第十六章 分式单元分析
人教版八年级下第十六章分式教材分析与教学建议

人教版八年级下第十六章分式教材分析与教学建议广州市陈嘉庚纪念中学张群英一、教学目的1、使学生掌握分式的概念,分式的基本性质,能熟练地进行分式变形及约分通分。
2、使学生能准确地进行分式的乘除、加减以及混合运算。
3、使学生学会用科学记数法表示绝对值小于1的数,并能进行有关负整数指数幂的运算。
4、使学生掌握解分式方程的步骤,并能列出可化为一元一次方程的分式方程解决简单的实际问题。
二、本章知识结构网络图三、数学思想方法1、类比法:本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程。
2、转化思想:转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想。
如:分式除法转化为分式乘法;分式加减运算的基本思想:异分母的分式加减法转化为同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等.3、建模思想:本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义。
四、教材特点1、重视从实际问题抽象出数学引进分式的概念时,用一幅江中航行的轮船为背景,引出了路程、速度和时间之间的数量关系,从而导出分式的概念;在16.3节又被用于引入分式方程的概念。
在讨论分式的加减和乘除的过程中,先后按排了涉及容积、工作效率、耕作面积、增长率和工程进度等多个实际问题。
本章安排了大量的实际问题,通过分析与解决实际问题,提高了学生联系实际应用数学知识的意识、兴趣和能力。
2020-2021学年人教版八年级数学第十六章《分式》考点提要+精练精析

2020-2021学年第十六章《分式》提要:分式的四则运算是整式四则运算的进一步发展,是有理式恒等变形的重要内容之一,所以,分式的四则运算是本章的重点.分式的四则混合运算,是整式运算、因式分解和分式运算的综合运用,由于运用了较多的基础知识,运算步骤增多,解题方法多样灵活,又容易产生符号和运算方面的错误,所以是分式的难点.同时列分式方程解应用题和列整式方程解应用题相比较,虽然涉及到的基本数量关系有时是相同的,但由于含有未知数的式子不受整式的限制,所以更为多样而灵活.习题:一、填空题1.使分式234x a x +-的值等于零的条件是_________. 2.在分式2242x x x ---中,当x _____________时有意义,当x _________时分式值为零. 3.在括号内填入适当的代数式,使下列等式成立:2xy =22()2ax y ; 322()x xy x y --=()x x y-. 4.某农场原计划用m 天完成A 公顷的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种_________公顷.5.函数y =221(3)x x -++-中,自变量x 的取值范围是___________. 6.计算1201(1)5(2004)2π-⎛⎫-+-÷- ⎪⎝⎭的结果是_________. 7.已知u=121s s t -- (u≠0),则t=___________. 8.当m =______时,方程233x m x x =---会产生增根. 9.用科学记数法表示:12.5毫克=________吨.10.用换元法解方程222026133x x x x+-=+ ,若设x 2+3x =y ,,则原方程可化为关于y 的整式方程为____________.11.计算(x +y )·2222x y x y y x +-- =____________. 12.若a ≠b ,则方程a b +x a =x b -b a的解是x = ____________; 13.当x _____________时,||3x x -与3x x -互为倒数. 14.约分:34522748a bx a b x =____________;22923a a a ---=_____________. 15.当 x __________________时,分式325x --12x +有意义. 16.若分式123x -- 的值为正,则x 的取值范围是_______________. 17.如果方程5422436x x k x x -+=--有增根,则增根是_______________. 18.已知x y =32;则x y x y -+= __________. 19.m ≠±1时,方程m (mx -m +1)=x 的解是x =_____________.20.一个工人生产零件,计划30天完成,若每天多生产5个,则在26 天完成且多生产15个.求这个工人原计划每天生产多少个零件?若设原计划每天生产x 个,由题意可列方程为____________.二、选择题21.下列运算正确的是( )A .x 10÷x 5=x 2;B .x -4·x =x -3;C .x 3·x 2=x 6;D .(2x -2)-3=-8x 622.如果m 个人完成一项工作需要d 天,则(m +n )个人完成这项工作需要的天数为( )A .d +nB .d -nC .md m n + D .d m n + 23.化简a b a b a b--+等于( ) A .2222a b a b +- B .222()a b a b +- C .2222a b a b -+ D .222()a b a b+- 24.若分式2242x x x ---的值为零,则x 的值是( ) A .2或-2 B .2 C .-2 D .425.不改变分式52223x y x y -+的值,把分子、分母中各项系数化为整数,结果是( )A .2154x y x y -+B .4523x y x y -+C .61542x y x y-+ D .121546x y x y -+ 26.分式:①223a a ++,②22a b a b --,③412()a a b -,④12x -中,最简分式有( ) A .1个 B .2个 C .3个 D .4个27.计算4222x x x x x x ⎛⎫-÷⎪-+-⎝⎭的结果是( ) A .12x + B .-12x + C .-1 D .1 28.若关于x 的方程x a c b x d-=- 有解,则必须满足条件( ) A .c ≠d B .c ≠-d C .bc ≠-ad D .a ≠b29.若关于x 的方程ax =3x -5有负数解,则a 的取值范围是( )A .a <3B .a >3C .a ≥3D .a ≤330.一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲、乙两人合作完成需要( )小时.A .11a b +B .1abC .1a b +D .ab a b+ 三、解答题31.23651x x x x x+----; 32.2424422x y x y x x y x y x y x y ⋅-÷-+-+.33.11322x x x--=---.34.先化简,再求值:)12(122+-÷++x x x x x ,其中,2=x .35.已知:b ab a b ab a b a -+--=-22,211求的值.。
华东师大版八年级下册第十六章分式知识点总结与典型例题讲义(无答案)

目录一、分式的概念1考向1:考查分式的定义2考向2:考查分式有意义的条件2 考向3:考查分式值为0的条件2 考向4:考查分式值为正、负的条件2 考向5:考查分式的值为1,-1的条件2 二、分式的基本性质2考向6:化分数系数、小数系数为整数系数3 考向7:分数的系数变号3 考向8:分式的约分3 考向9:分式的通分3 三、分式的运算3考向10:分式的混合运算4 考向11:化简求值4考向12:求待定字母的值5 四、解分式方程5考向13:用常规方法解分式方程5 考向14:用特殊方法解分式方程5 考向15:分式方程无解忘检验6 考向16:漏乘无分母的项6考向17:由分式方程无解或有增根求未知字母的值6 五、列分式方程应用题6考向18:行程中的应用性问题6 考向19:轮船顺逆水应用问题6 考向20:工程类应用性问题6 考向21:营销类应用性问题7 考向22:浓度应用性问题7 考向23:货物运输应用性问题7分式知识点总结与典型例题一、分式的概念1、定义:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式,A 为分子,B 为分母。
2、与分式有关的条件:①分式有意义:分母不为0(0B ≠) ②分式无意义:分母为0(0B =) ③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=0B A )④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A ) ⑥分式值为1:分子分母值相等(A=B )⑦分式值为-1:分子分母值互为相反数(A+B=0) 典型例题:考向1:考查分式的定义1、下列代数式中:y x yx y x y x ba b a y x x -++-+--1,,,21,22π,是分式的有: 考向2:考查分式有意义的条件2、当有何值时,下列分式有意义(1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-考向3:考查分式值为0的条件 3、当取何值时,下列分式的值为0.(1)31+-x x (2)42||2--x x考向4:考查分式值为正、负的条件4、当为何值时,分式x-84为正; 5、当为何值时,分式2)1(35-+-x x 为负;6、当为何值时,分式32+-x x 为非负数 考向5:考查分式的值为1,-1的条件 7、若22||+-x x 的值为1,-1,则x 的取值分别为 二、分式的基本性质1、分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。
湘教版解读-第十六章分式全章总结

全章总结一、知识结构图♦知识技能专题 二、专 题总结题1分式运算的常用技巧 专题概说:分式的知识通过类比会发现新旧知识的相同点,禾U 用已有的知识来认识新知 分数的定义、基本性质、 通分、约分、分数的加减乘除等运算法则类比引入学习分式的相关 知识.从分数的一些运算技巧类比引入了分式的运算技巧,无一不体现类比思想的重要性, 同时运算也是中考的重要内容 1例1: 2x 4x 3 x 1 x 1 x 2 1 x 41• x 1 x 1 2x 4x 3x 2 1 x 21x 2 1 x 4 1 2x2x 4x 3"x 2 1 x 2 1 x 41"2x(x 21)2x(x 2 1) 4x 3"x 41x 41 x 4 1"4x4x 3"x 4 1 x 414x 3(x 41) 4x 3(x 4 1)"x 81 x 8 1解:原式 =8x 7点拨:有些异分母分式相加, 甚至无法求出结果, 本题先把前面两个分式相加减, 次运算下去,即顺次相加法,就容易解决最简公分母很复杂,如果采用一般方法先通分再加减会很繁琐, 再把所得结果与第三个分式相加减, 顺1 所以,当a 4或6时,原方程会产生增根例2:计算:一1一a(a 1)1 1解:原式=(丄-丄) a a 1 =1 1 (a 1)(a 2) —)a 1 a 2 1 1---------- …+ -----------------(a 2)(a 3) (a 2009)(a 2010)1L) •••+( 1 - 1) 3 a 2009 a 2010 1 1"a 2 a1 1a a 1 a 1 a 2 a 2 a 3 1 — 1 =a a 2010 a 2009 a 2010 2010 a(a 2010)=2010 =a 2 2010a点拨:对于分子相同,分母是相邻两个连续整数的积的分式相加减, 这样的分式无法进行通 _1 n (n 分,因此,可以用公式: 1) 意裂项法计算时可能会出现公式: 1 1n n 1 1 n(n k) ,这样可以抵消一些项,即巧用裂项法;要注 •专题1的即时练习 1 1 1-x 1 x 1 x 2 3x 2 1.计算:2.计算: ♦专题2 : 专题概说: 2 1 x 2 4 1 x 41 2 x 2 5x 6 与增根有关的问题 2x 2 7x 12 分式方程我们通常转化为已经学习过的整式方程来解决. 在去分母时,方程 两边同时乘以所有分母的最简公分母. 这种转化可能是等价转化, 也就是说转化前的分 式方程的解与转化后的整式方程的解完全一致;也可能是非等价转化,即在将分式方程 转化为整式方程的过程中,x 的的取值范围发生了变化,这时整式方程的解不一定是原 分式方程的解,这种解题过程中增加的根称为分式方程的增根. 例3: a 为何值时,关于x 的方程- x 2 ax""2 x 24 会产生增根? x 2 解:在方程两边同时乘以 (X 2)(x 2),得 2(x 2) ax 3(x 2) 整理,得(a 1)x 10如果方程有增根,则 x=2 或-2 当 x=2 时,(a1)210 ,解得a 4当 x=-2 时,(a 1)(2) 10 ,解得 a11点拨:分式方程的增根是使最简公分母为零的根, 但增根一定是由分式方程得到的整式方程的根。
八年级数学下册第十六章分式知识点总结

分式的知识点解析与培优一、分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式。
二、判断分式的依据:例:下列式子中,y x +15、8a 2b 、-239a、y x b a --25、4322b a -、2-a 2、m1、65xy x 1、21、212+x 、πxy 3、yx +3、m a 1+中分式的个数为( )A 、 2B 、 3C 、 4D 、 5练习题:(1)下列式子中,是分式的有 .(1)275x x -+; ⑵ 123x -;⑶25a a -;⑷22x x π--;⑸22b b -;⑹. (7)78x π+(8)3y y (9)234x + 二、 分式有意义的条件是分母不为零;【B ≠0】 分式没有意义的条件是分母等于零;【B=0】分式值为零的条件分子为零且分母不为零。
【B ≠0且A=0 即子零母不零】例2.注意:(12+x ≠0) 例1:当x 时,分式51-x 有意义; 例2:分式xx -+212中,当____=x 时,分式没有意义 例3:当x 时,分式112-x 有意义。
例4:当x 时,分式12+x x有意义例5:x ,y 满足关系 时,分式x yx y-+无意义;例6:无论x 取什么数时,总是有意义的分式是( ) A .122+x x B.12+x x C.133+x x D.25x x - 例7:使分式2+x x有意义的x 的取值范围为( )A .2≠xB .2-≠xC .2->xD .2<x例8:分式)3)(1(2-+-x x x 无意义,则x 的值为( )A. 2B.-1或-3C. -1D.3 三、分式的值为零:使分式值为零:令分子=0且分母≠0,注意:当分子等于0时,看看是否使分母=0了,如果使分母=0了,那么要舍去。
例1:当x 时,分式121+-a a的值为0. 例2:当x 时,分式112+-x x 的值为0.例3:如果分式22+-a a 的值为零,则a 的值为( )A. 2±B.2C.-2D..以上全不对例4:能使分式122--x xx 的值为零的所有x 的值是 ( )A. x=0B.x-1C.x=0 或x=1D.0=x 或1±=x 例5:要使分式65922+--x x x 的值为0,则x 的值为( )A.3或-3B.3C.-3 D 2 例6:若01=+aa,则a 是( ) A.正数 B.负数 C.零 D.任意有理数例9:当X= 时,分式2212x x x -+-的值为零。
华师版八下数学第16章分式知识归纳

华东师大版八年级下册数学第16章 分式§16.1分式及基本性质一、分式的概念1、分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子B A 叫做分式。
2、对于分式概念的理解,应把握以下几点:(1)分式是两个整式相除的商。
其中分子是被除式,分母是除式,分数线起除号和括号的作用;(2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;(3)分母不能为零。
3、分式有意义、无意义的条件(1)分式有意义的条件:分式的分母不等于0;(2)分式无意义的条件:分式的分母等于0。
4、分式的值为0的条件:当分式的分子等于0,而分母不等于0时,分式的值为0。
即,使BA =0的条件是:A=0,B ≠0。
5、有理式整式和分式统称为有理式。
整式分为单项式和多项式。
分类:有理式单项式:由数与字母的乘积组成的代数式;⎪⎩⎪⎨⎧−→−⎩⎨⎧分式多项项单项式整式多项式:由几个单项式的和组成的代数式。
二、分式的基本性质1、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
用式子表示为:A B = A ·M B ·M= A÷M B÷M ,其中M (M ≠0)为整式。
2、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是:确定几个分式的最简公分母。
确定最简公分母的一般方法是:(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的最高次幂、所有不同字母及指数的积。
(2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。
3、约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
初中数学华东师大八年级下册(2023年新编)第16章 分式[1分式的乘除]
![初中数学华东师大八年级下册(2023年新编)第16章 分式[1分式的乘除]](https://img.taocdn.com/s3/m/1eee7ecef9c75fbfc77da26925c52cc58ad69043.png)
16.2 分式的运算第1课时分式的乘除一、教材分析本节课为华东师大版八年级数学下册第16章第2节第1课时内容,是初中数学重要内容之一。
分式的乘除法既是小学所学的分数的乘除法的进一步抽象,又是第14章整式乘除法的扩充,是前面所学的分式的基本性质的运用,它是分式四则运算的基础。
因此本节课起着承前启后的作用。
二、学情分析学生在前面学习了因式分解、分式基本性质、分式的约分等,本节课的乘除法是分式基本性质的应用,在此基础上类比小学学习过的分数的乘除法运算法则进行学习分式的乘除运算,学生不难接受。
只是需要注意的是分式乘除运算的结果要化为最简分式。
八年级学生具有一定逻辑推理能力、代数式的运算的能力,已初步形成主动探索知识的能力。
开展小组合作探究学习,利用数学活动容易调动学生的学习兴趣。
三、课型新授课四、教学目标1.理解并掌握分式乘除法的运算法则。
2.能正确进行分式乘除法计算。
3.通过计算、类比转化、归纳出分式乘除的法则,初步培养归纳、类比的意识。
五、教学重难点教学重点:分式的乘法法则,分式的除法法则。
教学难点:运用分式的乘除法法则进行计算并解决实际问题。
六、教学方法和手段多媒体课件七、教学过程(一)复习引入,类比探究1.先填空,再说说分数的乘除法法则2.计算:3.试一试计算:类比分数的乘除法法则,你能说出分式的乘除法法则吗?(二)小组合作,分享成果1.根据上面3题尝试计算类比分数的乘除法法则,归纳总结出分式的乘除法的法则。
分式的乘法:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
分式的除法:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
上述法则用式子表示为:2.小组展示成果 (三)典例精析,加深理解 1.例1:计算 【互动探索】(引发学生思考)利用分式的乘除法法则和分式的乘方法则进行计算。
【互动总结】(学生总结,老师点评)利用分式乘除法法则进行计算,运算结果应化为最简分式。
八年级16章分式知识点

八年级16章分式知识点在数学学科中,分式是一个重要的概念。
在初中阶段,分式的具体内容通常在高年级进行学习,比如八年级第16章就是分式知识点的学习内容。
在这一章节中,学生将学习如何理解分式的概念,如何用分式解决实际问题,以及分式的简化和运算等知识点。
本文将详细介绍八年级第16章分式知识点的内容。
1. 章节概述在八年级第16章,学生需要掌握以下四个方面的内容:1.1 分式的概念分式是一个形如“a/b”的表达式,其中“a”和“b”是数。
分式的意义是将一个数“a”分为“b”份。
例如,“3/4”表示将数3分成4份,每一份为“3/4”。
1.2 分式的运算对于两个分式“a/b”和“c/d”,我们可以进行加、减、乘、除这四种运算。
具体来说,加法和减法可以通过通分实现,乘法可以直接相乘分子和分母,而除法则通过取倒数来实现。
1.3 分式的简化当分子和分母没有公因数时,分式就已经简化了。
但如果存在公因数,则需要通过约分来简化分式。
约分的过程是将分子和分母同时除以它们的最大公因数。
1.4 分式的应用分式在实际生活中有着广泛的应用,比如在化学中用于计算化学反应中物质的量,或者在经济学中用于计算利率等。
2.分式的概念分式是数学中非常重要的一个概念。
在具体的表达式中,分式通常表示将一个整体分为若干份的比例关系。
在八年级的16章中,学生需要掌握分式的基本概念,包括如何理解分式的意义,以及如何将分式表示为最简形式等。
3.分式的运算分式的运算分为四种,包括加法、减法、乘法和除法。
4种运算的具体规则如下:3.1 加法和减法在分式加法和减法中,需要先使两个分母相同,然后再将两个分式的分子进行相加或相减,最后化简得到最简分式。
具体来说,假设分式为a/b和c/d,则它们的和为(ad+bc)/bd,差为(ad-bc)/bd。
3.2 乘法分式的乘法比较简单,只需要将两个分式的分子和分母分别相乘,然后约分即可。
具体来说,假设分式为a/b和c/d,则它们的积为ac/bd。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级数学下册教案
第十六章分式
教材分析
本章的主要内容包括:分式的概念,分式的基本性质,分式的约分与通分,分式的加、减、乘、除运算,整数指数幂的概念及运算性质,分式方程的概念及可化为一元一次方程的分式方程的解法。
全章共包括三节:
16.1 分式
16.2 分式的运算
16.3 分式方程
其中,16.1节引进分式的概念,讨论分式的基本性质及约分、通分等分式变形,是全章的理论基础部分。
16.2节讨论分式的四则运算法则,这是全章的一个重点内容,分式的四则混合运算也是本章教学中的一个难点。
克服这一难点的关键是通过必要的练习掌握分式的各种运算法则及运算顺序。
在这一节中对指数概念的运用从正整数扩大到全体整数,这给运算带来便利。
16.3节讨论分式方程的概念,主要涉及可以化为一元一次方程的分式方程。
解方程中要应用分式的基本性质,并且出现了必须检验(验根)的环节,这是不同于以前学习的解方程的新问题。
根据实际问题列出分式方程,是本章教学中的另一个难点,掌握它的关键是提高分析问题中数量关系的能力。
分式是不同于整式的另一类有理式,是代数式中重要的基本概念;相应地,分式方程是一类有理方程,解分式方程的过程比解整式方程更复杂些。
然而,分式或分式方程更适合作为某些类型的问题的数学模型,它们具有整式或整式方程不可替代的特殊作用。
借助对分数的认识学习分式的内容,是一种类比的认识方法,这在本章学习中经常使用。
解分式方程时,化归思想很有用,分式方程一般要先化为整式方程再求解,并且要注意检验是必不可少的步骤。
(二)教学目标
本章教科书的设计与编写以下列目标为出发点:
1.以描述实际问题中的数量关系为背景,抽象出分式的概念,体会分式是刻画现实世界中数量关系的一类代数式。
2.类比分数的基本性质,了解分式的基本性质,掌握分式的约分和通分法则。
3.类比分数的四则运算法则,探究分式的四则运算,掌握这些法则。
4.结合分式的运算,将指数的讨论范围从正整数扩大到全体整数,构建和发展相互联系的知识体系。
5.结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想。
(三)课时安排
本章教学时间约需12课时,具体分配如下:
16.1 分式2课时
16.2 分式的运算6课时
16.3 分式方程3课时
数学活动小结1课时。