正弦余弦转换

合集下载

正弦余弦互化公式

正弦余弦互化公式

正弦余弦互化公式
正弦定理:设三角形的三边为a b c,他们的对角分别为a b c,外接圆半径为r,则称关系式a/sina=b/sinb=c/sinc为正弦定理。

余弦定理:设三角形的三边为a b c,他们的对角分别为a b c,则称关系式,a^2=b^2+c^2-2bc*cosa。

正弦定理:设三角形的三边为a b c,他们的对角分别为a b c,外接圆半径为r,则称关系式a/sina=b/sinb=c/sinc为正弦定理。

余弦定理:设立三角形的三边为a b c,他们的对角分别为a b c,则表示关系式
a^2=b^2+c^2-2bc*cosa
b^2=c^2+a^2-2ac*cosb
c^2=a^2+b^2-2ab*cosc。

证明:
任意三角形abc,作abc的外接圆o。

并作直径bd交⊙o于d,相连接da.
因为直径所对的圆周角是直角,所以∠dab=90度,
因为同弧所对的圆周角成正比,所以∠d等同于∠c。

所以c/sinc=c/sind=bd=2r。

相似可以证其余两个等式。

正弦和余弦转换

正弦和余弦转换

正弦和余弦转换公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。

(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

正弦和余弦转换

正弦和余弦转换

正弦和余弦转换公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与—α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π—α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π—α与α的三角函数值之间的关系: sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan →cot,cot→tan。

(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。

(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

正余弦转换公式

正余弦转换公式

诱导公式(口诀:奇变偶不变,符号看象限。

)sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tanα-tanβtan(α-β)=——————1+tanα·tanβ2tan(α/2)sinα=——————1+tan2(α/2)1-tan^2(α/2)cosα=——————1+tan^2(α/2)2tan(α/2)tanα=——————1-tan^2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan^2αsin3α=3sinα-4sin^3αcos3α=4cos^3α-3cosα3tanα-tan^3αtan3α=——————1-3tan^2α三角函数的和差化积公式三角函数的积化和差公式α+βα-βsinα+sinβ=2sin———·cos———2 2α+βα-βsinα-sinβ=2cos———·sin———2 2α+βα-βcosα+cosβ=2cos———·cos———2 2α+βα-βcosα-cosβ=-2sin———·sin———122sinα·cosβ=-[sin(α+β)+sin(α-β)]21cosα·sinβ=-[sin(α+β)-sin(α-β)]21cosα·cosβ=-[cos(α+β)+cos(α-β)]21sinα·sinβ=—-[cos(α+β)-cos(α-β)]2For personal use only in study and research; not for commercial use.Nur für den persönlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden.Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.以下无正文For personal use only in study and research; not for commercial use.Nur für den persönlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden.Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.以下无正文。

正弦和余弦转换

正弦和余弦转换

正弦和余弦转换Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】公式一:设α为任意角,终边相同的角的同一的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的与α的三角之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是时,得到α的同名函数值,即函数名不改变;②当k是时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。

(符号看)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

正弦和余弦转换

正弦和余弦转换

正弦和余弦转换公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π—α与α的三角函数值之间的关系: sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π—α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan。

(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号.(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

正弦和余弦转换

正弦和余弦转换

正弦和余弦转换公式一:设α为任意角,终边一样的角的同一三角函数的值相等:sin〔2kπ+α〕=sin αcos〔2kπ+α〕=cosαtan〔2kπ+α〕=tanαcot〔2kπ+α〕=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin〔π+α〕=-sinαcos〔π+α〕=-cos αtan〔π+α〕=tanαcot〔π+α〕=cotα公式三:任意角α与-α的三角函数值之间的关系:sin〔-α〕=-sinαcos〔-α〕=cosαtan〔-α〕=-tanαcot〔-α〕=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin〔π-α〕=sinαcos〔π-α〕=-cosαtan〔π-α〕=-tanαcot〔π-α〕=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin〔2π-α〕=-sinαcos〔2π-α〕=cosαtan〔2π-α〕=-tanαcot〔2π-α〕=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin 〔π/2+α〕=cosαcos〔π/2+α〕=-sinαtan〔π/2+α〕=-cotαcot〔π/2+α〕=-tanαsin〔π/2-α〕=cosαcos〔π/2-α〕=sinαtan〔π/2-α〕=cotαcot〔π/2-α〕=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.〔奇变偶不变〕然后在前面加上把α看成锐角时原函数值的符号。

〔符号看象限〕例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

正弦余弦转换公式大全

正弦余弦转换公式大全

正弦余弦转换公式大全正弦余弦转换公式是数学中非常重要的内容,它们在物理、工程、计算机图形学等领域有着广泛的应用。

在本文中,我们将全面介绍正弦余弦转换公式的相关知识,包括定义、性质、推导以及应用等方面的内容,希望能够帮助读者更好地理解和运用这些公式。

1. 正弦余弦函数的定义。

正弦函数和余弦函数是最基本的三角函数之一,它们分别定义为直角三角形中对边和邻边比值,即:正弦函数,sin(θ) = 对边/斜边。

余弦函数,cos(θ) = 邻边/斜边。

其中,θ表示夹角,对边、邻边和斜边分别对应直角三角形的三条边。

这两个函数在数学中有着重要的地位,它们的图像具有周期性、对称性等特点,可以描述许多周期性现象。

2. 正弦余弦函数的性质。

正弦函数和余弦函数具有许多重要的性质,包括周期性、奇偶性、单调性等。

其中,最重要的性质之一就是它们之间的转换关系,即正弦函数和余弦函数之间存在着如下的转换关系:sin(π/2 θ) = cos(θ)。

cos(π/2 θ) = sin(θ)。

这两个公式被称为正弦余弦转换公式,它们可以帮助我们在计算中进行正弦函数和余弦函数之间的转换,是解决三角函数计算问题的重要工具。

3. 正弦余弦转换公式的推导。

正弦余弦转换公式的推导可以通过几何方法、三角恒等式等多种途径进行。

其中,最常用的推导方法是利用三角函数的定义和勾股定理,通过对直角三角形的分析得出。

在这里,我们不再赘述具体的推导过程,读者可以在相关教材或资料中找到详细的推导方法。

4. 正弦余弦转换公式的应用。

正弦余弦转换公式在数学和实际应用中有着广泛的应用,特别是在解决三角函数方程、求解三角函数积分、计算三角函数值等方面。

在物理学、工程学、计算机图形学等领域,正弦余弦转换公式也有着重要的应用,例如在振动问题、波动问题、图像处理等方面都能看到它们的身影。

总结。

通过本文的介绍,我们对正弦余弦转换公式有了更深入的了解。

正弦余弦转换公式作为三角函数的重要性质,具有广泛的应用价值,对于理解三角函数的性质、解决实际问题等方面都有着重要的意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正弦和余弦转换
公式一转α转任意角转转相同的角的同一三角函数的转相等sin2kπαsinαcos2kπαcosαtan2kπαtanαcot2kπαcotα公式二转α转任意角πα的三角函转数与α的三角函转数之转的转系sinπαsinαcosπαcosαtanπαtanαcotπαcotα公式三任意角α 与-α的三角函转之转的转系数sinαsinαcosαcosαtanαtanαcotαcotα公式四利用公式二和公式三可以得到π-α与α的三角函转之转的转系数sinπαsinαcosπαcosαtanπαtanαcotπαcotα公式五利用公式一和公式三可以得到2π-α与α的三角函转之转的转系数sin2παsinαcos2παcosαtan2παtanαcot2παcotα公式六π/2±α与α的三角函转之转的转系数sinπ/2αcosαcosπ/2αsinαtanπ/2αcotαcotπ/2αtanαsinπ/2αcosαcosπ/2αsinαtanπ/2αcotαcotπ/2αtanα转转公式转转口转※转律转转※上面转些转转公式可以括转概转于k·π/2±αk∈Z的三角函转个数①当k是偶数转得到α的同名函转函名不改转 数即数②当k是奇数转得到α相转的余函转数即sin→coscos→sintan→cotcot→tan.奇转偶不转然后在前面加上把α看成转角转原函转的符。

数号符看号象限例如sin2παsin4·π/2αk4转偶所以取数sinα。

当α是转角转2πα∈270°360°sin2πα 0符转“”。

号所以sin2παsinα上述的转转口转是奇转偶不转符看象限。

号公式右转的符转把号α转转转角转角k·360°αk∈Z-α、180°±α360°-α所在象限的原三角函转的符可转转数号水平转转名不转 符看象限。

号各转三角函在四象限的符如何判也可以转住口转“一全正 二数个号断正弦 三转切 四余弦” 转十二字口转的意思就是转第一象限任何一角的四转三角函转都是“” 内个数第二象限只有正弦是“”其余全部是“” 内第三象限只有内正切是“”其余全部是“” 第四象限只有余弦是“”其余全部是“” 内上述转转口转一全正二正弦三正切四余弦其他三角函知转数同角三角函基本转系数同角三角函的基本转系式⒈数倒转系数:tanα ·cotα1sinα ·cscα1 cosα ·secα1商的转系sinα/cosαtanαsecα/cscαcosα/sinαcotαcscα/secα平方转系sin2αcos2α11tan2αsec2α1cot2αcsc2α同角三角函转系数六角形转转法六角形转转法看转片或考转料转接参参造以构上弦、中切、下割 左正、右余、中转1的正六转形转模型。

1倒转系转角转上函互转倒 数两个数数2商转系数六转形任意一转点上的函转等于相转的转点上函转的乘转。

数与它两个数主要是转端的三角函转的乘转。

由此可得商转转系式。

两条虚两数数3平方转系在转有转影转的三角形中上面转点上的三角函转的平方和等于下面两个数转点上的三角函转的平方。

数角和差公式两角和差的⒉两与三角函公式数sinαβsinαcosβcosαsinβsinαβsinαcosβcosαsinβcosαβcosαcosβsinαsinβcosαβcosαcosβsinαsinβtanαβtanαtanβ /1tanα ·tanβtanαβtanαtanβ/1tanα ·tanβ倍角公式二倍角的正弦、余弦和正切公式升转转角公式⒊sin2α2sinαcosαcos2αcos2αsin2α2cos2α112sin2αtan2α2tanα/1tan2α半角公式半角的正弦、余弦和正切公式降转转角公式⒋sin2α/21cosα/2cos2α/21cosα/2 tan2α/21cosα/1cosα万能公式万能公式⒌sinα2tanα/2/1tan2α/2 cosα1tan2α/2/1tan2α/2tanα2tanα/2/1tan2α/2万能公式推转附推转sin2α2sinαcosα2sinαcosα/cos2αsin2α......因转cos2αsin2α1再把分式上下同除cos2α可得sin2α2tanα/1tan2α然后用α/2代替α可。

即同理可推转余弦的万能公式。

正切的万能公式可通转正弦比余弦得到。

三倍角公式三倍角的正弦、余弦和正切公式⒍sin3α3sinα4sin3αcos3α4cos3α3cosαtan3α3tanαtan3α/13tan2α三倍角公式推转附推转tan3αsin3α/cos3αsin2αcosαcos2αsinα/cos2αcosα-sin2αsinα2sinαcos2αcos2αsinαsin3α/cos3αcosαsin2α2sin2αcosα上下同除以cos3α得tan3α3tanαtan3α/1-3tan2αsin3αsin2ααsin2αcosαcos2αsinα2sinαcos2α12sin2αsinα
2sinα2sin3αsinα2sin2α3sinα4sin3αcos3αcos2ααcos2αcosαsin2αsinα2cos2α1cosα2cosαsin2α2cos3αcosα2cosα2cos3α4cos3α3cosα即sin3α3sinα4sin3αcos3α4cos3α3cosα三倍角公式转想转转转转方法转音、转想正弦三倍角3元减4元3角欠转了被成减转数所以要“转转”音似“正弦”余弦三倍角4元3角减3元完之后转有“余”减☆☆注意函名正弦的三倍数即角都用正弦表示余弦的三倍角都用余弦表示。

和差化转公式三角函的⒎数和差化转公式sinαsinβ2sinαβ/2 ·cosαβ/2sinαsinβ2cosαβ/2 ·sinαβ/2cosαcosβ2cosαβ/2·cosαβ/2 cosαcosβ2sinαβ/2·sinαβ/2转化和差公式三角函的⒏数转化和差公式sinα ·cosβ0.5sinαβsinαβcosα ·sinβ0.5sinαβsinαβcosα ·cosβ0.5cosαβcosαβsinα ·sinβ 0.5cosαβcosαβ和差化转公式推转附推转首先我转知道sinabsinacosbcosasinbsina-bsinacosb-cosasinb我转把式相加就得到两sinabsina-b2sinacosb 所以sinacosbsinabsina-b/2同理若把式相两减就得到cosasinbsinab-sina-b/2同转的我转转知道cosabcosacosb-sinasinbcosa-bcosacosbsinasinb所以把式相加两我转就可以得到cosabcosa-b2cosacosb所以我转就得到cosacosbcosabcosa-b/2同理式相我转就得到两减sinasinb-cosab-cosa-b/2转转我转就得到了转化和差的四公式个: sinacosbsinabsina-b/2cosasinbsinab-sina-b/2cosacosbcosabcosa-b/2 sinasinb-cosab-cosa-b/2好有了转化和差的四公式以后个我转只需一转形个就可以得到和差化转的四公式个.我转把上述四公式中的个ab转转xa-b转转y那转axy/2bx-y/2把ab分转用xy表示就可以得到和差化转的四公式个:sinxsiny2sinxy/2cosx-y/2 sinx-siny2cosxy/2sinx-y/2cosxcosy2cosxy/2cosx-y/2cosx-cosy-2sinxy/2sinx-y/2
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R表示三角形的外接圆半径
余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角。

相关文档
最新文档