动 :位移x 随时间t 的往复变化 电磁振动:电场、磁场等电磁量随t的往复变化
微观振动:如晶格点阵上原子的振动
振动分类
振动
受迫振动 自由振动
共振
xx xx
d2x dt 2
k m
x
0
xAcos(t0)
第11章 机械振动
kkx(x x0) mg
19
推论: 若振动系统除受弹性力外,还受一恒力作 用,则系统的振动规律不变,只是改变了平衡位置, 而坐标原点取在新的平衡位置上。
km
18
例 一轻弹簧(k),下端挂一重物m,用手拉物向下至x处, 然后无初速度释放。试写出振动方程。
解 原点取在原长 建立坐标 O`x 如图,
分析小球受力, 可得:
mg kx m d2x
dt2
d2x dt 2
k m
x
g
(不是谐振动)
O'
x 0o
原点取在平衡位置 建立 ox轴
mgk(xx0)mddt22x
a A 2cost0 A 2cost0
等幅性
周期性 x(t)x(tT)
物体所受的力与位移成正比而反向
第11章 机械振动
9
二、 振动参量
xAcost0
1. x ——位移 广义上,指振动的物理量
2. A ——振幅 最大位移,恒为正,表征系统的能量
物体离开平衡位置的最大位移的绝对值 A,由初始条件 决定,描述振动的空间范围。
x
ab
c
t
O
T
结论:用相位描述物体振动,能反映出时间上的周期性,
而(x,v)则不能。
第11章 机械振动
13
相位差
1.对于同一简谐运动
对于简谐运动 t1时刻相位
xAcos(t0)
t1 0
t2时刻相位
t2 0
相位差 (t20 ) (t10 )
相位差可以给出两运动状态间变化所需的时间
t t t
d2x dt2
二者28
说明 (1) 上述方程对于非机械振动也成立。
例 电磁震荡电路
q C
L
di dt
d2q dt2
1q LC
0
q
C
i
dq dt
L
(2) 从运动学方程 xAcost0
A A co sisn tt 00 2
(3) 简谐振动的特点
1. 解析法 xAcost0
ω由振动系统本身决定
弹簧振子:
k m
单摆:
g l
A, 0 由初始条件决定(t=0)
x(t)Acos(ωt0)
x0 Acos0
vωAsin(ωt0)
v0ωAsin0
A
x0 2
v
2 0
2
0
tg1( v0
x0
)
第11章 机械振动
17
例 一弹簧振子(m,k),已知 k m, A 2 cm,