过渡金属有机化学1

合集下载

第5章-过渡金属有机化学基础

第5章-过渡金属有机化学基础
金属有机化学
5.2 八隅体规则和有效原子序数规则(18电子规则 )
八隅体规则适用于主族金属有机化合物:对热力学稳 定的主族金属有机化合物而言,其中心金属原子的价 电子数与配体所提供的电子数总和等于8。 例如:(CH3)4Sn Ph2AsCl 等
第IA、IIA和IIIB的金属有机化合物,常不遵守八隅体 规则。 PhMgBr Me2AlCl
金属有机化学
5.1.2 中心金属的d电子数、配位数及几何构型 1. d10 Pt的外层电子结构是 5d96s1。由于5d和6s轨道 能量相近,在生成过渡金属有机配合物时,容易 发生 d→s 跃迁。在过渡金属有机化学中,人们更 关注d电子,所以也把Pt0称为d10元素 Ni0 、 Pd0 、 Pt0 , Cu+ 、 Ag+ 、 Au+ , Zn2+ 、 Cd2+、Hg2+等也都称为d10元素
第五章
过渡金属有机化学基础
金属有机化学
金属有机化合物的分类
• 按照所含金属以及与金属相连的特征配体 分类 • 按照M-C键的性质分类
金属有机化学
按照所含金属以及与金属相连的特征配体分类
• 主族金属有机化合物: RLi RMgX RmAlX3-m • 过渡金属有机化合物 过渡金属羰基化合物、卡宾和卡拜配合物 、茂金属配合物、过渡金属氢化物等
3. d8 Ni2+ 、 Pd2+ 、 Pt2+ 、 Rh+ 、 Ir+ 等都形成 d8 配合 物,中心金属离子采用dsp2杂化,中心金属的配位 数为4,按平面四边形排布
金属有机化学
4. d7, d6 d7, d6 的中心金属,如 [Co(CN)6]4- 中钴的 3d 轨 道上一个电子被激发到能量更高的 5s 轨道上,采 取d2sp3杂化,中心金属的配位数为6,所生成的配 合物为正八面体构型 5. d5, d4 d5, d4的中心金属, 同样采取 d2sp3 杂化,中 心金属的配位数为 6,所 生成的配合物为八面体 构型

金属有机化学 第4章 过渡金属有机化合物

金属有机化学 第4章 过渡金属有机化合物

烯烃-π配合物
F e (C O ) 5
+
H 2C = C H C H = C H 2
uv -C O H 2C
H2 C Fe OC
H2 C CH2 CO CO
C H C O 2E t F e (C O ) 5 + C H C O 2E t
uv -C O E tO 2 C
OC
×
Fe CO CO
H C
H C
O OC Fe C O C Fe CO
Fe2(5–C5H5)2(-CO)2 (CO)2
35
金属茂的反应性
与亲电试剂反应, 例如酰基化反应:
COCH3
Fe
+
COCH3 C H 3C O C l
Fe
C H 3C O C l
A lC l3
Fe
COCH3
与丁基锂的反应: 锂化反应
Li LiBu +
Fe Fe
trienyl
环戊二烯(η 5) 苯,环庚三烯(η 6)
环庚三烯基(η 7)
12
有效原子序数规则(18电子规则)
这个规则实际上是金属原子与配体成键时倾 向于尽可能完全使用它的九个价轨道(五个d轨道 、1个s、三个p轨道)的表现。 有些时候,它不是 18 而是 16。这是因为18e意 味着全部s、p、d价轨道都被利用,当金属外面电 子过多,意味着负电荷累积, 此时假定能以反馈键 M→L形式将负电荷转移至配体,则18e结构配合 物稳定性较强;如果配体生成反馈键的能力较弱 ,不能从金属原子上移去很多的电子云密度时, 则形成16电子结构配合物。
3 , 1
4 4 5, 3 , 1 6
-烯丙基(allyl) C3H5 1,3-丁二烯 C4H6 环丁二烯 C4H4

第四章 有机过渡金属络合物的合成01

第四章 有机过渡金属络合物的合成01
LnM CHR
R/
R/ LnM
H
LnM=CHR +R/H CHR
H
金属有机化学
R/ CH 2 LnM H C H H C R R LnM CH2 CH2 CR2 + R'H
(IV)
反应(III)和(IV)表示从二烷基络合物攫取氢而生成 的氢基-烷基络合物,再发生RH的还原消除。这种还原 消除反应,有时也紧接着二烷基络合物的β-消除反应而 发生,此时,生成比例为1:1的烷烃 RH和烯烃(R -H),可以 认为是发生了烷基的歧化反应:
OLi Cr(CO)6 + PhLi (OC)5Cr Ph CH2N2 CH3OSO2F (OC)5Cr OC H3 Ph H
+
OH (OC)5Cr Ph
金属有机化学
(2)卡宾前体法 这种方法是将含卡宾结构的化合物(即前体,precursor) 作为配体,与适当金属配合物进行反应。某些活泼氮化物和 富电子烯烃是常用的前体。
加热
[CpMo(CO3)]2
金属有机化学
环戊二烯基配合物
其化合物可分为三类: ⑴平行双环的夹心型 二茂铁 双环平行, 金属夹在中间
⑵歪斜双环型
一氯氢根二茂和锆 (η8- C5H5)2ZrHCl 二羰基三苯基瞵茂合锰
⑶单环型
金属有机化学
一些过渡金属羰基环戊二烯基配合物
配合物 (η5-C5H5)2Ti(CO)2 (η5-C5H5)2Zr(CO)2 (η5-C5H5)2Hf(CO)2 (η5-C5H5)V(CO)4 (η5-C5H5)2V(CO) (η5-C5H5)2Nb(CO)4 (η5-C5H5)Ta(CO)4 (η5-C5H5)2Cr2(CO)6 (η5-C5H5)2Cr (CO) 颜色 红棕色 紫色 紫红色 桔黄色 暗棕色 红色 桔黄色 暗绿色 绿色

过渡金属催化反应的基础和应用

过渡金属催化反应的基础和应用

过渡金属催化反应的基础和应用过渡金属催化反应是现代有机化学领域的一个重要分支。

它以过渡金属作为催化剂,可以有效促进各种有机反应的进行,从而实现高效、高选择性和绿色化学合成。

一、过渡金属催化反应的基础过渡金属催化反应的基础在于过渡金属催化剂具有一定的电子调控和立体效应。

其特点在于过渡金属能够参与反应,并且能够在反应过程中发挥关键作用。

同时,过渡金属催化反应还需要考虑反应中反应物的选择性、可控性和立体匹配性等因素。

1. 过渡金属的电子调控作用在有机反应中,催化剂通常需要通过调控反应物的电子结构,将其转化为更容易与其他反应物作用的中间体。

而过渡金属催化反应的催化剂,则能够通过调控反应物的活化能和键能,实现对反应的选择性控制。

这种电子调控作用与过渡金属的电子排布有关,其中有些过渡金属具有不对称电子密度分布。

例如,palladium配合物具有单个电子分布不均的d8电子结构,这使得palladium成为许多有机反应的优良催化剂。

2. 过渡金属的立体效应在有些反应中,由于反应物之间的取向关系或者过渡态的立体构型等因素,反应的产物结构及其选择性会受到很大影响。

而过渡金属催化剂能够通过调控反应物的旋转和取向,实现反应产物的立体选择性控制。

此外,过渡金属催化剂在反应中会发挥配体效应,即通过改变配体结构来影响活化剂和底物的相互作用。

这种立体调控效应可以通过改变配体电荷、主、辅配体之间的取向关系等因素来实现。

二、过渡金属催化反应的应用过渡金属催化反应在有机合成中广泛应用,可用于构建多种化学键、环化反应、开环反应等。

以下具体介绍一些常见的过渡金属催化反应及其应用。

1. Suzuki反应Suzuki反应是一种通过palladium催化的偶联反应,常用于构造芳基-碳基键。

该反应的底物是芳基卤化物和芳基硼酸酯,产物为具有芳香性的偶联物。

2. Heck反应Heck反应也是一种通过palladium催化的偶联反应,常用于构造芳基-烯基键。

有机过渡金属化学的研究与发展

有机过渡金属化学的研究与发展

有机过渡金属化学的研究与发展有机过渡金属化学是一门研究有机化合物中过渡金属元素参与的化学反应的学科。

过渡金属元素在有机化合物中扮演着重要的角色,其参与的反应可以有效地改变有机分子的性质,并且在有机合成中具有广泛的应用。

随着有机合成领域的不断发展,有机过渡金属化学进一步受到了研究者们的重视。

有机过渡金属化学的研究可以追溯到19世纪末的排队反应规律的探索。

当时的化学家开始研究铜、铁等过渡金属对于有机化合物的影响,并发现它们可以催化一系列有机反应,如重氮化物和亚胺的生成。

这些发现为有机过渡金属化学的研究奠定了基础。

随着科技的进步,研究者们逐渐发现了更多过渡金属元素在有机反应中的重要性。

例如,钌催化剂在有机氢化、羰基化合物的合成以及氧化反应中发挥了重要作用。

铂催化剂的应用则广泛涉及到羰基还原、氢化、氢气化合物的活化等反应。

有机过渡金属化学的研究不仅拓展了有机反应的范围,还提供了高效、高选择性的合成方法,为有机化学合成的研究领域作出了重要贡献。

有机过渡金属化学的研究与发展也涉及到催化剂的设计和反应机理的探索。

催化剂的设计是有机过渡金属化学的关键课题之一。

通过调整催化剂的配体结构和金属中心的选择,可以实现对反应选择性和反应速率的调控。

此外,研究者还需要深入了解有机过渡金属化学反应的机理,通过理论计算等手段揭示反应的本质和可能的中间体。

这些研究对于揭示有机过渡金属化学反应的本质以及合理设计新型催化剂具有重要意义。

有机过渡金属化学的研究还涉及到与其他学科的交叉。

例如,有机过渡金属化学与生物化学之间存在着密切的联系。

生物体内许多重要的酶类催化反应中都含有过渡金属元素,这些反应对于生命的维持至关重要。

有机过渡金属化学研究者可以通过模拟这些生物酶催化体系,深入探索有机反应机制。

此外,有机过渡金属化学还与材料科学、能源科学等学科领域相结合,为开发新型功能化合物提供了重要的思路。

未来,有机过渡金属化学的研究与发展前景广阔。

第5章 过渡金属有机化学基础

第5章 过渡金属有机化学基础
(V) CO
R CC )R (IV
SO2 OC L Ir L Cl
R
L CO Cl Ir CO L
L Ir L Cl CO
图 5-5 Vaska配合物的氧化加成反应
• C-O键与过渡金属有机配合物的氧化加成反应
Ni(cod)2 + OAc C3H5)NiOAc C3H5)2Ni + Ni(OAc)2
• 还原消除反应 还原消除反应是氧化加成的逆反应。发生还 原消除反应时,配合物的氧化态及有效原子序 数均下降 "2",形成A-B型的消除产物。
• 还原消除经过一个非极性、非自由基的三中心过 渡态 。
图5-8 还原消除的三中心过渡态
由于还原消除反应按三中心过渡态机理 进行,发生消除反应的两个配体在过渡金 属有机配合物中必须处在顺位。
Ph2 P Me Pd P Me Ph2 DMSO, 80oC Me-Me
DMSO, 80oC NR Me Ph2P Pd P Ph2 Me
• 在反应过程中加入吸引电子的配体,如顺 丁烯二酸酐,丙烯腈等可加速还原消除反 应。
CN N Ni N Me N Me CN N Ni Me N Me CN CN N Ni CN + Me-Me
表5-3 有效原子序数的计算方法
• 5.3 过渡金属有机配合物的合成 • 5.4 过渡金属有机配合物的化学性质
(1),配体置换反应。(配位体的配位与解离) (2),氧化加成和还原消除反应。 (3),插入反应和消除(反插入)反应。 (4),过渡金属有机配合物配体上的反应。
• 5.4.1过渡金属有机配合物的配体置换反应 配位饱和的过渡金属有机配合物的配体 置换是它们的重要化学性质,也是它们实 现催化作用的首要条件。原有配体被另一 个配体---反应底物置换,使底物进入配位 圈,改变了底物的化学键状态而得到活化, 并接着在配位圈内发生反应。 这是配位催化中第一种反应底物进入配 位圈的途径。

金属有机化学基础-过渡金属有机化合物的基元反应

金属有机化学基础-过渡金属有机化合物的基元反应

b)金属上的正电荷增加还原消除的速率
MeOH Pt(PEt3)2Ph2I2 C6H6 No reaction [Pt(PEt3)2Ph2I(MeOH)]+ + I-
reductive elimination PhI [Pt(PEt3)2Ph(MeOH)]+I-
Pt(PEt3)2PhI
c)加入其它配体降低金属上的电子云密度增加还原消除的速率
3)氧化加成的的SN1反应机理
4)氧化加成的自由基机理
主要针对卤代烃的氧化加成; 金属碱性越强,对反应越有利; RI > RBr > RCl; 叔R > 仲R > 伯R > Me (自由基的稳定程度); 立体化学发生消旋化。
(a) 非链式自由基机理
(b) 链式自由基机理
需要自由基引发剂,O2
H alkyl H > M > M H
M
R
金属上的电子密度对消除反应有影响:
a)易发生消除反应的金属及d “构型”
通常见于满足18e-的金属化合物,且还原消除能得到稳定的金属碎片; 氧化态越高,越容易发生还原消除; d8 = Ni(II), Pd(II), Au(III) d6 = Pt(IV), Pd(IV), Ir(III), Rh(III)
羰基的插入
许多含M-R键的过渡金属有机配合物能插入CO,得到 酰基配合物。 O CO M C R M R CO插入M-R键可能有两种途径,即CO直接插入到M-R 键中和R基团迁移到CO上:
R LnM CO R LnM CO
直接插入
烷基迁移
研究表明是烷基迁移而不是CO插入。
烷基的迁移插入过程可以看成是分子内的亲核进攻, 插入过程中烷基碳立体化学得以保留:

过渡金属有机化学1

过渡金属有机化学1

• Ni原子的基态电子构型为 1s22s22p63s23p63d84s2,在形成配合物时, 可认为4s轨道中的2个电子进入3d轨道,这 在能量上是有利的,所以Ni在0价配合物中 d电子数是10,其它过渡金属原子的d电子 数也是此法计算。
• ②金属氧化数和配体提供电子数的计算
• 有机过渡金属化学中,把金属元素的氧化 数定义为:把所有的配体在闭壳条件下除 掉后,以及把任何金属—金属键均裂,在 金属原子上所剩余的电子数
叔膦
(cm-1)
叔膦
(cm-1)
tnBBuu33PP Et3P Et2PPh Me3P
2056.1 2060.3 2061.7 2063.7 2064.1
Ph3P Ph2P(OM e) (MeO)3P
2068.9 2072 2079.8
• η indicates the number of bound atoms
• The term hepto derives from a Greek word heptein meaning to fasten.
• η是与金属相连的碳原子数
• η1(1e):烷基、芳基、σ-烯丙基(σ-Allyls)
• 它们的d轨道或f轨道没有填满电子,因而 可以利用d、f轨道成键。Cu、Ag、Au元 素本身的d轨道虽然填满电子,但它们的稳 定氧化态却具有未填满的d轨道,镧、锕系 元素的(n-2)f轨道在能量上与(n-1)d、ns、 np轨道能量接近,可参与成键。
• 1、18-电子规则
• 过渡金属都倾向于接受一定数目的电子,达到惰 性气体的电子构型,即(n-1)d10ns2np6,即18-电子 的构型,因此,这些元素都可用它们空着的d轨 道和带电子对的分子或离子形成配位化合物以达 到稳定的18-电子构型,然而对Ti、Zr、Ni、Pd 及Pt有一个在能量上与配位键不相匹配的轨道, 对于这些过渡金属也可形成16-电子稳定的配合物。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ⅠB 铜 Cu 3d104s1 银 Ag 4d105s1
• 锇 • Os • 5d66s2
铱 Ir 5d76s2
铂 Pt 5d96s1
金 Au 5d106s1
• 它们的电子结构的特点是除3s、3p及4s都 填满外,3d开始被电子占据,例如Sc的电 子层结构为1s22s22p63s23p63d14s2,它的 外层价电子是3,3d和4s电子能量差不多相 等,4p的能量较高,因此,电子先逐渐填 满能量较低的3d轨道,到铜为止,3d共有 10个电子,恰好填满,第五周期再开始, 因此这些元素又称为d元素。 ⅡB的锌族元 素,也具有被10个电子填满的3d轨道,它 们往往被称为“后过渡元素”。
10 10 8 8 8 6 6 4 4 2 0
4
3a 2b 5 4a 3b 6 5a 7 6a 8 9
四面体
平面三角 线型 三角双锥 平面四方 T—型 八面体 四方锥c 戴帽八面体 八面体 四方反锥c D3h
[Mo(CO)4Cl3]-1 Mo(Ⅱ) W(CO)2(PPh3) 2Cl2 ReH5[PPh3]3 (ReH9)2W(Ⅱ) Re(Ⅴ) Re(Ⅶ)
Fe CO
(1,2,3-trihaptocycloheptatrienyl) pentahaptocyclopentadienylcarbonyliron
Ti
(5-C5H5)2(1-C5H5)2Ti
R2 P Fe OC P R2
Fe CO
cis-Fe2(5-C5H5)2(CO)2(-PR2)2
• Ni原子的基态电子构型为 1s22s22p63s23p63d84s2,在形成配合物时, 可认为4s轨道中的2个电子进入3d轨道,这 在能量上是有利的,所以Ni在0价配合物中 d电子数是10,其它过渡金属原子的d电子 数也是此法计算。
• ②金属氧化数和配体提供电子数的计算 • 有机过渡金属化学中,把金属元素的氧化 数定义为:把所有的配体在闭壳条件下除 掉后,以及把任何金属—金属键均裂,在 金属原子上所剩余的电子数
• ③18—电子规则的观察实例 • 在一给定配合物中电子数的总和为: • 自由金属原子的价电子数+所有配体给予的 电子的总数+配合物中金属原子的负电荷数 • -配合物中金属原子的正电荷数
Fe
Fe:3d64s2 8+(2×5)=18e稳定结构
CH3Mn(CO)5
Mn CH3 5 CO total
• 三、EAN规则 • 1、有效原子数(EAN): • 过渡金属配合物中金属原子外围的总电子数称为 该金属的有效原子数(effective actomic number),它构成了围绕金属原子的电子构型, 已知围绕金属的电子总数(EAN)对金属有机物 的几何形状和稳定性都是有关系的,所以也叫金 属的电子构型。 • 如果电子总数达到18,这是临近惰性气体(Ke、 Xe、Rn)的电子构型,也就是饱和的电子构型。 许多过渡金属有机化合物的电子构型达到18时, 往往是稳定的,电子双成对显反磁性。
• 它们的d轨道或f轨道没有填满电子,因而 可以利用d、f轨道成键。Cu、Ag、Au元 素本身的d轨道虽然填满电子,但它们的稳 定氧化态却具有未填满的d轨道,镧、锕系 元素的(n-2)f轨道在能量上与(n-1)d、ns、 np轨道能量接近,可参与成键。
• 1、18-电子规则 • 过渡金属都倾向于接受一定数目的电子,达到惰 性气体的电子构型,即(n-1)d10ns2np6,即18-电子 的构型,因此,这些元素都可用它们空着的d轨 道和带电子对的分子或离子形成配位化合物以达 到稳定的18-电子构型,然而对Ti、Zr、Ni、Pd 及Pt有一个在能量上与配位键不相匹配的轨道, 对于这些过渡金属也可形成16-电子稳定的配合物。
L L
L
M
S
L
L
M
S
+
L
L
L
S:溶 剂 L:配 体
(solvent) (ligand)
M L3 +
L'
M L3L'
K=
[ ML3L' ] [ ML3 ] [ L' ]
对有机合成有用的络合物
1. 易 生 成 配 位 饱 和 的 络 合 物 而 分 离 纯 化
2. 这 络 合 物 在 特 定 的 条 件 下 易 于 解 离,
2. 叔膦作为配体
(1) 叔膦配体的电子效应
Tolman: 70 种 Ni(CO)3L 型络合物在 CH2Cl2 的(CO) 表 2 R3PNi(CO)3 中 CO 的红外吸收((CO))
过渡金属有机化学概论
• • 一、什么是过渡金属有机化合物 一般认为,凡分子中含有一个或多个金属-烃 类碳键的一类化合物称为金属化合物。如果该 金属是过渡金属(周期表ⅢB—ⅠB),则称 为有机过渡金属化合物。二元的金属与CO中 的碳直接相连的化合物,虽然不是金属与烃基 碳相连,但由于这类化合物在结构、化学键和 制备方面与有机过渡金属化合物密切相关,故 也认为是有机过渡金属化合物。
配位体
电子数
电荷
配位数
X
H CH3 Ar RCO R3Z R2E CO RNC
1
1 1 1 1 2 2 2 2
-1
-1 -1 -1 -1 0 0 0 0
1(2)
1(2,3) 1(2) 1 1(2) 1 1 1(2,3) 1(2)
R2C=CR2 RC≡CR Η4-环丁二烯 Η5-环戊二烯基
2 2 4 5
生 成 配 位 不 饱 和 的 络 合 物。
Pd ( PPh3 )4 Pd ( PPh3 )3 + PPh3
d10 4 x 2 18 电 子 16 电 子
• 1、过渡金属和烯烃的配位 • 乙烯和过渡金属的配位键包括: • 烯烃的成键π轨道供给电子和金属的空的d 轨道相重叠 • 金属的填满d轨道和烯烃的反键π轨道相重 叠,称为金属的反馈。
[Fe(CN)6]
[ H 3N
4-
BF3]
• 二、过渡元素的结构特征 • 过渡元素是指周期表第4、5、6三个周期 中由ⅢB的钪族元素开始到ⅠB的铜族元素 为止,不包括镧系元素,共26个元素。列 表如下:
• • 4 • • 5 • • 6
过渡金属及其价电子构型 ⅢB ⅣB ⅤB Sc Ti V 钪 钛 钒 3d14s2 3d24s2 3d34s2 Y Zr Nb 钇 锆 铌 4d15s2 4d25s2 4d45s1 Hf Ta 铪 钽 5d26s2 5d36s2
• 烃配体:按其hapto(η)数分 • η indicates the number of bound atoms • The term hepto derives from a Greek word heptein meaning to fasten. • η是与金属相连的碳原子数 • η1(1e):烷基、芳基、σ-烯丙基(σ-Allyls) • η2(2e):烯(或多烯中一个双键配体)、卡 • 宾(Carbene被归入η2—配体,虽然连接于 • 金属的只是一个碳,但它们提供的是二个e) • η3(3e):π-烯丙基(π-allyls)
dn
CN
几何状态
Ni(PF3)4
Pt(PPh3)3 Au(PPh3)Cl [Co(CNAr)5]+1 [Ir(CO)2Cl2]-1 [Rh(PPh3)3]+1 [Fe(CN)6]4 Ru(PPh3)3Cl2
Ni(0)
Pt(0) Au(Ⅰ) Co(Ⅰ) Ir(Ⅰ) R#43;1
6 (d ) 2 2x5 18
6
Mn: 3d 4s
5
2
Ni(0)
Ni
d10 4x2 18 d6 6x2 18
4 C=C Ni: 3d84s2 Cr(0) 2 benzene Cr: 3d54s1
Cr
Fe2+
Fe
d6 2x6 18
2
2
-
3d 4s
6
Rh3+
Rh
+
d6 2 4 6 18
PF61
C=C 3 -
• 配体提供电子数的规定如下: • 非烃配体(按对金属贡献的电子数分) • 0e: Lewis酸、AlX3、BX3 • 1e: -X、-H、NO • 2e: Lewis碱 PR3、P(OR)3、CO、RCN • RNC、NR3、R2O、R2S等 • 3e: NO • NO通常作为3e配体,但也可是1e配体 •
• 该规则认为:在有机过渡金属化合物中, 金属原子的价电子数加上配体提供的电子 数等于18,其电子构型为(n-1)d10ns2np6的 化合物处于稳定状态,有的有机过渡金属 化合物,金属原子周围有16个价电子也处 于稳定状态,故该规则也称为16-18电子规 则。
• ①金属原子或离子价电子数计算(d电子 数): • 过渡金属原子的价电子数应是(n-1)d、ns、 np轨道中的电子总数,过渡金属原子本身 一般是(n-1)d、ns轨道中充填电子,为方 便计,常常把ns中的1个或2个电子归入(n1)d中一起计算,这样可使它们的电子数与 它们在周期表中所处的族号联系起来,除 ⅠB和ⅧB族的后两列外,其它金属d电子 数与族序号相等
0(-2) 0(-2) 0 -1
1(2) 1(2) 2 3
η6 苯
η3烯丙基 η1-烯丙基 η7环庚三烯基 NO O(氧化物) O2
6
3(1) 1 7 3(1) 0 2
0
-1 -1 1 1(-1) -2 -2(-1)
3(2,1)
2 1 3 1(2) 2 2(1)
• 2、d电子数和几何状态
化合物
金属氧化态
• 有机过渡金属化学是研究有机过渡金属化 合物的性质、结构、化学键、制备、化学 变化规律和应用的科学,由于在化学键理 论和催化应用等方面的重要性,它已成为 无机化学、有机化学、结构化学及催化化 学等的边缘科学。
相关文档
最新文档