微电子封装技术的发展趋势
微电子封装技术的未来发展方向是什么?

微电子封装技术的未来发展方向是什么?在当今科技飞速发展的时代,微电子技术无疑是推动社会进步的关键力量之一。
而微电子封装技术作为微电子技术的重要组成部分,其发展方向更是备受关注。
微电子封装技术,简单来说,就是将芯片等微电子元件进行保护、连接、散热等处理,以实现其在电子产品中的可靠应用。
随着电子产品的日益小型化、高性能化和多功能化,对微电子封装技术也提出了更高的要求。
未来,高性能、高密度和微型化将是微电子封装技术的重要发展方向。
在高性能方面,封装技术需要更好地解决信号传输的完整性和电源分配的稳定性问题。
为了实现这一目标,先进的封装材料和结构设计至关重要。
例如,采用低介电常数和低损耗的材料来减少信号延迟和衰减,以及优化电源网络的布局以降低电源噪声。
高密度封装则是为了满足电子产品集成度不断提高的需求。
通过三维封装技术,如芯片堆叠和硅通孔(TSV)技术,可以在有限的空间内集成更多的芯片,从而大大提高系统的性能和功能。
此外,扇出型晶圆级封装(Fanout WLP)技术也是实现高密度封装的重要手段,它能够将芯片的引脚扩展到更大的区域,增加引脚数量和布线密度。
微型化是微电子封装技术永恒的追求。
随着移动设备、可穿戴设备等的普及,对电子产品的尺寸和重量有着极为苛刻的要求。
因此,封装技术需要不断减小封装尺寸,同时提高封装的集成度和性能。
例如,采用更薄的封装基板、更小的封装引脚间距和更精细的封装工艺等。
绿色环保也是微电子封装技术未来发展的一个重要趋势。
随着环保意识的不断增强,电子产品的生产和使用过程中对环境的影响越来越受到关注。
在封装材料方面,将更多地采用无铅、无卤等环保材料,以减少对环境的污染。
同时,封装工艺也将朝着节能、减排的方向发展,提高生产过程的资源利用率和降低废弃物的排放。
此外,异质集成将成为微电子封装技术的一个重要发展方向。
随着各种新型器件和材料的不断涌现,如化合物半导体、MEMS 器件、传感器等,如何将这些不同性质的器件集成在一个封装体内,实现更复杂的系统功能,是未来封装技术面临的挑战之一。
微电子封装技术的发展趋势

微电子封装技术的发展趋势本文论述了微电子封装技术的发展历程,发展现状和发展趋势,主要介绍了几种重要的微电子封装技术,包括:BGA 封装技术、CSP封装技术、SIP封装技术、3D封装技术、MCM封装技术等。
1.微电子封装的发展历程IC 封装的引线和安装类型有很多种,按封装安装到电路板上的方式可分为通孔插入式(TH)和表面安装式(SM),或按引线在封装上的具体排列分为成列、四边引出或面阵排列。
微电子封装的发展历程可分为三个阶段:第一阶段:上世纪70 年代以插装型封装为主,70 年代末期发展起来的双列直插封装技术(DIP)。
第二阶段:上世纪80 年代早期引入了表面安装(SM)封装。
比较成熟的类型有模塑封装的小外形(SO)和PLCC 型封装、模压陶瓷中的CERQUAD、层压陶瓷中的无引线式载体(LLCC)和有引线片式载体(LDCC)。
PLCC,CERQUAD,LLCC和LDCC都是四周排列类封装,其引线排列在封装的所有四边。
第三阶段:上世纪90 年代,随着集成技术的进步、设备的改进和深亚微米技术的使用,LSI,VLSI,ULSI相继出现,对集成电路封装要求更加严格,I/O引脚数急剧增加,功耗也随之增大,因此,集成电路封装从四边引线型向平面阵列型发展,出现了球栅阵列封装(BGA),并很快成为主流产品。
2.新型微电子封装技术2.1焊球阵列封装(BGA)阵列封装(BGA)是世界上九十年代初发展起来的一种新型封装。
BGA封装的I/O端子以圆形或柱状焊点按阵列形式分布在封装下面,BGA技术的优点是:I/O引脚数虽然增加了,但引脚间距并没有减小反而增加了,从而提高了组装成品率;虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,从而可以改善它的电热性能;厚度和重量都较以前的封装技术有所减少;寄生参数减小,信号传输延迟小,使用频率大大提高;组装可用共面焊接,可靠性高。
这种BGA的突出的优点:①电性能更好:BGA用焊球代替引线,引出路径短,减少了引脚延迟、电阻、电容和电感;②封装密度更高;由于焊球是整个平面排列,因此对于同样面积,引脚数更高。
浅谈电子封装技术的重要性及发展趋势

浅谈电子封装技术的重要性及发展趋势发布时间:2023-01-06T06:08:49.564Z 来源:《福光技术》2022年24期作者:赵崇治周佳明[导读] 集成电路产业作为我国重要的经济发展要素,包括电路设计等封装内容,关联及独立,同时也能促进国家经济良好发展,为人们的生活水平带来提升。
上海航天设备制造总厂有限公司上海市 201100摘要:电子封装技术作为系统封装技术的重要内容,能够对最小电子芯片中的电气性能进行保护,尤其是在外界能够对电气设备进行有效联系。
本文对电子封装技术的重要性及发展趋势进行分析。
关键词:电子封装技术;重要性;发展趋势集成电路产业作为我国重要的经济发展要素,包括电路设计等封装内容,关联及独立,同时也能促进国家经济良好发展,为人们的生活水平带来提升。
而电子封装技术作为我国重要的信息产业,在不同的产品应用当中电子封装技术具备不同的应有作用。
一、电子封装技术的重要性首先,在产品性能方面,能够直接与产品的体积建立联系,同时也与产品的使用寿命相关。
再有,该技术也与产品的成本有着直接关系,尤其是在技术水平方面,能够提高产品高性能运用,同时也能起到良好保护的作用。
不仅如此,电路芯片会受到周围环境的影响,导致电路芯片产生问题。
对此,需要做好各种微电子封装技术,能够使金属罐子作为外壳,将其与外界进行有效隔离,能够对电子元件起到良好的保护作用。
但是在实际过程中,芯片钝化层需要进行改进,集成电路期间需要建立良好的应用连接,这样才能使电学以及物理进行有效连接。
由于目前集成电路芯片线路越来越多,需要加强与电源信号的有效传送,以此实现与系统的有效连接,能够将实际攻略发挥出最大,这样才能确保电子芯片发挥出良好的应用作用,以此提高芯片的质量水平,并能将各种电路功能的应用价值充分发挥出来[1]。
二、电子封装的种类分析(一)金属封装此种封装技术属于最早的封装技术,能够将其与金属容器进行有效封装,并能在封盖处进行镀金,这样金属的外壳需要用合金材料制成,同时还需要应用玻璃罩对其合金的布线进行有效设置,并能将其熔装在金属座上,这样不仅能够对端头进行保护,同时还能加强金属的保护性,避免底座出现磨平问题。
微电子技术发展趋势及未来前景

微电子技术发展趋势及未来前景随着信息时代的不断发展,微电子技术已成为科技领域中不可忽视的重要组成部分。
微电子技术在我们的日常生活中已经无处不在,从手机到电脑、再到智能家居,微电子产品甚至已经成为我们生活中必不可少的一部分。
而这些产品的出现离不开微电子技术的支持,正是微电子技术的不断发展,才有了今天的科技领域。
一、微电子技术发展的趋势1、智能化随着智能设备的普及和智能化程度的不断提高,微电子技术也需要不断地进行升级和改进,以满足不断变化的市场需求。
当前,微电子技术仍然处在大力发展的阶段,朝着数字化、集成化、智能化方向不断推进,满足人们对于智能化、高效化的需求。
2、超大规模集成电路在微电子技术领域的更高追求中,超大规模集成电路(UMC)技术的出现代表了微电子技术的新发展方向。
相较于传统的晶体管技术和CMOS技术,UMC技术具备更高的集成度和更小的体积,可以在单一芯片上集成更多的器件和功能单元,从而实现了更高的性能、更低的功耗和更小的体积等优势。
3、智能化材料在现阶段的微电子技术领域中,智能化材料的研发正成为一个热点话题。
这是因为智能化材料具有超高的性能、卓越的机械、电学等特性,可以在微电子领域中发挥出令人惊叹的作用。
二、微电子技术的未来前景微电子技术的未来前景十分广阔,主要体现在以下方面:1、自动化办公设备如今,自动化已经成为企业和组织的一种普遍趋势。
在未来的发展中,也会将智能化自动化的理念应用到更多的领域中,这其中就包括办公设备领域。
未来的自动化办公设备将更加高效、便捷、智能化,从而让工作和生活变得更加便捷。
2、智能家居未来,智能家居将有望成为我们生活中的普遍趋势。
在未来的智能家居中,所有的电器、家居产品都将与网络相互连接,实现互联互通,进一步提高生活的便利程度和舒适度。
未来智能家居的发展方向也大概率朝着更加智能化、自动化的方向发展。
3、智能医疗设备未来的医疗设备将更加智能化、便捷和高效。
这些设备将能够智能地监测人们的健康状况,并及时给出建议和建议,更好地帮助人们预防疾病,保持健康。
微电子封装技术

微电子封装技术1. 引言微电子封装技术是在微电子器件制造过程中不可或缺的环节。
封装技术的主要目的是保护芯片免受机械和环境的损害,并提供与外部环境的良好电学和热学连接。
本文将介绍微电子封装技术的发展历程、常见封装类型以及未来的发展趋势。
2. 微电子封装技术的发展历程微电子封装技术起源于二十世纪五十年代的集成电路行业。
当时,集成电路芯片的封装主要采用插入式封装(TO封装)。
随着集成度的提高和尺寸的缩小,TO封装逐渐无法满足发展需求。
在六十年代末,贴片式封装逐渐兴起,为微电子封装技术带来了发展的机遇。
到了二十一世纪初,球栅阵列(BGA)和无线芯片封装技术成为主流。
近年来,微电子封装技术的发展方向逐渐向着三维封装和追求更高性能、更小尺寸的目标发展。
3. 常见的微电子封装类型3.1 插入式封装插入式封装是最早使用的微电子封装技术之一。
它的主要特点是通过将芯片引线插入封装底座中进行连接。
插入式封装一开始使用的是TO封装,后来发展出了DIP(双列直插式封装)、SIP(单列直插式封装)等多种封装类型。
插入式封装的优点是可维修性高,缺点是不适合高密度封装和小尺寸芯片。
3.2 表面贴装封装表面贴装封装是二十世纪六十年代末期兴起的一种封装技术。
它的主要原理是将芯片连接到封装底座上,再将整个芯片-底座组件焊接到印刷电路板(PCB)上。
表面贴装封装可以实现高密度封装和小尺寸芯片,适用于各种类型的集成电路芯片。
常见的表面贴装封装类型有SOIC、QFN、BGA等。
3.3 三维封装三维封装是近年来兴起的一种封装技术。
它的主要原理是在垂直方向上堆叠多个芯片,通过微弧焊接技术进行连接。
三维封装可以实现更高的集成度和更小的尺寸,同时减少芯片间的延迟。
目前,三维封装技术仍在不断研究和改进中,对于未来微电子封装的发展具有重要意义。
4. 微电子封装技术的未来发展趋势随着科技的不断进步,微电子封装技术也在不断发展。
未来,微电子封装技术的发展趋势可以总结为以下几点:1.高集成度:随着芯片制造工艺的不断进步,集成度将继续提高,将有更多的晶体管集成在一个芯片上,这将对封装技术提出更高的要求。
第五章微电子封装技术概况

CSP(三菱)
芯片尺寸封装原理
主要考虑用尽可能少的封装材料解决电极保护问题
必须注意的是,封装的结果虽然保障了芯片功能的发挥, 但是它只能使芯片性能降低或受到限制,而不能使其自身 性能得到加强。
CSP典型封装技术之一 倒扣组装技术
Flip ship
在裸芯片上的电极上形成焊料凸点,通过钎焊将芯片以 电极面朝下的倒状方式实装在多层布线板上,由于不需要从 芯片向四周引出I/O端子,可布置更多的端子,互联线的长度 大大缩短,减小了RC延迟,可靠性提高
日本厂家把主要精力投向QFP端子间距精细化方面, (但是未能实现0.3mm间距的多端子QFP),因为日本厂家 认为BGA实装后,对中央部分的焊接部位不能观察。
但美国公司的实际应用证明,BGA即使不检测焊 点的质量,也比经过检测的QFP合格率高两个数量级 BGA是目前高密度表面贴装技术的主要代表. 美国康柏公司1991年率先在微机中的ASIC采用了255针脚 的PBGA,从而超过IBM公司,确保了世界第一的微机市场占 有份额。
3、QFP :quad flat package
四周平面引线式封装
引脚向外弯曲 背面
日本式的QFP 封装
美国式QFP 封装
QFP的实用水平,封装尺寸为40mm×40mm, 端子间距为0.4mm,端子数376
QFP是目前表面贴装技术的主要代表之一
周边端子型封装QFP的最大问题是引脚端子的变形, 难保证与印刷电路板的正常焊接,需要熟练的操作者, 日本人特有的细心使半导体用户掌握着高超的技能,处 理微细引脚的多端子QFP得心应手 美国公司的对QFP焊接技术的掌握要差一些,美国 公司用QFP封装形式的集成电路制造的电子产品的合 格率总是赶不上日本公司.
SIP
微电子封装技术的研究现状及其应用展望

微电子封装技术的研究现状及其应用展望近年来,随着电子产品的快速普及和电子化程度的不断提高,微电子封装技术越来越引起人们的重视。
微电子封装技术主要是将电子器件、芯片及其他微型电子元器件封装在合适的封装材料中以保护它们免受机械损伤和外部环境的影响。
本文将分析现有微电子封装技术的研究现状,并探讨其未来的应用前景。
一、微电子封装技术的研究现状随着电子元器件不断地微型化、多功能化、高集成化和高可靠化,微电子封装技术越来越得到广泛的应用和发展。
在微电子封装技术中,主要有以下几种常用的封装方式:1. 线路板封装技术线路板封装技术(PCB)是较为常见的一种微电子封装技术。
这种方式主要利用印刷板制成印刷电路板,并通过它与芯片之间实现联系,使其具有一定能力。
通常,PCB 封装技术可用于集成电路和大多数微型传感器中的有效信号接口。
2. QFP 封装技术QFP 封装技术指的是方形封装技术,它是一种常见的微电子封装技术,这种技术的特点在于其实现方式非常灵活,具有高密度、高可靠的特点。
这种技术可以用于各种芯片、集成电路、传感器和其他各种微型电子元器件的封装。
3. BGA 封装技术BGA 封装技术指的是球格阵列封装技术,这种技术主要利用钎接技术将芯片连接到小球上。
BGA 封装技术常用于高密度封装尺寸的芯片和集成电路中,并具有高可靠和高信号性能等特点。
它目前被广泛应用于计算机芯片、消费电子、汽车电子、无人机和航空电子等领域中。
4. CSP 封装技术CSP 封装技术指的是芯片级封装技术,该技术是近年来发展起来的一种新型微电子封装技术,主要是使用钎接工艺将芯片封装在封装材料上。
CSP 封装技术具有极小的尺寸和高密度、高可靠性、高信号性能和高互连和生产效率等优点,因此,它被广泛地应用于各种电子元器件和集成电路中。
二、微电子封装技术的应用展望微电子封装技术具有比传统封装技术更高的密度、高速度、高可靠性和多功能的优点,因此,它的应用前景是广阔的。
微电子器件的封装与封装技术

微电子器件的封装与封装技术微电子器件的封装是指将微电子器件通过一系列工艺及材料封装在某种外部介质中,以保护器件本身并方便其连接到外部环境的过程。
封装技术在微电子领域中具有重要的地位,它直接影响着器件的性能、可靠性和应用范围。
本文将对微电子器件的封装和封装技术进行探讨。
一、封装的意义及要求1. 保护器件:封装能够起到保护微电子器件的作用,对器件进行物理、化学及环境的保护,防止外界的机械损伤、湿度、温度、辐射等因素对器件产生不良影响。
2. 提供电子连接:封装器件提供了电子连接的接口,使得微电子器件能够方便地与外部电路连接起来,实现信号传输和电力供应。
3. 散热:现如今,微电子器件的集成度越来越高,功耗也相应增加。
封装应能有效散热,防止过热对器件性能的影响,确保其稳定运行。
4. 体积小、重量轻:微电子器件的封装应尽量减小其体积和重量,以满足现代电子设备对紧凑和便携性的要求。
5. 成本低:封装的制造成本应尽量低,以便推广应用。
二、封装技术封装技术是实现上述要求的关键。
根据封装方式的不同,可以将封装技术分为传统封装技术和先进封装技术。
1. 传统封装技术传统封装技术包括包装封装和基板封装。
(1)包装封装:包装封装即将芯片封装在芯片封装物中,如QFN (无引脚压焊封装)、BGA(球栅阵列封装)等。
这种封装技术适用于小尺寸器件,并具有良好的散热性能和低成本的优点。
(2)基板封装:基板封装主要是通过将芯片封装在PCB(Printed Circuit Board,印刷电路板)上来实现。
它有着较高的可靠性和良好的电气连接性,适用于信号速度较慢、功耗较低的器件。
2. 先进封装技术随着微电子技术的发展,需要更加先进的封装技术来满足器件的高集成度、大功率以及快速信号传输等需求。
(1)3D封装技术:3D封装技术是指将多个芯片通过堆叠、缠绕、插口等方式进行组合,以实现更高的器件集成度和性能。
常见的3D封装技术包括TSV(Through-Silicon-Via,通过硅通孔)和芯片堆积技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微电子封装技术的发展趋势陆逢(中国矿业大学材料学院,221116)【摘要】 :论述了微电子封装的发展历程,发展现状和发展趋势,主要介绍了几种重要的微电子封装技术(BGA封装技术.CSP封装技术。
MCM封装技术.3D封装技术.SIP封装技术等)。
封装技术的进步满足了人们的需求,促进了电子产业的发展.【关键词】:微电子技术;封装;BGA; MCM ;3D封装 ; SIP0引言电子产品正朝着便携式、小型化、网络化和多媒体化方向发展[9],这种市场需求对电路组装技术提出了相应的要求,单位体积信息的提高和单位时间处理速度的提高成为促进微电子封装技术发展的重要因素。
封装承接承接集成电路的制作,是电子产品制造过程的重要环节,它保护芯片,并提供元器件之间的信号传递。
人们对电子产品的要求逐步提高,因而对PCB的依赖性越来越大。
PCB的制作逐步向高密度。
多层化。
细线路发展,电子产品也趋于轻.薄。
密.小,推动了封装小型化[1]。
1 微电子封装的发展历程集成电路封装的引线和安装类型有很多,按安装到电路板的方式可分通孔插入式和表面安装式,目前的电子封装主要采用表面贴装方式,通孔插入的方式已经很少使用,只用在在个别部件.集成电路封装的历史,其发展主要划分为三个阶段。
第一阶段,在二十世纪七十年代之前,以插装型封装为主。
包括最初的金属圆形(TO型)封装,后来的陶瓷双列直插封装、陶瓷—玻璃双列直插封装和塑料双列直插封装(PDIP)。
尤其是PDIP,由于性能优良、成本低廉又能批量生产而成为主流产品。
第二阶段,在二十世纪八十年代以后,以表面安装类型的四边引线封装为主。
当时,表面安装技术被称作电子封装领域的一场革命,得到迅猛发展。
与之相适应,一批适应表面安装技术的封装形式,如塑料有引线片式裁体、塑料四边引线扁平封装、塑料小外形封装以及无引线四边扁平封装等封装形式应运而生,迅速发展.由于密度高、引线节距小、成本低并适于表面安装,使PQFP 成为这一时期的主导产品。
第三阶段,在二十世纪九十年代以后,以面阵列封装形式为主。
二十世纪九十年代初,集成电路发展到了超大规模阶段,要求集成电路封装向更高密度和更高速度发展[1]。
一般说来,微电子封装分为三级[14]。
所谓一级封装就是在半导体圆片裂片以后,将一个或多个集成电路芯片用适宜的封装形式封装起来,并使芯片的焊区与封装的外引脚用引线键合(WB)、载带自动键合(TAB)和倒装芯片键合(FCB)连接起来,使之成为有实用功能的电子元器件或组件.一级封装包括单芯片组件(SCM)和多芯片组件(MCM)两大类.应该说,一级封装包含了从圆片裂片到电路测试的整个工艺过程,即我们常说的后道封装,还要包含单芯片组件(SCM)和多芯片组件(MCM)的设计和制作,以及各种封装材料如引线键合丝、引线框架、装片胶和环氧模塑料等内容。
这一级也称芯片级封装。
二级封装就是将一级微电子封装产品连同无源元件一同安装到印制板或其它基板上,成为部件或整机.这一级所采用的安装技术包括通孔安装技术(THT)、表面安装技术(SMT)和芯片直接安装技术(DCA)。
二级封装还应该包括双层、多层印制板、柔性电路板和各种基板的材料、设计和制作技术.这一级也称板级封装。
三级封装就是将二级封装的产品通过选层、互连插座或柔性电路板与母板连结起来,形成三维立体封装,构成完整的整机系统,这一级封装应包括连接器、迭层组装和柔性电路板等相关材料、设计和组装技术[3]。
这一级也称系统级封装。
所谓微电子封装是个整体的概念,包括了从一极封装到三极封装的全部技术内容。
在国际上,微电子封装是一个很广泛的概念,包含组装和封装的多项内容。
微电子封装所包含的范围应包括单芯片封装(SCP)设计和制造、多芯片封装(MCM)设计和制造、芯片后封装工艺、各种封装基板设计和制造、芯片互连与组装、封装总体电性能、机械性能、热性能和可靠性设计、封装材料、封装工模夹具以及绿色封装等多项内容[3].有人说,微电子封装就是封装外壳;又有人说微电子封装不过是无源元件,不可能是有源;还有人说,微电子封装不过是个包封体,可有可无,等等。
这些看法都是片面的,不正确的。
我们应该把现有的认识纳入国际微电子封装的轨道,这样既有利于我国微电子封装界与国外的技术交流,也有利于我国微电子封装自身的发展。
下面着重介绍几种重要的微电子封装技术.1。
1 BGABGA 芯片具有多引脚、信息处理量大、芯片尺寸小等特点[4].BGA 器件的封装结构按焊点形状分为两类:球形焊点和柱状焊点。
球形焊点按封装材料分为陶瓷球栅阵列,载带球栅阵列,塑料球栅阵列。
柱状焊点按封装形式又称为陶瓷柱栅阵列。
目前主板控制芯片组多采用此类封装技术,材料多为陶瓷。
采用BGA技术封装的内存,可以使内存在体积不变的情况下,内存容量提高两到三倍,BGA与TSOP相比,具有更小体积,更好的散热性能和电性能。
BGA封装技术使每平方英寸的存储量有了很大提升,采用BGA封装技术的内存产品在相同容量下,体积只有TSOP封装的三分之一;与传统TSOP封装方式相比,BGA封装方式有更加快速有效的散热途径.BGA 封装技术是采用将圆型或者柱状焊点隐藏在封装体下面,其特点是引线间距大、引线长度短[16].在组装过程中,它的优点是消除了精细间距器件由于引线而引起的共平面度差和翘曲度的问题。
缺点是由于BGA的多I/O 端位于封装体的下面,其焊接质量的好坏不能依靠可见焊点的形状等进行判断,运用市面上昂贵的专用检测设备,也不能对BGA 的焊接质量进行定量判定。
因此,在BGA的组装过程中,由于焊点的不可见因素,其焊接质量很难控制。
全面了解影响BGA 焊接技术的质量影响因素,在生产过程中有针对性的进行控制,能有效提高BGA 芯片的焊接质量,确保通信产品的可靠性和稳定性。
BGA封装,即焊球阵列封装,它是在封装体基板的底部制作阵列焊球作为电路的I/O端与印刷线路板(PCB)互接[4]。
采用该项技术封装的器件是一种表面贴装型器件。
与传统的脚形贴装器件(LeadedDe~ce如QFP、PLCC等)相比,BGA封装器件具有如下特点:I/O数较多.BGA封装器件的I/O数主要由封装体的尺寸和焊球节距决定。
由于BGA封装的焊料球是以阵列形式排布在封装基片下面,因而可极大地提高器件的I/O数,缩小封装体尺寸,节省组装的占位空间。
●提高了贴装成品率,潜在地降低了成本。
●BGA的阵列焊球与基板的接触面大、短,有利于散热。
●BGA阵列焊球的引脚很短,缩短了信号的传输路径,减小了引线电感、电阻,因而可改善电路的性能。
●明显地改善了I/O端的共面性,极大地减小了组装过程中因共面性差而引起的损耗。
●BGA适用于MCM封装,能够实现MCM的高密度、高性能。
1。
2 CSPCSP,即芯片尺寸封装。
它的面积与芯片尺寸相同或比芯片尺寸稍大一些, 而且很薄。
CSP技术是在电子产品的更新换代时提出来的,它的目的是在使用大芯片替代以前的小芯片时,其封装体占用印刷板的面积保持不变或更小。
由于CSP产品的体积小、薄,因而它改进了封装电路的高频性能, 同时也改善了电路的热性能[11]:另外,CSP产品的重量也比其它封装形式的轻得多,除了在手持式移动电子设备中应用外, 在航天、航空, 以及对电路的高频性能、体积、重量有特殊要求的军事方面也将获得广泛应用。
CSP封装内存不但体积小,同时也更薄,其金属基板到散热体的最有效散热路径仅有0。
2毫米,大大提高了内存芯片在长时间运行后的可靠性,线路阻抗显著减小,芯片速度也随之得到大幅度提高。
CSP封装内存芯片的中心引脚形式有效地缩短了信号的传导距离,其衰减随之减少,芯片的抗干扰、抗噪性能也能得到大幅提升,这也使得CSP的存取时间比BGA改善15%—20%。
在CSP 的封装方式中,内存颗粒是通过一个个锡球焊接在PCB板上,由于焊点和PCB 板的接触面积较大,所以内存芯片在运行中所产生的热量可以很容易地传导到PCB板上并散发出去[15]。
CSP封装可以从背面散热,且热效率良好,CSP的热阻为35℃/W,而TSOP热阻40℃/W[16]。
CSP封装具有如下特点:体积小。
输入输出端可以很多.电性能好.热性能好.重量轻[15]。
1。
3 MCMMCM(多芯片组件)是将多块半导体裸芯片组装在一块布线基板上的一种封装技术[7]。
MCM是在混合集成电路的基础上发展起来的一项微电子技术,其与混合集成电路没有本质的区别,只是MCM封装具有更高的性能。
更多的功能和更小的体积。
MCM技术可以概括为:多层互联基板的制作与芯片连接两大技术部分。
芯片连接可以用打线键合.TAB或C4等技术完成;基板可以是陶瓷。
金属。
高分子,利用厚膜.薄膜或多层陶瓷共烧等技术制成多层互联结构。
随着电子装备日趋复杂, 工作频率提高, 功耗更大,微电子封装对器件和系统的影响越来越大.封装材料的性能决定着封装能够满足要求的程度.由于产生大量热的器件需要一个高热导通道来散热,以保证芯片在安全的工作温度下工作。
如果芯片温度超出此安全工作温度,器件就会发生早期失效。
MCM有很好的散热条件,可以解决这一问题.根据所用多层布线基板的类型不同,MCM可分为:●叠层多芯片组建(MCM—L)●陶瓷多芯片组建(MCM—C)●沉积多芯片组建(MCM—D)●混合多芯片组建(MCM—C/D)MCM-L 是采用多层印制电路板做成的MCM,制造工艺较成熟,生产成本较低,但因芯片的安装方式和基板的结构所限,高密度布线困难,因此电性较差。
MCM—C是采用高密度多层布线陶瓷基板制成的MCM,结构和制造工艺都与先进IC几乎先似。
其优点是布线层数多,布线密度、封装效率和性能均较高.MCM的优点:➢可大幅提高电路连线密度,增进封装的效率➢可完成“轻、薄、短、小"的封装设计➢封装的可靠度可获得提升MCM的缺点及发展的制约因素:➢由于没有标准的设计规范和生产工艺,缺乏KGD,以及设备、材料和工艺成本比较贵,此外只要一个元器件失效,整个组件就得报废。
➢MCM所组装的LSI、VLSI和ASIC通常为裸芯片,确定好裸芯片来源的问题一直没有从根本上解决3D封装模型1。
4 3D封装随着消费类电子设计降低到45 nm 甚至32 nm节点,在二维平面上封装电子元件的集成度已经达到了极限[5]。
为了在相同的空间内集成共多的电子元器件,人们把目光投向了三维封装。
三维(3D)封装首先突破传统的平面封装的概念,组装效率高达200%以上.它使单个封装体内可以堆叠多个芯片,实现了存储容量的倍增。
它将芯片直接互连,互连线长度显著缩短,信号传输得更快且所受干扰更小;再则,它将多个不同功能芯片堆叠在一起,使单个封装体实现更多的功能,从而形成系统芯片封装新思路;最后,采用3D封装的芯片还有功耗低、速度快等优点,这使电子信息产品的尺寸和重量减小数十倍。