初中数学比例线段

合集下载

线段分线段成比例定理基础练习

线段分线段成比例定理基础练习

线段分线段成比例定理基础练习一、基本概念线段分线段成比例定理,又称为线段的内分和外分定理,是初中数学的重要基础知识之一。

它是指一条直线上的两个点把这条直线划分为三个部分时,两个点与这条直线上其他一点的距离之比等于这两个点所对应的线段之比。

二、成比例定理的表达方式在线段AB上取一点P,使得AP:PB = m:n,其中m,n为正实数。

根据线段分线段成比例定理可得:AP / PB = AP / (AB - AP) = m / n。

三、基础练现在,我们来进行一些线段分线段成比例定理的基础练。

1. 练一已知AB = 12cm,AP:PB = 2:3,求AP和PB的长度。

解答:根据线段分线段成比例定理,我们有AP / PB = 2 / 3。

又知AB = AP + PB,代入已知条件可得:12 = AP + PB。

由此可得到方程组:AP / PB = 2 / 3,AP + PB = 12。

解方程组可得:AP = 4cm,PB = 8cm。

2. 练二已知AB = 15cm,AP:PB = 3:5,求AP和PB的长度。

解答:根据线段分线段成比例定理,我们有AP / PB = 3 / 5。

又知AB = AP + PB,代入已知条件可得:15 = AP + PB。

由此可得到方程组:AP / PB = 3 / 5,AP + PB = 15。

解方程组可得:AP = 5cm,PB = 10cm。

四、总结通过以上练习,我们可以进一步理解线段分线段成比例定理的应用。

在实际问题中,我们可以利用成比例定理快速求解未知长度或比例关系的线段问题。

熟练掌握线段分线段成比例定理的运用,有助于解决更复杂的几何问题。

专题10成比例线段(4个知识点3种题型2个易错点2种中考考法)(解析版)-初中数学北师大版9年级上册

专题10成比例线段(4个知识点3种题型2个易错点2种中考考法)(解析版)-初中数学北师大版9年级上册
2.比例中项:如果 a : b b : c ,那么 b 叫做 a 的比例中项,
【例 2】下列四组线段中,成比例线段的是( )
A.4,1,3,8 B.3,4,5,6
C.4,8,3,5
D.15,5,6,2
【答案】D
【分析】根据成比例线段的定义进行判断即可
解:A.∵ 4 :1 3 : 8 ,
∴ 4,1,3,8 不是成比例线段,不符合题意;
专题 10 成比例线段(4 个知识点 3 种题型 2 个易错点 2 种中考考法)
【目录】
倍速学习四种方法
【方法一】 脉络梳理法 知识点 1.形状相同的图形 知识点 2.两条线段的比(重点) 知识点 3.成比例线段(重点) 知识点 4.比例的性质(难点)(重点) 【方法二】 实例探索法 题型 1.比例线段的有关计算 题型 2.利用比例的性质求值 题型 3.关于写比例式的开放性问题 【方法三】 差异对比法 易错点 1 在求两条线段的比时忽略了要统一单位 易错点 2 判断线段是否成比例时,局限于字母的顺序而出错 【方法四】 仿真实战法 考法 1. 比例的性质 考法 2.成比例线段 【方法五】 成果评定法
n
CD
2.比例尺:在地图或工程图纸上,图上长度与它所表示的实际长度的比值通常叫比例尺,比例尺是两条线
段的比的一种.
注意!!!
(1) 在计算两条线段的比时,这两条线段的长度单位必须要统一。
(2) 两条线段的比是一个没有单位的正实数,该比值与线段的长度无关。 (3) 在地图或工程图纸上,图上距离与实际距离的比通常称为比例尺,因此比例尺也是两条线段的比
【学习目标】
1. 认识形状相同的图形,结合实例能识别生活中形状相同的图形。 2. 了解线段的比和成比例线段的概念,掌握两条线段的比的求法。 3. 理解并掌握比例的性质,能利用比例式变形解决一些简单的实际问题。

4.1比例线段1

4.1比例线段1
【变式】已知点(a,1),(a+2,a)在同一 个正比例函数的图象上,求:
(1)a的值; (2)这个正比例函数的解析式。
谢谢
bd f h b
成立吗?
若 a c m(其中 b d n 0 )
bd
n
ac
仍有
ma 吗?
bd n b
【例5】已知: bccaabk
ab c
,当 abc0时,求k的值。
若去掉限制条件呢?
课堂练习4
如果 a b ca b c a b c k
c
b
a
成立,那么k的值为( )
A.1
B.—2
例2 求比例式中x的值: x:(x+1)=(1-x):3
课堂练习1
1、《课堂冲浪》P.49——夯实基础:#2,#3 2、《课堂冲浪》P.49——夯实基础:#1,#4
3、《课堂冲浪》P.49——拓展提升:#1
【例3】已知 a c ,判断下列
bd
比例式是否成立,并说明理由。
(1 )abcd (2 )aac
4.1比例线段1
为什么翩翩起舞 的芭蕾舞演员要掂 起脚? 为什么身材 苗条的时装模特还 要穿高跟鞋?为什么 她们会给人感到和 谐、平衡、舒适、 美的感觉?
“黄金分割”
怎样利用相似三角形的有关知 识测量旗杆的高度?
4.1 比例线段(1)
——比例的基本性质
比? 比例? 成比例?
知识琏接1—— 什么叫比?
bd
b bd
课堂练习2
1、《课堂冲浪》P.49—— 例题,夯实 基础:#5,#6
2、《课堂冲浪》P.49——拓展提升: #2,3,4,中考琏接
课堂练习3
已知 a 3 。求下列算式的值 b2

《3.1比例线段》作业设计方案-初中数学湘教版12九年级上册

《3.1比例线段》作业设计方案-初中数学湘教版12九年级上册

《比例线段》作业设计方案(第一课时)一、作业目标本作业设计旨在巩固学生对比例线段概念的理解,掌握比例线段的性质和基本应用,通过练习和思考,提高学生的数学逻辑思维能力和解决实际问题的能力。

二、作业内容1. 基础练习:(1)通过例题让学生熟悉比例线段的基本概念,包括外项与内项、外项积等于内项积等。

(2)提供几组线段长度,要求学生判断是否构成比例线段,并说明理由。

2. 概念运用:(1)设计应用题,让学生运用比例线段的知识解决实际问题,如测量物体的长度等。

(2)让学生通过绘制图形,理解并运用比例线段的性质。

3. 拓展提高:(1)设计一些综合性问题,提高学生对比例线段知识的综合运用能力。

(2)提供一些开放性问题,鼓励学生自主探索,培养创新思维。

三、作业要求1. 完成基础练习部分,确保对比例线段的基本概念和性质有清晰的认识。

2. 在概念运用部分,要积极思考,尝试运用所学知识解决实际问题。

3. 拓展提高部分,学生可根据自身能力选择完成,鼓励创新和探索。

4. 作业完成后,要自我检查,确保答案准确无误。

5. 按时提交作业,并附上解题过程和思路。

四、作业评价1. 教师根据学生的作业完成情况,对基础知识和概念的理解程度进行评价。

2. 对学生在概念运用和拓展提高部分的创新和探索精神给予肯定和鼓励。

3. 对学生在解题过程中出现的错误和不足,及时指出并给予指导。

4. 将学生的优秀作业在班级内展示,供大家学习借鉴。

五、作业反馈1. 教师根据学生的作业情况,进行针对性的讲解和点评。

2. 对学生在解题过程中出现的共性问题,进行重点讲解和强调。

3. 鼓励学生提出疑问和困惑,教师及时解答,帮助学生解决学习中的难题。

4. 作业反馈后,要求学生根据教师的点评和建议,对作业进行修正和完善。

六、后续教学建议根据学生的作业情况和反馈,教师可以对后续的教学内容和进度进行调整,以确保教学效果和质量。

同时,可以引导学生进行自主学习和探究学习,培养学生的数学学习兴趣和自信心。

初中数学知识点精讲精析 线段的比

初中数学知识点精讲精析 线段的比

4·1线段的比1. 线段的比:如果选用同一个长度单位量得两条线段AB 、CD 的长度分别是m 、n ,那么就说这注意点:(1)两线段的比值总是正数.(2)讨论线段的比时,不指明长度单位.(3)对两条线段的长度一定要用同一长度单位表示.3. 比例线段四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段.(a 、d 叫做比例线段的外项,b 、c 叫做比例线段的内项) 4. 比例的基本性质. (比例线段中两个外项的积等于两个内项的积)反之也成立。

即如果ad =bc (a 、b 、c 、d 都不等于0),那么5. 合比性质.6. 等比性质7.线段的比和比例线段的区别和联系两条线段的比:=:或写成,其中,线段、分别叫做AB CD m n AB CD mn AB CD =这个线段比的前项和后项,如果把表示成比值,那么或。

m n k ABCDk AB k CD ==⋅2. 比例尺=图上距离实际距离四条线段、、、中,如果与的比等于与的比,即,那么,这a b c d a b c d a b cd=如果,那么。

a b cdad bc ==a b cd =如果,那么。

a b c d a b b c dd =±=±如果,那么。

a b c d m n b d n a c m b d n a b ===+++≠++++++= ()0鹏翔教图1BCA 线段的比是指两条线段之间的比的关系,比例线段是指四条线段间的关系. 若两条线段的比等于另两条线段的比,则这四条线段叫做成比例线段. 线段的比有顺序性,四条线段成比例也有顺序性.如dcb a =是线段a 、b 、c 、d 成比例,而不是线段a 、c 、b 、d 成比例.8. 注意点:①a:b=k,说明a 是b 的k 倍;②由于线段 a 、b 的长度都是正数,所以k 是正数;③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致; ④除了a=b 之外,a:b ≠b:a, b a 与ab互为倒数; ⑤比例的基本性质:若d c b a =, 则ad=bc; 若ad=bc, 则dc b a =1. 已知A 、B 两地的实际距离是80千米,在某地图上测得这两地之间的距离为1cm ,则该地图的比例尺为_____________,现量得该地图上太原到北京的距离为6.4cm ,则将两地实际距离用科学记数法表示为____________千米.(保留两个有效数字) 【解析】∴图上距离与实际距离之比为1:8000000∴太原到北京的实际距离=6.4×8000000=51200000(cm )=512千米 点评:注意单位要统一.2.在某市城区地图(比例尺1∶9000)上,新安大街的图上长度与光华大街的图上长度分别是16 cm 、10 cm.(1)新安大街与光华大街的实际长度各是多少米?(2)新安大街与光华大街的图上长度之比是多少?它们的实际长度之比呢? 【解析】(1)根据题意,得808000000千米=cm太原到北京的图上距离太原到北京的实际距离=1800000090001=新安大街的实际长谎新安大街的图上长度90001=光华大街的实际长度光华大街的图上长度因此,新安大街的实际长度是 16×9000=144000(cm ), 144000 cm=1440 m; 光华大街的实际长度是 10×9000=90000(cm ) 90000 cm=900 m.(2)新安大街与光华大街的图上长度之比是16∶10=8∶5 新安大街的实际长度与光华大街的实 际长度之比是144000∶90000=8∶5 由例2的结果可以发现:光华大街的图上长度新安大街的图上长度光华大街的实际长度新安大街的实际长度= 3.在比例尺为1∶8000的某学校地图上,矩形运动场的图上尺寸是1 cm ×2 cm ,矩形运动场的实际尺寸是多少? 【解析】根据题意,得矩形运动场的图上长度∶矩形运动场的实际长度=1∶8000 因此,矩形运动场的长是 2×8000=16000(cm )=160(m ) 矩形运动场的宽是1×8000=8000(cm )=80(m )所以,矩形运动场的实际尺寸是长为160 m,宽为80 m4.为了参加北京市申办2008年奥运会的活动,如果有两边长分别为1,a (其中a >1)的一块矩形绸布,要将它剪裁出三面矩形彩旗(面料没有剩余),使每条彩旗的长和宽之比与原绸布的长和宽之比相同,画出两种不同裁剪方法的示意图,并写出相应的a 的值. 【解析】方案(1):∵长和宽之比与原绸布的长和宽之比相同,(*)∴1311a a = 解得:a =3图4-1方案(2): 由(*)得axa 112111-==∴x =a1,a =2 方案(3): 由(*)得211ya = ∴y =a21 且11z a = ∴z =a 1 由aa 211+=a 得a =621图4-2方案(4): 由(*)得an ab a 11111-==m a a a 11-= ∴b =a1 n =1-21am =a 2-1∵m +n =1 ∴1-21a+a 2-1=1∴a =2522+(负值舍去)55.(1)如图,已知d c b a ==3,求b b a +和d dc +; (2)如果dc b a ==k (k 为常数),那么d dc b b a +=+成立吗?为什么? 【解析】(1)由dcb a ==3,得 a =3b ,c =3d .因此,bbb b b a +=+3=4 ddd d d c +=+3=4 (2)d d c b b a +=+成立. 因为有dcb a ==k ,得a =bk ,c =dk .所以b bbk b b a +=+=k +1, dddk d d c +=+=k +1. 因此:ddc b b a +=+. 6. 在菱形ABCD 中,∠B =60°,求AC 与BD 的比值.【解析】设AO =x7.下图(1)中的鱼是将坐标为(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)的点O ,A ,B ,C ,D ,B ,E ,O 用线段依次连接而成的;(2)中的鱼是将(1)中鱼上每个点的横坐标,纵坐标都乘以2得到的.AB O DCAC BD ABO B AB AO x ⊥∠=∠===,,则123022又菱形中 ABCD AC x =2BO AB AO x x x=-=-=222223()∴==BD BO x 223∴===AC BD x x 2231333图4-4(1)线段CD 与HL ,OA 与OF ,BE 与GM 的长度分别是多少?(2)线段CD 与HL 的比,OA 与OF 的比,BE 与GM 的比分别是多少?它们相等吗? (3)在图(2)中,你还能找到比相等的其他线段吗? 【解析】(1)CD =2,HL =4,OA =415422=+, OF =41281022=+ BE =52122=+, GM =524222=+(2)2141412,2142====OF OA HL CD , 21525==GM BE . 所以,21===GM BE OF OA HL CD . (3)其他比相等的线段还有21====GL BD GH BC FG AB OM OE 8. 已知四条线段a =8cm ,b =4cm ,c =2.5cm ,d =5cm ,试判断它们是否成比例(若a =8cm ,b =0.05m ,c =0.6dm ,d =10cm 呢)? 【解析】分析先按从小到大或从大到小的顺序排列,然后比较最大和最小两线段长度的乘积与中间两条线段长度的乘积是否相等.(1)从小到大排列为c 、b 、d 、a ac =8×2.5=20,bd =4×5=20 ac =bd ∴成比例(2)先化成同一单位,并从小到大排列为b 、c 、a 、d b =5cm ,c =6cm ,a =8cm ,d =10cm bd =5×10=50,ac =6×8=48 bd ≠ac ∴不成比例9.(1)如果dc b a =,那么d dc b b a -=-成立吗?为什么? (2)如果f e d c b a ==,那么baf d b e c a =++++成立吗?为什么? (3)如果dc b a =,那么d dc b b a ±=±成立吗?为什么. (4)如果d c b a ==…=nm (b +d +…+n ≠0),那么b an d b m c a =++++++ 成立吗?为什么.【解析】(1)如果dc b a =,那么d dc b b a -=-. ∵d cb a = ∴d cb a =-1-1 ∴dd c b b a -=-. (2)如果f e d c b a ==,那么baf d b e c a =++++ 设fe d c b a ===k ∴a =bk ,c =dk ,e =fk ∴bak f d b f d b k f d b fk dk bk f d b e c a ==++++=++++=++++)((3)如果dc b a =,那么d dc b b a ±=±∵d c b a = ∴d c b a =+1+1 ∴dd c b b a +=+ 由(1)得ddc b b a -=- ∴dd c b b a ±=±. (4)如果d c b a ==…=n m(b +d +…+n ≠0)那么b a n d b m c a =++++++设d c b a ==…=nm =k ∴a =bk ,c =dk ,…,m =nk ∴bak n d b m d b k n d b nk dk bk n d b m c a ==++++++=++++++=++++++ )(10.已知:d c b a ==fe=2(b +d +f ≠0) 求:(1)f d b e c a ++++;(2)f d b ec a +-+-;(3)f d b e c a 3232+-+-;(4)fb e a 55--.【解析】∵d c b a ==f3=2 ∴a =2b ,c =2d ,e =2f∴(1)f d b f d b f d b f d b f d b e c a ++++=++++=++++)(2222=2(2)fd b f d b f d b f d b f d be c a +-+-=+-+-=+-+-)(2222=2(3)f d b f d b f d b f d b f d b e c a 32)32(2326423232+-+-=+-+-=+-+-=2(4)f b f b f b e a 510255--=--=fb f b 5)5(2--=211.已知a ∶b ∶c =4∶3∶2,且a +3b -3c =14. (1)求a ,b ,c (2)求4a -3b +c 的值. 【解析】(1)设a =4k ,b =3k ,c =2k ∵a +3b -3c =14 ∴4k +9k -6k =14 ∴7k =14 ∴k =2 ∴a =8,b =6,c =4(2)4a -3b +c =32-18+4=1812的面积.精析:根据比例的性质及已知条件求出a 、b 、c 的值,然后由三角形的面积公式求解.【解析】解之得:k =5∴△ABC 是以a =15cm ,b =20cm 为两条直角边,以c =25cm 为斜边的直角三角形.点评:比例实际上是比例性质的应用问题。

[++初中数学]成比例线段第2课时++等比性质课件+北师大版九年级数学上册

[++初中数学]成比例线段第2课时++等比性质课件+北师大版九年级数学上册
3
典例精析
a b c
ab
例3已知 ,则
的值为 1
2 3 5
c
.
解:设 a b c k ,
…… 设元
则 a = 2k,b = 3k,c = 5k .
…… 表示
a b 2k 3k

1.
c
5k
…… 消元
2
3
5
课堂练习
7
1
ab
ab
a 4
1.(1)已知 b 3 ,那么 b = 3 , b = 3 .
c
a
b
求 k 的值.
a +b b+c c +a


k ,
解:当 a + b + c ≠ 0 时,由
c
a
得 a + b + b + c + c + a k ,则 k = 2.
b
a +b+c
当 a + b + c=0 时,则有 a + b = -c.
a + b c
1.
此时 k
c
c
综上所述,k 的值是 2 或-1.
解:
= , −3 = 2 × 9, = −6
9

(2)若 a = -3,b= 3 ,c = 2,求 d.
−3
解: 3
=
2
,

-3d=2 3, d=
2 3
3
当堂小结
基本
性质
比例的
性质
a c
如果 b d ,那么 ad = bc.
如果 ad = bc (a,b,c,d 都不等于 0),

初中数学竞赛——比例线段初步

初中数学竞赛——比例线段初步

第4讲 比例线段初步知识总结归纳一. 平行线分线段成比例定理:如下图,如果1l ∥2l ∥3l ,则BC EF AC DF =,AB DE AC DF =,AB ACDE DF=. l 3l 2l 1FE D CB A二. 平行线分线段成比例定理的推论:如图,在三角形中,如果DE BC ∥,则AD AE DEAB AC BC==三. 平行的判定定理:如上图,如果有AD AEAB AC=,那么DE BC ∥.四. 两个常见模型:如图,已知直线EF BC ∥,直线EF 分别与直线AB 、AC 、AD 相交于E 、F 、G 点,则BD EGDC FG=.G FE DCBAADAEGFCED CBAB D AE C典型例题一. 比例式的计算【例1】 已知35a b =,求(1)b a ;(2)a bb +的值.【例2】 已知513b a =,则a ba b-+的值是( ) A .23 B .32 C .94 D .49【例3】 已知()()73a b a b +-=::,求(1)ab;(2)222ab b a b ++.【例4】 已知425x y z==,那么3223x y zx y-+=+______;若(2)4x y y +=:,那么(32)(45)x y x y -+=:______.二. 基础训练【例5】 如图,已知直线a b c ∥∥,直线m 、n 分别与a 、b 、c 交于A 、C 、E 、B 、D 、F .若4AC =,6CE =,3BD =,则BF =_______.【例6】 如图,12l l ∥,25AF FB =::,41BC CD =::,则AE EC =:_______.CF D BAEnbam cE FG AD C B2l1l【例7】 如图,DE BC ∥,且DB AE =,若510AB AC ==,,求AE 的长.EDCBA【例8】 证明下列各组问题,并对各组的两个图形进行比较:(1)如图,已知直线EF BC ∥,直线EF 分别与直线AB 、AC 、AD 相交于E 、F 、G 点,求证:BD EGDC FG=.(2)如图,已知DE BC ∥,EF CD ∥,求证:2AD AF AB =⋅.【例9】 如图,已知ABC △,作DE BC ∥交AB 于D ,交AC 于E ,连CD 、BE 交于点F .求证:(1)DF AD CF AB =;(2)1BD EFAB BF+=.FEDCBAG FEDCBABDAEGFCFEDCBACBFDEA【例10】 如图,已知AD 为ABC △的BC 边上的中线,P 为线段BD 上一点,过点P 作AD 的平行线交AB 于Q ,交CA 的延长线于R .求证:2PQ PR AD +=.【例11】 如图,AB BD ⊥,CD BD ⊥,垂足分别为B 、D ,AC 和BD 相交于点E ,EF BD ⊥,垂足为F .证明:111AB CD EF+=. FEDCBA【例12】 如图,在梯形ABCD 中,AB CD ∥, 129AB CD ==,,过对角线交点O 作EF CD ∥交AD BC ,于E F ,,求EF 的长.OFED CBA三. 巩固提高【例13】 如图,在梯形ABCD 中,AD BC ∥,396AD BC AB ===,,,4CD =,若EF BC ∥,且梯形AEFD 与梯形EBCF 的周长相等,求EF 的长.F E DCBAQDPBCA R【例14】 如图,在ABC △中,D 、E 为AC 、AB 上的点,BD 、CE 相交于O ,取AB 的中点F ,连结OF .若12AD CD =,12AE BE =.求证:OF BC ∥.【例15】 如图,ABCD □中,AC 与BD 交于O 点,E 为AD 延长线上一点,OE 交CD 于F ,EO 的延长线交AB 于G ,求证:2AB ADDF DE-=.【例16】 在四边形ABCD 中,AC 、BD 相交于.O .,直线l BD ∥,且与AB 、DC 、BC 、AD 及AC的延长线分别相交于点M 、N 、R 、S 和P ,求证:PM PN PR PS ⋅=⋅.CES RNPC OD BAMlO E DCBAF【例17】 已知,如图,四边形ABCD ,两组对边延长后交于E 、F ,对角线BD EF ∥,AC 的延长线交EF 于G .求证:EG GF =.G FECDBA【例18】 已知O 是平行四边形ABCD 内的任意一点,过点O 作EF AB ∥,分别交AD 、BC 于E 、F ,又过O 作GH BC ∥,分别交AB 、CD 于G 、H ;连结BE ,交GH 于P ;连结DG ,交EF 于Q .如果OP OQ =,求证:平行四边形ABCD 是菱形.【例19】 已知:P 为ABC △的中位线上任意一点,BP 、CP 的延长线分别交对边AC 、AB 于D 、E ,求证:1AD AEDC EB+= PNME D CBA思维飞跃【例20】 如图,已知梯形ABCD 中,AD BC ∥(AD BC <),AC 和BD 相交于M ,EF AD ∥,且过M ,EC 和FB 交于N ,GH AD ∥,且过N .求证:1212AD BC EF GH+=+.【例21】 如图,AD 是ABC △的中线,过CD 上任意一点F ,作EG AB ∥,与AC 和AD 的延长线分别交于G 和E ,FH AC ∥交AB 于点H ,求证:HG BE =.作业1. 已知238x y z ==,求(1)22x z y z +-;(2)2345x y zx+-.DHG F ECBANH MG F E CBD A2. 如下两个图中,已知EF BC ∥,FG DC ∥,分别证明:AE AGAB AD=.3. 已知:如图,在梯形ABCD 中,AB CD ∥,M 是AB 的中点,分别连接AC 、BD 、MD 、MC ,且AC 与MD 交于点E ,DB 与MC 交于F . (1)求证:EF CD ∥(2)若AB a =,CD b =,求EF 的长.FEMDCBA4. 在梯形ABCD 中,AB CD ∥,AC 与BD 交于O ,MON AB ∥,且MON 交AD 、BC 于M 、N .若1MN =,求11AB CD+的值.EF GD CBA CGE BAF5. 如已知DE AB ∥,2OA OC OE =⋅,求证:AD BC ∥.DOECB A6. 如图,已知D 、E 是AC 、AB 上的点,BD 、CE 交于O 点,过O 点作OF CB ∥交AB 于F ,12AD CD =,12AE BE =,求证:F 为AB 的中点.7. 设D 为ABC △的边BC 的中点,过D 作一条直线,交AB 、AC 或其延长线于E 、F ,又过A 作AG BC ∥,交EF 的延长线于G ,则EG FD GF DE ⋅=⋅.F OECB ADFC DB EGA8. 凸四边形ABCD 中,ADC ∠,90BCD ∠o >,BE 平行于AD 交AC 延长线于点E ,AF 平行于BC 交BD 延长线于点F ,,连接E 、F .证明:EF CD ∥.9. 如图, 在直线l 的同侧有三个相邻的等边三角形ABC △、ADE △、AFG △,且G 、A 、B 都在直线l 上,设这三个三角形边长分别为a 、b 、c ,连结GD 交AE 于N ,连BN 交AC 于L ,求AL 的长.10. 如图,D 、E 、F 分别是ABC △中BC 、CA 、AB 的中点,过A 任作一直线DE 、FD 分别交于G 、H ,求证:CG BH ∥.CDOF EBA LNFE DC lBGAHG FED C BAP。

2024-2025学年初中数学九年级上册(湘教版)教学课件3.2平行线分线段成比例

2024-2025学年初中数学九年级上册(湘教版)教学课件3.2平行线分线段成比例

由已知 AB 2 , 得 1 AB 1 BC.
BC 3
2
3
由于
AD
DB
1 2
AB

BE
EF
FC
1 3
BC.
因此 AD DB BE EF FC .
知识讲解
由于a∥d∥b∥e∥f∥c, 因此 A1D1=D1B1 =B1E1 =E1F1 = F1C1. 从而 A1B1 2 A1 D1 2 .
第3章 图形的相似
第3章 图形的相似
3.2 平行线分线段成比例
学习目标
1 了解平行线等分线段成比例的基本事实. 2 掌握由平行线分线段成比例所得的推论.(重点) 3 掌握由平行线分线段成比例所得的推论.(重点) 4 会用平行线分线段成比例的事实和推论解决
相关的计算和证明问题.(难点)
知识回顾
1.比例线段的概念
解: ∵ 两条直线被三条平行线所截,

,
即 4x = 3×7 ,
.
随堂训练
5.如图,已知直线 a∥b∥c,分别交直线 m,n 于点 A,C,E, B,D,F,AC = 4,CE = 6,BD = 3,求 BF 的长.
解:∵a / /b / /c
AC BD CE DF
即4 3 6 DF
4DF 36 DF 18 = 9
∴ 2 AC 1.8 ,
3
AC
∴ 2AC 3( AC 1.8).
解得 AC 5.4.
随堂训练
1.如图,已知l1∥l2∥l3,下列比例式错误的是( D )
A. —ACCE—= —BDDF— B. A—C—= —BD—
AE BF C. C—E—=—D—F
AE BF D. A—E—=—BD—
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、授课目的:
1,理解和应用比例的性质、
2,掌握平行线分线段成比例定理,并能熟练应用
二、授课内容:
知识考点:
本节知识在历年中考的考题中,主要涉及用比例的性质、平行线分线段成比例定理。由于比例的性质在应用时有其限制条件,一些中考题又以此为背景设计分类求解题。
精典例题:
【例1】已知 ,那么 =。
分析:此类问题有多种解法,一是善于观察所求式子的特点,灵活运用等比性质求解;二是利用方程的观点求解,将已知条件转化为 , ,代入所求式子即可得解;三是设“ ”值法求解,这种方法对于解有关连比的问题十分方便有效,要掌握好这一技巧。
3、如图,在△ABC中,AC=BC,F为底边AB上一点, ( 、 >0),取CF的中点D,连结AD,并延长交BC于E。
(1)求 的值;
(2)如果BE=2EC,那么CF所在的直线与边AB有怎样的位置关系?并证明你的结论;
(3)E点能否为BC的中点?如果能,求出相应的 的值;如果不能,说明理由。
4、如图,已知梯形ABCD中,AD∥BC,AB=DC=3,P为BC上一点,PE∥AB交AC于E,PF∥CD交BD于F,设PE、PF的长分别为 、 , 。那么当点P在BC边上移动时, 的值是否变化?若变化,求出 的范围;若不变,求出 的值,并说明理由。
答案:
变式1:已知 ,若 ,则 =。
变式2:已知 ,求 的值。
变式3:已知 ,则 的值为。
答案:(1) ;(2)3;(3)1或-2;
【例2】如图,在△ABC中,点E、F分别在AB、AC上,且AE=AF,EF的延长线交BC的延长线于点D。求证:CD∶BD=CF∶BE。
分析:在题设中,没有平行的条件,要证明线段成比例,可考虑添加平行线,观察图形,对照结论,需要变换比CF∶BE,为了变换比CF∶BE,可以过点C作BE的平行线交ED于G,并设法证明CG=CF即可获证。
跟踪训练参考答案
一、填空题:
1、 ,4,8,14;2、2或-1;3、 或 或12等;4、2∶5;
二、选择题:CBBB
三、解答题:
1、 ;垂直平分AB;(3)E不能是BC的中点;
4、 的值不变化,为定值, 。
分析:要证 ,一般只要证BD、DC与AB、AC或BD、AB与DC、AC所在三角形相似,现在B、D、C在同一条直线上,△ABD与△ADC不相似,需要考虑用别的方法换比。我们注意到在比例式 中,AC恰好是BD、DC、AB的第四比例项,所以考虑过C作CE∥AD交BA的延长线于E,从而得到BD、CD、AB的第四比例项AE,这样,证明 就可以转化为证AE=AC。
证明:过C作CE∥AD交BA的延长线于E
CE∥AD ∠E=∠3
AE=AC
CE∥AD

(1)上述证明过程中,用了哪些定理(写出两个定理即可);
(2)在上述分析、证明过程中,主要用到了三种数学思想的哪一种?选出一个填入后面的括号内()
①数形结合思想②转化思想③分类讨论思想
答案:②转化思想
(3)用三角形内角平分线性质定理解答问题:已知AD是△ABC中∠BAC的角平分线,AB=5cm,AC=4cm,BC=7cm,求BD的长。
∵BM=MC,∴四边形BPCQ是平行四边形
∴CD∥BQ,BE∥QC

∴DE∥BC
(2)过B作BQ∥CD交AM的延长线于Q
∵DE∥BC,∴
∴ ,∴BE∥QC
∴四边形BPCQ是平行四边形
∴M是BC的中点
探索与创新:
【问题】请阅读下面材料,并回答所提出的问题:
三角形内角平分线性质定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例。如图,△ABC中,AD是角平分线。求证: 。
二、选择题:
1、已知如图,AB∥CD,AD与BC相交于点O,则下列比例式中正确的是()
A、 B、 C、 D、
2、如图,在△ABC中,AD=DF=FB,AE=EG=GC,FG=4,则()
A、DE=1,BC=7 B、DE=2,BC=6
C、DE=3,BC=5 D、DE=2,BC=8
3、如图,BD、CE是△ABC的中线,P、Q分别是BD、CE的中点,则PQ∶BC=()
A、1∶3 B、1∶4 C、1∶5 D、1∶6
4、如图, ∥ , ,BC=4CD,若 ,则 =()
A、 B、2 C、 D、4
三、解答题:
1、已知如图,AD=DE=EC,且AB∥DF∥EH,AH交DF于K,求 的值。
2、如图,□ABCD中,EF交AB的延长线于E,交BC于M,交AC于P,交AD于N,交CD的延长线于F。求证: 。
本例为了实现将比CF∶BE转换成比CD∶BD的目的,还有多种不同的添画平行线的方法,它们的共同特征都是构造平行线截得的线段成比例的基本图形,请你们参考图形,自己去构思证明。
变式1:已知如图,D是△ABC的边BC的中点,且 ,求 的值。
变式2:如图,BD∶DC=5∶3,E为AD的中点,求BE∶EF的值。
答案:(1) ;(2)13∶3;
【例3】如图,在△ABC中,P为中线AM上任一点,CP的延长线交AB于D,BP的延长线交AC于E,连结DE。
(1)求证:DE∥BC;
(2)如图,在△ABC中,DE∥BC,DC、BE交于P,连结AP并延长交BC于M,试问:M是否为BC的中点?
解析:(1)延长AM至Q,使MQ=MP
答案: cm
评注:本题的目的主要在于考查学生的阅读理解能力。
跟踪训练:
一、填空题:
1、若 ,则 =;若 ,且 ,则 =, =, =。
2、若 ,则 =。
3、已知数3、6,请再写出一个数,使这三个数中的一个数是另外两个数的比例中项,则这个数是。
4、如图,在□ABCD中,E为BC上一点,BE∶EC=2∶3,AE交BD于点F,则BF∶FD=。
相关文档
最新文档