煤油冷却器课程设计

合集下载

《化工原理》课程设计--煤油冷却器的设计

《化工原理》课程设计--煤油冷却器的设计

《化工原理》课程设计任务书一、设计题目:煤油冷却器的设计二、原始数据及操作条件1、处理能力8万吨/年2、设备形式列管式3、煤油T入= 140℃,T出= 40℃4、冷水T入= 25℃,T出= 40℃5、⊿P<=105Pa6、煤油ρ=825Kg/m3,η=7.15×10-4Pa.S C V=2.22K J/Kg.℃7、λ= 0.14W/(m.℃)8、每年按330天计,24小时/天连续进行。

三、设计要求选择适宜的列管式换热器并进行核算,绘制设备条件图(1号)一份,编制一份设计说明书(打印稿),其主要内容包括:1、前言2、生产条件的确定3、换热器的设计计算4、设计结果列表5、设计结果的讨论与说明6、注明参考和使用的设计资料7、结束语《化工原理》课程设计说明书一、前言在化工、石油、动力、制冷、食品等行业中广泛使用各换热器,且它们是这些行业的通用设备,并占有十分重要的地位。

随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。

换热器的设计、制造、结构改进及传热机理的研究十分活跃,一些新型高效换热器相继问世。

随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器各有优缺点,性能各异。

在换热器设计中,首先应根据工艺要求选择适用的类型,然后计算换热所需传热面积,并确定换热器大的机构尺寸。

列管式换热器的应用已有很悠久的历史。

在化工、石油、能源设备等部门,列管式换热器仍是主要的换热设备。

列管换热器的设计资料已较为完善,已有系列化标准。

目前我国列管换热器的设计、制造、检验、验收按“钢制管壳式(即列管式)换热器”(GB151)标准执行。

列管式换热器主要有固定管板式换热器、浮头式换热器、U型管换热器和填料函式换热器等。

固定管板式换热器有结构简单、排管多等优点。

但由于结构紧凑,固定管板式换热器的壳侧不易清洗,而且当管束和壳体之间的温差太大时,管子和管板易发生脱离,故不适用与温差大的场合。

煤油冷却器课程设计

煤油冷却器课程设计

煤油冷却器课程设计煤油冷却器是一种常见的工业设备,用于冷却高温的液体或气体。

在传热学中,煤油冷却器是一个热传导系统,其中热传导的媒介是煤油。

煤油冷却器的设计本质上是为了优化传热过程,以提高效率和可靠性。

在煤油冷却器的课程设计中,需要考虑多个因素。

首先是热负荷,即需要冷却的液体或气体的温度、压力和流量等参数。

其次是煤油的选择,包括煤油的种类、质量和流量等。

还需要考虑冷却器的结构和材料,包括管壳式和板式等不同类型,以及不同的材料如不锈钢、铜和铝等。

在实际操作中,煤油冷却器的设计要结合生产实际情况进行。

首先要确定冷却器的工作条件,包括入口和出口温度、流量和压力等。

其次要根据设计要求进行煤油的选择和计算,包括煤油的粘度、比热和热导率等。

然后要进行器件结构和材料的选择,以及进行传热计算和流体力学分析等。

最后需要进行实验验证,以确定冷却器的性能和可靠性。

在煤油冷却器的课程设计中,主要有以下步骤:1.确定设计需求和条件,包括冷却的流体参数、煤油参数、冷却器结构和材料等。

2.进行煤油选择和计算。

包括煤油的粘度、比热和热导率等参数,以及计算煤油的流量和压力损失等。

3.进行器件结构和材料的选择,包括选择管壳式或板式冷却器,以及选择不锈钢、铜或铝等材料。

4.进行传热计算和流体力学分析等,以确定器件的传热效率和流体阻力等。

5.进行实验验证,以确定冷却器的性能和可靠性。

在实际操作中,煤油冷却器的课程设计需要充分考虑生产实际情况,结合理论分析和实验验证进行,以保证器件的高效性和可靠性。

同时,还需要注意煤油的使用和管理,以确保冷却器的正常运行和安全性。

化工原理课程设计说明书-煤油冷却器的设计

化工原理课程设计说明书-煤油冷却器的设计

课程设计任务书一、摘要换热器是将热流体的部分热量传递给冷流体的设备,以实现不同温度流体间的热能传递,又称热交换器。

换热器是实现化工生产过程中热量交换和传递不可缺少的设备。

在换热器中,至少有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。

在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,且它们是上述这些行业的通用设备,占有十分重要的地位。

随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,对换热器的要求也日益增强。

换热器的设计制造结构改进以及传热机理的研究十分活跃,一些新型高效换热器相继问世。

根据不同的目的,换热器可以是热交换器、加热器、冷却器、蒸发器、冷凝器等。

由于使用条件的不同,换热器可以有各种各样的形式和结构。

在生产中,换热器有时是一个单独的设备,有时则是某一工艺设备的组成部分。

衡量一台换热器好的标准是传热效率高、流体阻力小、强度足够、结构合理、安全可靠、节省材料、成本低,制造、安装、检修方便、节省材料和空间、节省动力。

二、关键字煤油换热器列管式换热器膨胀节固定管板式封头管板目录一、概述 (1)二、工艺流程草图及设计标准 (1)2.1工艺流程草图 (1)2.2设计标准 (2)三、换热器设计计算 (2)3.1确定设计方案 (2)3.1.1选择换热器的类型 (2)3.1.2流体溜径流速的选择 (2)3.2确定物性的参数 (3)3.3估算传热面积 (3)3.3.1热流量 (3)3.3.2平均传热温差 (3)3.3.3传热面积 (3)3.3.4冷却水用量 (4)3.4工艺结构尺寸 (4)3.4.1管径和管内流速 (4)3.4.2管程数和传热管数 (4)3.4.3平均传热温差校正及壳程数 (4)3.4.4传热管排列和分程方法 (5)3.4.5壳体内径 (5)3.4.6折流板 (5)3.4.7接管 (5)3.5换热器核算 (6)3.5.1热流量核算 (6)3.5.1.1壳程表面传热系数 (6)3.5.1.2管内表面传热系数 (7)3.5.1.3污垢热阻和管壁热阻 (7)3.5.1.4计算传热系数K C (7)3.5.1.5换热器的面积裕度 (8)3.5.2换热器内流体的流动阻力 (8)3.5.2.1管程流体阻力 (8)3.5.2.2壳程阻力 (8)四、设计结果设计一览表 (10)五、设计自我评价 (11)六、参考资料 (12)七、主要符号说明 (13)一、概述在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。

煤油冷却器的设计 化工原理课程设计

煤油冷却器的设计 化工原理课程设计

课程设计课程名称化工原理课程设计题目名称煤油冷却器的设计专业班级食品营养与检测学生姓名学号指导教师二O O年12 月31 日目录1.设计任务 ----------------- 12. 设计计算 ----------------- 2(1)确定设计方案 ---------------------- 2(2)确定物性系数-------------------------- 2(3)计算总传热系数 ------------------- 3 (4)计算传热面积--------------------------- 4(5)工艺结构尺寸--------------------------- 4(6)换热器核算 ------------------------ 53. 换热器主要结构尺寸和计算结果表1 9煤油冷却器的设计列管式换热器【设计任务】一、设计题目列管式换热器的设计二、设计任务及操作条件(1)处理能力: M*103 t/Y(其中:M=30+学号后两位)煤油(2)设备型式: 列管式换热器(3)操作条件①煤油:入口温度110℃,出口温度60℃。

②冷却介质:循环水,入口温度29℃,出口温度39℃。

③允许压降:不大于105 Pa。

④煤油定性温度下的物性数据:定压比热容=3.297kJ/(kg.℃)导热系数=0.0279 W/(m.0C)⑤每年按330天计,每天24小时连续运行。

(4)建厂地址蚌埠地区三、设计要求试设计一台适宜的列管式换热器完成该生产任务。

【设计计算】一、确定设计方案1.选择换热器的类型两流体温度变化情况:热流体进口为温度110℃,出口温度60℃;冷流体(循环水)进口温度29℃,出口温度39℃。

该换热器用循环水冷却,冬季操作时进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用带膨胀节的固定管板式换热器。

2.流动空间及流速的确定由于循环冷却水较易结垢,为便于水垢清洗,应使循环水走管程,油品走壳程。

煤油冷却器课程设计

煤油冷却器课程设计

煤油冷却器课程设计煤油冷却器课程设计简介煤油冷却器是一种能够将热能转化为机械能的装置,主要用于农业、交通运输、建筑等行业,起到降温、润滑、提高效率的作用。

本文将介绍煤油冷却器的课程设计,主要包括课程设计的目的、内容、教学方法和评估标准。

目的通过本次课程设计,学生将能够:1.了解煤油冷却器的结构和原理,掌握其工作原理和应用场景;2.完成一个小型煤油冷却器的制作,掌握实验操作技能;3.通过分析实验结果,加深对煤油冷却器原理的理解,提高解决实际问题的能力。

内容本次课程设计将分为以下四个部分:1.课程理论讲授首先,将介绍煤油冷却器的结构特点和工作原理,对于煤油冷却器的实际应用场景进行分析和解释。

其中包括:(1)冷却器的原理和种类(2)煤油冷却器的特点和设计原则(3)冷却器的使用和维护2.实验器材准备根据所需器材、器件以及材料进行规划购买,同时并准备实验前的各种开展实验所需的仪器,如多用表、温度计、热枪等,另外仪器准备后还须复核检查是否齐全、检验所准备的器材是否正常,确保器材完整,准备工作得当。

3.实验操作在实验讲解和演示的基础上,学生将根据所提供的样品进行实际操作,测定煤油冷却器的性能参数,调整气口数量或位置、重组插片、筛网等,从而达到最佳性能。

4.结果分析和评价在实验完成后,学生需要进行数据处理和分析,通过整理实验结果,并各自自然地描述各项数据的变化表现。

在综合分析之后,画出实验数据的数据曲线,比较实验结果,识别出具体差异。

教学方法本次课程设计采用以下教学方法:1.小组合作学习会将学生分为小组,每个小组将负责实验器材的准备、实验操作、数据收集和结果分析。

此方法将鼓励学生积极参与和合作,促进团队互助合作。

2.实验操作演示老师将根据规定的操作演示其理当的操作步骤,帮助学生更快速地学习理论和品味实践。

同时还需对关键操作环节进行一些具体分析和口头指导。

3.互动讨论在学生完成了实验操作之后,将进行整个实验过程的讨论,对实际操作和数据误差进行分析和讨论。

煤油冷却器的课程设计1

煤油冷却器的课程设计1

煤油冷却器的课程设计1板式换热器设计任务书一、设计题目:煤油冷却器的设计二、设计任务1 、处理能力:19.8 X 104 t年煤油2 、设备型号:列管式换热器3 、操作条件:煤油:入口温度140C,出口温度40C冷却介质:循环水,入口温度30C,出口温度38C允许压降:不大于105Pa每年按330 天计建厂地址:广西三、设计要求1 、选择适宜的列管式换热器并进行核算2 、要进行工艺计算3 、要进行主体设备的设计(主要设备尺寸、横算结果等)4 、编写设计任务书5 、进行设备结构图的绘制(用420*594 图纸绘制装置图一张:一主视图,一俯视图。

一剖面图,两个局部放大图。

设备技术要求、主要参数、接管表、部件明细表、标题栏。

)化工原理课程设计说明书题目:列管式换热器的设计系别:班级:学号:姓名:指导教师:日期:2019 年1 月5 日目录、设计方案............................................ (5)1.换热器的选择..... 5 2.流动空间及流速的确定.................... 5二、物性数据.......... 5三、计算总传热系数: (6)1.热流量......... 6 2.平均传热温差..... 63.冷却水用量..6 4.总传热系数K......... 6四、计算换热面积... 7五、工艺结构尺寸... 71.管径和管内流速..7 2.管程数和传热管数............................. 73.平均传热温差校正及壳程数............. 8 4.传热管排列和分程方法..................... 8 5.壳体内径..... 8 6.折流.................. 8 7.接板管........................... 8六、换热器核算..... (9)1.热量核算.............. 9 2.热量重新核算......... 1 0 3.换热器内流体的流动阻力.............. 1 1 4.换热器主要结构尺寸和计算结果.................................................... 13 七、设计的评述..................... ................................................. 14 八、参考文献 ..................................................... 14 九、主要符号说明 ............................................. 15 十、主体设备条件图及生产工艺流程图........................................... (15)1 换热器类型的选择在本次设计任务中,两流体温度变化情况:热流体进口温度140C,出口温度40C;冷流体(循环水)进口温度30C,出口温度38C。

煤油冷却器设计化工原理课程设计

煤油冷却器设计化工原理课程设计

煤油冷却器设计化工原理课程设计XX大学化工原理课程设计任务书专业:高分子材料与工程班级:高分子姓名:设计日期:日设计题目:煤油冷却器设计设计条件:1.设备处理量***** kg/h。

2.煤油:入口温度150℃,出口温度60℃ 3.冷却水:入口温度30℃,出口温度40℃ 4.热损失可忽略。

两侧污垢热阻分别为RS0=0.00017m2℃/W RSi=0.00034 m2℃/W 5.壳程压降不大于30 kPa 6.初设K=290 W/m2·℃。

设计要求:1 设计满足以上条件的换热器并写出设计说明书。

2. 根据所选换热器画出设备装配图。

指导教师:第一章文献综述第一节概述一换热器的概念在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。

在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量;1/ 16另一种流体则温度较低,吸收热量。

35%~40%。

随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。

换热器的设计、制造、结构改进及传热机理的研究十分活跃,一些新型高效换热器相继问世。

二换热器的分类随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器各有优缺点,性能各异。

在换热器设计中,首先应根据工艺要求选择适用的类型,然后计算换热所需传热面积,并确定换热器的结构尺寸。

换热器按用途不同可分为加热器、冷却器、冷凝器、蒸发器、再沸器、深冷器、过热器等。

换热器按传热方式的不同可分为:混合式、蓄热式和间壁式。

其中间壁式换热器应用最广泛,按照传热面的形状和结构特点又可分为管壳式换热器、板面式换热器和扩展表面式换热器(板翅式、管翅式等),如表2-1所示。

表2-1 传热器的结构分类类型特点间壁式管壳式列管式固定管板式刚性结构用于管壳温差较小的情况(一般≤50℃),管间不能清洗带膨胀节有一定的温度补偿能力,壳程只能承受低压力浮头式管内外均能承受高压,可用于高温高压场合U型管式管内外均能承受高压,管内清洗及检修困难填料函式外填料函管间容易泄漏,不宜处理易挥发、易爆炸及压力较高的介质内填料函密封性能差,只能用于压差较2/ 16小的场合釜式壳体上部有个蒸发空间用于再沸、蒸煮双套管式结构比较复杂,主要用于高温高压场合和固定床反应器中套管式能逆流操作,用于传热面较小的冷却器、冷凝器或预热器螺旋管式沉浸式用于管内流体的冷却、冷凝或管外流体的加热喷淋式只用于管内流体的冷却或冷凝板面式板式拆洗方便,传热面能调整,主要用于粘性较大的液体间换热螺旋板式可进行严格的逆流操作,有自洁的作用,可用作回收低温热能平板式结构紧凑,拆洗方便,通道较小、易堵,要求流体干净板壳式板束类似于管束,可抽出清洗检修,压力不能太高混合式适用于允许换热流体之间直接接触蓄热式换热过程分阶段交替进行,适用于从高温炉气中回收热能的场合第二节换热器设备应满足的基本要求完善的换热器在设计或选型时应满足以下各项基本要求。

煤油冷却器的设计

煤油冷却器的设计

西北大学化工原理课程设计任务书设计题目煤油冷却器院系化工学院专业化学工程与工艺指导教师赵彬侠姓名张洪姣学号2008115023目录(一)设计题目(二)流程和方案的说明和论证(三)计算过程(四)流程图(五)设计感想(六)参考文献一、设计题目:根据条件设计合适的换热器(煤油冷却器的设计)设计任务及操作条件:1.煤油:入口温度150℃,出口温度50℃;运行表压1bar。

2.冷却介质:凉水塔中处理过的补给水,入口温度30℃,出口温度50℃;运行表压3bar。

二、流程和方案的说明和论证1.传热过程易采用逆流传热方式,因为逆流平均推动力大于并流;选用单壳程四管程固定式列管换热器;2.流体空间的选择:由于煤油流量为14T/h,且由于水的定性温度t=1/2(50+30)=40℃,煤油定性温T=1/2(150+50)=100℃,煤油的定性温度查得相应的物性值:煤油的粘度:μ油=0.81×10-3Pa.S 密度:ρ油=818kg/m3 C油=2.26kJ/(kg. ℃)λ油=0.135W/(m. ℃)水的粘度:μ水=0.656×10-3Pa.S 密度:ρ水=992.2kg/m3C水=4.174kJ/(kg. ℃)λ水=0.6333W/(m. ℃)高温流体一般走管程,因为高温会降低材料的许用应力,高温流体走管程可节省保温层和减少壳体厚度;腐蚀性较强的流体应该走管程,可以节省耐腐蚀材料;较脏和易结垢的流体走管程,以便于清洗和控制结垢,如必须走管程,则可采用正方形排列,并采用可拆式换热器。

且煤油为热物体,易放在管壳。

流体空间的选择还与粘度、压力降、流速、传热膜系数等因素有关。

根据上述原则及水和煤油的物性参数,最终设计煤油走管壳,水走管程。

结构与结构参数的选择a) 直径小的换热器不仅便宜,而且可以获得较好的传热膜系数与阻力系数的比值。

但管径愈小则换热器的压降愈大,在满足允许压力的前提下,一般推荐用外径为19mm ,对于易结垢的流体,为方便清洗,采用外径为25mm 的管子b) 管长 无相变的换热器时,管子较长则传热系数也增大,在相同的传热面积的情况下,采用长管流动截面积小,流速大,管程数小,从而减小了回弯次数,因而压降也较小;但是罐子过长会带来制造的麻烦,因此一般选用4—6米,对于传热面积大的,若无相变的可用8—9米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安阳工学院课程设计说明书课程名称:化工原理课程设计设计题目:列管式换热器院系:化学与环境工程学院学生姓名:***学号:************专业班级:10高分子材料与工程(1)班指导教师:***2012年11月15日课程设计任务列管式换热器设计[摘要]通过对列管式换热器的设计,首先要确定设计的方案,选择合适的计算步骤。

查得计算中用到的各种数据,对该换热器的传热系数传热面积工艺结构尺寸等等要进行核算,与要设计的目标进行对照是否能满足要求,最终确定换热器的结构尺寸为设计图纸做好准备和参考,来完成本次课程设计。

[关键字] 换热器标准方案核算结构尺寸目录第一章概述 (4)第二章方案的设计与拟定 (6)第三章设计计算 (9)3.1确定设计方案 (9)3.1.1选择换热器类型 (9)3.1.2流动空间及流苏的测定 (9)3.2确定物性数据 (10)3.3计算总传热系数 (11)3.3.1壳程质量流量 (11)3.3.2热流量 (11)3.3.3平均传热温差 (11)3.3.4冷却水用量 (11)3.3.5总传热系数K (11)3.4计算传热面积 (12)3.5工艺结构尺寸 (13)3.5.1管径和管内流速 (13)3.5.2管程数和传热管数 (13)3.5.3传热管排列和分程方法 (14)3.5.4壳体内径 (14)3.5.5折流板 (14)3.5.6接管 (15)3.6换热器核算 (15)3.6.1热量核算 (15)3.6.1.1壳程对流传热系数 (15)3.6.1.2管程对流传热系数 (16)3.6.1.3传热系数K (16)3.6.1.4传热面积S (17)3.6.2换热器内流体的流动阻力 (17)3.6.2.1管程流动阻力 (17)3.6.2.2壳程流动阻力 (18)3.7换热器主要结构尺寸和计算结果 (19)第四章设计小结 (20)第五章收获与致谢 (22)第六章参考文献 (23)第一章概述在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。

在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。

在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,它们也是这些行业的通用设备,并占有十分重要的地位。

换热器的分类适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下:一、换热器按传热原理分类1、表面式换热器表面式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热。

表面式换热器有管壳式、套管式和其他型式的换热器。

2、蓄热式换热器蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的。

蓄热式换热器有旋转式、阀门切换式等。

3、流体连接间接式换热器流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体之间循环,在高温流体接受热量,在低温流体换热器把热量释放给低温流体。

4、直接接触式换热器直接接触式换热器是两种流体直接接触进行换热的设备,例如,冷水塔、气体冷凝器等。

二、换热器按用途分类1、加热器加热器是把流体加热到必要的温度,但加热流体没有发生相的变化。

2、预热器预热器预先加热流体,为工序操作提供标准的工艺参数。

3、过热器过热器用于把流体(工艺气或蒸汽)加热到过热状态。

4、蒸发器蒸发器用于加热流体,达到沸点以上温度,使其流体蒸发,一般有相的变化。

随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器也各有优缺点,性能各异。

列管式换热器是最典型的管壳式换热器,它在工业上的应用有着悠久的历史,而且至今仍在所有换热器中占据主导地位。

第二章方案设计和拟订根据任务书给定的冷热流体的温度,来选择设计列管式换热器中的固定管板式换热器;再依据冷热流体的性质,判断其是否易结垢,来选择管程走什么,壳程走什么。

在这里,冷水走管程,热水走壳程。

从手册中查得冷热流体的物性数据,如密度,比热容,导热系数,黏度。

计算出总传热系数,再计算出传热面积。

根据管径管内流速,确定传热管数,标准传热管长为3m,算出传热管程,传热管总根数等等。

再来就校正传热温差以及壳程数。

确定传热管排列方式和分程方法。

根据设计步骤,计算出壳体内径,选择折流板,确定板间距,折流板数等,再设计壳程和管程的内径。

分别对换热器的热量,管程对流系数,传热系数,传热面积进行核算,再算出面积裕度。

最后,对传热流体的流动阻力进行计算,如果在设计范围内就能完成任务。

根据固定管板式的特点:结构简单,造价低廉,壳程清洗和检修困难,壳程必须是洁净不易结垢的物料。

U形管式特点:结构简单,质量轻,适用于高温和高压的场合。

管程清洗困难,管程流体必须是洁净和不易结垢的物料。

浮头式特点:结构复杂、造价高,便于清洗和检修,完全消除温差应力,应用普遍。

我们设计的换热器的流体是冷热水,不易结垢,再根据造价低,经济的原则我们选用固定管板式换热器。

根据以下原则:(1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。

(2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。

(3) 压强高的流体宜走管内,以免壳体受压。

(4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。

(5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。

(6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。

(7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。

我们选择冷水走管程,热水走壳程。

流体流速的选择:增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。

但是流速增加,又使流体阻力增大,动力消耗就增多。

所以适宜的流速要通过经济衡算才能定出。

此外,在选择流速时,还需考虑结构上的要求。

例如,选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数。

管子太长不易清洗,且一般管长都有一定的标准;单程变为多程使平均温度差下降。

这些也是选择流速时应予考虑的问题。

在本次设计中,根据表换热器常用流速的范围,取管内流速s m u i /1.1 。

管子的规格和排列方法:选择管径时,应尽可能使流速高些,但一般不应超过前面介绍的流速范围。

易结垢、粘度较大的液体宜采用较大的管径。

我国目前试用的列管式换热器系列标准中仅有φ25×2.5mm 及φ19×2mm 两种规格的管子。

在这里,选择 φ25×2.5mm 管子。

管长的选择是以清洗方便及合理使用管材为原则。

长管不便于清洗,且易弯曲。

一般出厂的标准钢管长为6m ,则合理的换热器管长应为1.5、2、3或6m 。

此外,管长和壳径应相适应,一般取L/D 为4~6(对直径小的换热器可大些)。

在这次设计中,管长选择3m 。

管子在管板上的排列方法有等边三角形、正方形直列和正方形错列等,等边三角形排列的优点有:管板的强度高;流体走短路的机会少,且管外流体扰动较大,因而对流传热系数较高;相同的壳径内可排列更多的管子。

正方形直列排列的优点是便于清洗列管的外壁,适用于壳程流体易产生污垢的场合;但其对流传热系数较正三角排列时为低。

正方形错列排列则介于上述两者之间,即对流传热系数(较直列排列的)可以适当地提高。

在这里选择三角形排列。

管子在管板上排列的间距 (指相邻两根管子的中心距),随管子与管板的连接方法不同而异。

通常,胀管法取t=(1.3~1.5)do ,且相邻两管外壁间距不应小于6mm ,即t≥(d+6)。

焊接法取t=1.25do 。

管程和壳程数的确定 当流体的流量较小或传热面积较大而需管数很多时,有时会使管内流速较低,因而对流传热系数较小。

为了提高管内流速,可采用多管程。

但是程数过多,导致管程流体阻力加大,增加动力费用;同时多程会使平均温度差下降;此外多程隔板使管板上可利用的面积减少,设计时应考虑这些问题。

列管式换热器的系列标准中管程数有1、2、4和6程等四种。

采用多程时,通常应使每程的管子数大致相等。

根据计算,管程为2程,壳程为单程。

折流挡板:安装折流挡板的目的,是为了加大壳程流体的速度,使湍动程度加剧,以提高壳程对流传热系数。

最常用的为圆缺形挡板,切去的弓形高度约为外壳内径的10~40%,一般取20~25%,过高或过低都不利于传热。

两相邻挡板的距离(板间距)h为外壳内径D的(0.2~1)倍。

系列标准中采用的h值为:固定管板式的有150、300和600mm三种,板间距过小,不便于制造和检修,阻力也较大。

板间距过大,流体就难于垂直地流过管束,使对流传热系数下降。

这次设计选用圆缺形挡板。

换热器壳体的内径应等于或稍大于(对浮头式换热器而言)管板的直径。

初步设计时,可先分别选定两流体的流速,然后计算所需的管程和壳程的流通截面积,于系列标准中查出外壳的直径。

主要构件的选用:(1)封头封头有方形和圆形两种,方形用于直径小的壳体(一般小于400mm),圆形用于大直径的壳体。

(2)缓冲挡板为防止壳程流体进入换热器时对管束的冲击,可在进料管口装设缓冲挡板。

(3)导流筒壳程流体的进、出口和管板间必存在有一段流体不能流动的空间(死角),为了提高传热效果,常在管束外增设导流筒,使流体进、出壳程时必然经过这个空间。

(4)放气孔、排液孔换热器的壳体上常安有放气孔和排液孔,以排除不凝性气体和冷凝液等。

(5)接管尺寸换热器中流体进、出口的接管直径由计算得出。

最后材料选用:列管换热器的材料应根据操作压强、温度及流体的腐蚀性等来选用。

在高温下一般材料的机械性能及耐腐蚀性能要下降。

同时具有耐热性、高强度及耐腐蚀性的材料是很少的。

目前常用的金属材料有碳钢、不锈钢、低合金钢、铜和铝等;非金属材料有石墨、聚四氟乙烯和玻璃等。

不锈钢和有色金属虽然抗腐蚀性能好,但价格高且较稀缺,应尽量少用。

这里选用的材料为碳钢。

第三章设计计算3.1确定设计方案3.1.1 选择换热器的类型两流体温度变化情况:热流体进口温度℃40;冷流体(循140,出口温度℃环水)进口温度℃30,出口温度℃40。

该换热器用循环冷却水冷却,热流体为煤油,为不易结垢和清洁的流体。

冬季操作时进口温度会降低,估计该换热器的管壁温和壳体壁温之差较小,因此初步确定选用带膨胀节的固定管板式换热器。

相关文档
最新文档