正比例函数与一次函数知识点及练习
正比例函数与一次函数知识点归纳

正比例函数与一次函数知识点归纳Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】《正比例函数与一次函数》知识点归纳《正比例函数》知识点一、表达式:y=kx (k≠0的常数)二、图像:正比例函数y=kx的图像是:一条经过(0,0)和(1,k)的直线;说明:正比例函数y=kx的图像也叫做“直线y=kx”;三、性质特征:1、图像经过的象限:k>0时,直线过原点,在一、三象限;k<0时,直线过原点,在二、四象限;2、增减性及图像走向:k>0时,y随x增大而增大,直线从左往右由高降低;k<0时,y随x增大而减小,直线从左往右由低升高;四、成正比例关系的几种表达形式:1、y与x成正比例:y=kx (k≠0);2、y与x+a成正比例:y=k(x+a) (k≠0);3、y+a与x成正比例:y+a=kx (k≠0);4、y+a与x+b成正比例:y+a= k(x+b) (k≠0);《一次函数》知识点一、表达式:y=kx+b (k≠0, k, b为常数)注意:(1)k≠0,自变量x的最高次项的系数为1;(2)当b=0时,y=kx,y叫x的正比例函数。
二、图像:一次函数y=kx+b (k≠0, b≠0)的图像是:一条经过(-,0)和(0,b)的直线。
说明:(1)一次函数y=kx+b (k≠0, b≠0)的图像也叫做“直线y=kx+b”;(2)直线y=kx+b与x轴的交点坐标是:(-,0);直线y=kx+b与y轴的交点坐标是:(0,b).三、性质特征:1、图像经过的象限:(1)、k>0,b>0时,直线经过一、二、三象限;(2)、k>0,b﹤0时,直线经过一、三、四象限;(3)、k﹤0,b>0时,直线经过一、二、四象限;(4)、k﹤0, b﹤0时,直线经过二、三、四象限;2、增减性及图像走向:k>0时,y随x增大而增大,直线从左往右由高降低;k<0时,y随x增大而减小,直线从左往右由低升高;3、一次函数y=kx+b (k≠0, b≠0)中“k和b的作用”:(1)k的作用:k决定函数的增减性和图像的走向k>0时,y随x增大而增大,直线从左往右由高降低;k<0时,y随x增大而减小,直线从左往右由低升高;(2)∣k∣的作用:∣k∣决定直线的倾斜程度∣k∣越大,直线越陡,直线越靠近y轴,与x轴的夹角越大;∣k∣越小,直线越平缓,直线越远离y轴,与x轴的夹角越小;(3) b的作用:b决定直线与y轴的交点位置b>0时,直线与y轴正半轴相交(或与y轴的交点在x轴的上方);b﹤0时,直线与y轴负半轴相交(或与y轴的交点在x轴的下方);(4)k和b的共同作用:k和b共同决定直线所经过的象限四、直线的平移规律:直线y=kx+b可以由直线y=kx平移得到当b>0时,将直线y=kx:向上平移b个单位得到直线y=kx+b;当b﹤0时,将直线y=kx:向下平移∣b∣个单位得到直线y=kx+b;五、两条直线平行和垂直:直线m:y=ax+b; 直线n: y=cx+d(1)当a=c,b≠d时,直线m∥直线n,反之也成立;例如:直线y=2x+3与直线y=2x-5都与直线y=2x平行。
《正比例函数与一次函数》知识点归纳知识讲解

《正比例函数与一次函数》知识点归纳《正比例函数》知识点一、表达式:y=kx (k≠0的常数)二、图像:正比例函数y=kx的图像是:一条经过(0,0)和(1,k)的直线;说明:正比例函数y=kx的图像也叫做“直线y=kx”;三、性质特征:1、图像经过的象限:k>0时,直线过原点,在一、三象限;k<0时,直线过原点,在二、四象限;2、增减性及图像走向:k>0时,y随x增大而增大,直线从左往右由高降低;k<0时,y随x增大而减小,直线从左往右由低升高;四、成正比例关系的几种表达形式:1、y与x成正比例:y=kx (k≠0);2、y与x+a成正比例:y=k(x+a) (k≠0);3、y+a与x成正比例:y+a=kx (k≠0);4、y+a与x+b成正比例:y+a= k(x+b) (k≠0);《一次函数》知识点一、表达式:y=kx+b(k≠0, k, b为常数)注意:(1)k≠0,自变量x的最高次项的系数为1;(2)当b=0时,y=kx,y叫x的正比例函数。
二、图像:一次函数y=kx+b (k≠0, b≠0)的图像是:一条经过(-,0)和(0,b)的直线。
说明:(1)一次函数y=kx+b (k≠0, b≠0)的图像也叫做“直线y=kx+b”;(2)直线y=kx+b与x轴的交点坐标是:(-,0);直线y=kx+b与y轴的交点坐标是:(0,b).三、性质特征:1、图像经过的象限:(1)、k>0,b>0时,直线经过一、二、三象限;(2)、k>0,b﹤0时,直线经过一、三、四象限;(3)、k﹤0,b>0时,直线经过一、二、四象限;(4)、k﹤0, b﹤0时,直线经过二、三、四象限;2、增减性及图像走向:k>0时,y随x增大而增大,直线从左往右由高降低;k<0时,y随x增大而减小,直线从左往右由低升高;3、一次函数y=kx+b (k≠0, b≠0)中“k和b的作用”:(1) k的作用:k决定函数的增减性和图像的走向k>0时,y随x增大而增大,直线从左往右由高降低;k<0时,y随x增大而减小,直线从左往右由低升高;(2)∣k∣的作用:∣k∣决定直线的倾斜程度∣k∣越大,直线越陡,直线越靠近y轴,与x轴的夹角越大;∣k∣越小,直线越平缓,直线越远离y轴,与x轴的夹角越小;(3) b的作用:b决定直线与y轴的交点位置b>0时,直线与y轴正半轴相交(或与y轴的交点在x轴的上方);b﹤0时,直线与y轴负半轴相交(或与y轴的交点在x轴的下方);(4)k和b的共同作用:k和b共同决定直线所经过的象限四、直线的平移规律:直线y=kx+b可以由直线y=kx平移得到当b>0时,将直线y=kx:向上平移b个单位得到直线y=kx+b;当b﹤0时,将直线y=kx:向下平移∣b∣个单位得到直线y=kx+b;五、两条直线平行和垂直:直线m:y=ax+b; 直线n: y=cx+d(1)当a=c,b≠d时,直线m∥直线n,反之也成立;例如:直线y=2x+3与直线y=2x-5都与直线y=2x平行。
《正比例函数与一次函数》知识点归纳

《正比例函数与一次函数》知识点归纳《正比例函数》知识点表达式:y=kx (心0的常数)图像:正比例函数y=kx的图像是:一条经过(0,0)和(1,说明:正比例函数y=kx的图像也叫做“直线y=kX';性质特征:1、图像经过的象限:k>0时,直线过原点,在一、三象限;k<0时,直线过原点,在二、四象限;增减性及图像走向:k>0时,y随x增大而增大k<0时,y随x增大而减小,直线从左往右由高降低;,直线从左往右由低升高;1、y与x成正比例:y=kx (k工0);2、y 与x+ a 成正比例:y=k(x + a)(k 工0);3、y + a与x成正比例:y + a=kx (k工0);4、y + a 与x+ b 成正比例:y + a= k(x + b)(k 工0);《一次函数》知识点表达式:y=kx+b (心0, k, b为常数)注意:(1)k M0,自变量x的最高次项的系数为1 ;(2)当b=0时,y=kx,y叫x的正比例函数。
四、成正比例关系的几种表达形式:的直线;2、、图像:一次函数y=kx+b (k丰0, b丰0)的图像是:一条经过(」,0)和k (0, b)的直线。
说明:(1)一次函数y=kx+b (k工0, b工0)的图像也叫做“直线y=kx+b” ;(2)直线y=kx+b与x轴的交点坐标是:(-丄,0);k直线y=kx+b与y轴的交点坐标是:(0,b).三、性质特征:1、图像经过的象限:(1)、k>0, b>0时,直线经过一、二、三象限;(2)、k>0, b< 0时,直线经过一、三、四象限;(3)、k < 0,b>0时,直线经过一、二、四象限;(4)、k < 0, b < 0时,直线经过二、三、四象限;b/02、增减性及图像走向:k>0时,y随x增大而增大,直线从左往右由高降低;k<0时,y随x增大而减小,直线从左往右由低升高;3、一次函数y=kx+b (k工0, b工0)中“ k和b的作用”:(1)k的作用:k决定函数的增减性和图像的走向k>0时,y随x增大而增大,直线从左往右由高降低;k<0时,y随x增大而减小,直线从左往右由低升高;(2)I k I的作用:l k I决定直线的倾斜程度I k I越大,直线越陡,直线越靠近y轴,与x轴的夹角越大;I k I 越小,直线越平缓,直线越远离 y 轴,与x 轴的夹角越小;(3) b 的作用:b 决定直线与y 轴的交点位置b>0时,直线与y 轴正半轴相交(或与y 轴的交点在x 轴的上方);b <0时,直线与y 轴负半轴相交(或与y 轴的交点在x 轴的下方);(4) k 和b 的共同作用:k 和b 共同决定直线所经过的象限四、 直线的平移规律:直线y=kx+b 可以由直线y=kx 平移得到当b>0时,将直线y=kx :向上平移b 个单位得到直线y=kx+b ;当b < 0时,将直线y=kx :向下平移I b I 个单位得到直线y=kx+b ;五、 两条直线平行和垂直: 直线 m y=ax+b;直线n: y=cx+d(1)当a=c , b M d 时,直线m//直线n,反之也成立;例如:直线y=2x+3与直线y=2x-5都与直线y=2x 平行。
完整版)正比例函数和一次函数基础练习题

完整版)正比例函数和一次函数基础练习题1.下列关系中成正比例的是()A.从甲地到乙地,所用的时间和速度;B.正方形的面积与边长;C.买同样的作业本所要的钱数和作业本的数量;D.人的体重与身高。
2.下列函数中,y是x的正比例函数的是()B.y=2x。
3.下列说法中不成立的是()A.在y=3x-1中y+1与x成正比例;B.在y=-x^2中y与x成正比例;C.在y=2(x+1)中y与x+1成正比例;D.在y=x+3中y与x成正比例。
4.若函数y=(2m+6)x^2+(1-m)x是正比例函数,则m 的值是()D.m>-3.5.已知(x1,y1)和(x2,y2)是直线y=-3x上的两点,且x1>x2,则y1与y2的大小关系是()B.y1<y2.6.形如y=kx(k为常数)的函数是正比例函数。
7.若x、y是变量,且函数y=(k+1)xk^2是正比例函数,则k=0.8.正比例函数y=kx(k为常数,k<0)的图象依次经过第二象限,函数值随自变量的增大而减小。
9.已知y与x成正比例,且x=2时y=-6,则y=9时x=3.10.1)电报费y(元)=0.1x(个),y是x的正比例函数。
2)气温下降5℃对应高度上升1km,可得y=28-5x,y不是x的正比例函数。
3)圆面积y(cm^2)=πx^2,y是x的正比例函数。
11.题目中的函数为y=-3x,P点的坐标为(-√2.3√2),PA的长度为3√2,故△POA的面积为3.一、选择题1、下列函数中,y是x的一次函数的是()①y=x-6;②y= -3x–1;③y=-0.6x;④y=7-xB、①③④2、一次函数y= -3x+2的图象经过第三象限。
C、一、三、四。
3、如果一次函数y=kx+b的图象经过点(-2,-1)和点(1,2),那么它的图象不会经过第三象限。
4、正确的说法是:C、正比例函数不是一次函数。
5、当ab>0,ac<0时,直线ax+by+c=0不通过第三象限。
一次函数与正比例函数(分层练习)(提升练)-八年级数学上册基础知识专项突破讲与练(北师大版)

专题4.6一次函数与正比例函数(分层练习)(提升练)一、单选题(本大题共10小题,每小题3分,共30分)1.(2023春·云南昆明·八年级校考阶段练习)下列函数中,属于正比例函数的是()A .22y x =+B .21y x =-+C .1y x=D .5x y =2.(2023秋·安徽蚌埠·八年级统考阶段练习)规定:[]k b ,是一次函数0y kx b k b k =+≠(、为实数,)的“特征数”.若“特征数”是[]44m -,的一次函数是正比例函数,则点22m m +-(,)所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限3.(2022·黑龙江大庆·统考中考真题)平面直角坐标系中,点M 在y 轴的非负半轴上运动,点N 在x 轴上运动,满足8OM ON +=.点Q 为线段MN 的中点,则点Q 运动路径的长为()A .4πB .C .8πD .4.(2022春·福建福州·八年级统考期末)若直线1y kx k =++经过点()3m n +,和()121m n +-,,且02k <<,则n 的值可以是()A .3B .4C .5D .65.(2022秋·八年级课时练习)新定义:[],a b 为一次函数y ax b =+(a ,b 为常数,且0a ≠)关联数.若关联数[1,2]m +所对应的一次函数是正比例函数,则关于x 的方程1322x m-=的解为()A .4x =B .2x =-C .1x =D .0x =6.(2020秋·安徽合肥·八年级合肥38中校考阶段练习)A (x 1,y ),B (x 2,y 2)是一次函数y=kx+2(k>0)图像上的不同的两点,若t=(x 1-x 2)(y 1-y 2),则()A .t<1B .t>0C .t=0D .t≤17.(2023·山东济宁·校考三模)从有理数1012-,,,中任选两个数作为点的坐标,满足点在直线1y x =-+上的概率是()A .16B .15C .14D .138.(2023春·八年级课时练习)已知一次函数21y kx k =-+(k 为常数,且0k ≠),无论k 取何值,该函数的图像总经过一个定点,则这个定点的坐标是()A .()0,1B .()2,1C .()1,0D .()1,29.(2022秋·八年级课时练习)如图,Rt ABC ∆在平面直角坐标系内,其中90ABC ∠=︒,5AC =.点B ,C 的坐标分别为(20),,(50),.将Rt ABC ∆沿x 轴向右平移,当点A 落在直线3y x =-时,线段AC 扫过的面积为()A .16B .20C .32D .3810.(2019秋·安徽合肥·八年级校联考阶段练习)已知y ﹣1与x 成正比例,当x =3时,y =2.则当x =﹣1时,y 的值是()A .﹣1B .0C .13-D .23二、填空题(本大题共8小题,每小题4分,共32分)11.(2022秋·安徽滁州·八年级校考阶段练习)若()12a y a x-=-是x 的正比例函数,则=a .12.(2023·上海·八年级假期作业)如果正比例函数y kx =(0)k ≠的自变量增加5,函数值减少2,那么当3x =时,y =.13.(2023秋·全国·八年级专题练习)已知函数3(4)3k y k x -=-+是一次函数,则k 的值为.14.(2023·黑龙江大庆·大庆外国语学校校考模拟预测)若以关于x y ,的二元一次方程组59x y x y k +=⎧⎨-=⎩的解为坐标的点在一次函数243y x =-+的图像上,则k 的值为.15.(2023秋·江苏淮安·八年级校考期末)若一次函数25y x =-的图像过点()a b ,,则21b a -+=.16.(2022秋·八年级课时练习)在平面直角坐标系中,点A (2,m )在直线21y x =-+上,点A 关于y 轴对称的点B 恰好落在直线1y kx =+上,则k 的值为.17.(2022秋·八年级课时练习)“闪送”是1小时同城速递服务领域的开拓者和一对一急送服务标准的制定者.客户下单后,订单全程只由唯一的“闪送员”专门派送,平均送达时间在60分钟以内,同时避免传统快递服务的中转、分拣,配送过程中存在的诸多安全性问题.某闪送公司每月给闪送员的工资为:底薪1700元,超过300单后另加送单补贴(每送一个包裹称为一单),送单补贴的具体方案如下:送单数量补贴(元/单)每月超过300单且不超过500单的部分5每月超过500单的部分7设该月某闪送员送了x 单(500)x >,所得工资为y 元,则y 与x 的函数关系式为.18.(2022秋·江苏·八年级专题练习)为了加强公民的节水和用水意识,合理利用水资源,各地采用价格调控等手段达到节约用水的目的.某市规定如下用水收费标准:每户每月的用水不超过36m 时,水费按每立方米a 元收费;超过36m 时,不超过的部分每立方米仍按a 元收费,超过的部分每立方米按b 元收费.该市某户今年3、4月份的用水量和水费如下表所示:月份用水量(3m )水费(元)357.54927根据题意可知:b =;设某户该月用水量为()3m 6x x >,应交水费为y (元),写出y 与x之间的关系式.三、解答题(本大题共6小题,共58分)19.(8分)(2023·上海·八年级假期作业)(1)已知2()(3)f x m x =-是正比例函数,求m 的取值范围;(2)若函数2()(3)3f x m x m =-+-是正比例函数,那么m 的值是多少?20.(8分)(2023春·福建福州·八年级校考期末)若点(),m n 在一次函数23y x =-的图象上.(1)求代数式362032n m -+的值;(2)点()56,5A m n -在直线23y x =-上吗?为什么?21.(10分)(2022秋·全国·八年级专题练习)已知3y -与x 成正比例,且2x =时,7y =.(1)求y 与x 的函数关系式;(2)当12x =-时,求y 的值;(3)将所得函数图象平移,使它过点(2,-1).求平移后直线的解析式.22.(10分)(2022秋·八年级课时练习)“绿叶”家政服务公司选派16名清洁工去打扫新装修的“海天”宾馆的房间,房间有大、小两种规格,每名清洁工一天能打扫4个大房间或5个小房间.设派x 人去清扫大房间,其余人清扫小房间,清扫一个大房间工钱为80元,清扫一个小房间工钱为60元.(1)写出家政服务公司每天的收入y (元)与x (人)之间的函数关系式:(2)应该怎样安排这16名清洁工清扫?才能一天为“绿叶”家政服务公司创收5000元.23.(10分)(2022秋·全国·八年级专题练习)将长为38cm 、宽为5cm 的长方形白纸按如图所示的方法黏合在一起,黏合部分的白纸宽为2cm .(1)求5张白纸黏合的长度;(2)设x 张白纸黏合后的总长为ycm ,写出y 与x 的函数关系式;(标明自变量x 的取值范围)(3)用这些白纸黏合的长度能否为362cm ,并说明理由.24.(12分)(2019·八年级单元测试)如图,已知在平面直角坐标系中,点A的坐标是()0,3,点C是x轴上的一个动点,点C在x轴上移动时,始终保持ACP∆是等边三角形.当点C移动到点O时,得到等边三角形AOB(此时点P与点B重合).(1)点C在移动的过程中,当等边三角形ACP的顶点P作第三象限时(如图所示),求证:AOC ABP≌.由此你发现什么结论?∆∆(2)求点C在x轴上移动时,点P所在函数图象的解析式.参考答案1.D【分析】根据正比例函数的定义逐个判断即可.解:A .不是正比例函数,故本选项不符合题意;B .是一次函数,但不是正比例函数,故本选项不符合题意;C .不是正比例函数,故本选项不符合题意;D .是正比例函数,故本选项符合题意;故选:D .【点拨】本题考查了正比例函数的定义,能熟记正比例函数的定义是解此题的关键,注意:形如y =kx +b (k 、b 为常数,k ≠0)的函数,叫一次函数,当b =0时,函数也叫正比例函数.2.D【分析】根据正比例函数的定义求出m 的值,然后求出点的坐标即可判断.解:由题意得:∵“特征数”是[4,m ﹣4]的一次函数是正比例函数,∴m ﹣4=0,∴m =4,∴2+m =6,2﹣m =﹣2,∴点(6,﹣2)在第四象限,故选:D .【点拨】本题考查了正比例函数的定义,熟练掌握正比例函数的定义是解题的关键.3.B【分析】设点M 的坐标为(0,m ),点N 的坐标为(n ,0),则点Q 的坐标为22n m ⎛⎫⎪⎝⎭,,根据8OM ON +=,得出8n m +=,然后分两种情况,80n -≤<或08n ≤≤,得出2m 与2n的函数关系式,即可得出Q 横纵坐标的关系式,找出点Q 的运动轨迹,根据勾股定理求出运动轨迹的长即可.解:设点M 的坐标为(0,m ),点N 的坐标为(n ,0),则点Q 的坐标为22n m ⎛⎫⎪⎝⎭,,∵8OM ON +=,∴8n m +=,(88n -≤≤,08m ≤≤),∵当80n -≤<时,8n m n m +=-+=,∴422n m -+=,即422m n=+,∴此时点Q 在一条线段上运动,线段的一个端点在x 轴的负半轴上,坐标为(-4,0),另一端在y 轴的非负半轴上,坐标为(0,4),∴此时点Q =;∵当08n ≤≤时,8n m n m +=+=,∴422n m +=,即422m n =-,∴此时点Q 在一条线段上运动,线段的一个端点在x 轴的正半轴上,坐标为(4,0),另一端在y 轴的非负半轴上,坐标为(0,4),∴此时点Q =;综上分析可知,点Q 运动路径的长为B 正确.故选:B .【点拨】本题主要考查了平面直角坐标系中的动点问题,根据题意找出点Q 的运动轨迹是两条线段,是解题的关键.4.C【分析】根据题意得出31211n km k n km k k +=++⎧⎨-=+++⎩,求出4k n =-,根据02k <<,求出46n <<,即可得出答案.解:由题意得31211n km k n km k k +=++⎧⎨-=+++⎩,解得:4k n =-,02k << ,042n ∴<-<,46n ∴<<,n ∴可以是5,故C 正确.故选:C .【点拨】本题主要考查了一次函数的性质,利用函数图象上的点满足函数关系式,用n 表示出k ,得到关于n 的不等式是解题的关键.5.C【分析】先依据题意得到函数关系式,然后依据正比例函数的定义求得m 的值,最后解一元一次方程即可.解:∵[a ,b ]为一次函数y =ax +b (a ,b 为实数,且a ≠0)的关联数,∴关联数[1,m +2]所对应的一次函数是y =x +m +2.又∵该函数为正比例函数,∴m +2=0,解得m =-2.∴方程可变形为:13222x -=-,解得:x =1,∴方程的解为x =1.故选:C .【点拨】本题主要考查的是正比例函数的定义,解一元一次方程,求得m 的值是解题的关键.6.B【分析】根据点在一次函数图象上,将点代入解析式,得到112y kx =+,222y kx =+,再代入t 的式子得到()212t k x x =-,根据平方式的非负性得到结果.解:∵()12,A x y 、()22,B x y 在一次函数()20y kx k =+>上,∴112y kx =+,222y kx =+,()()()12121222y y kx kx k x x -=+-+=-,()()()()()21212121212t x x y y x x k x x k x x =--=-⋅-=-,∵12x x ≠,∴()2120t k x x =->.故选:B .【点拨】本题考查一次函数的图象和性质,平方式的非负性,解题的关键是熟练运用一次函数图象上点的性质去列式求解.7.D【分析】先列出数1012-,,,中任取两个数作为点的坐标所有情况,再判断是否在直线上,最后再利用概率公式的求法得出.解:数1012-,,,中任取两个数作为点的坐标可以为()()()()()()()10111201010211-----,、,、,、,、,、,、,、()()()()()1012212021-,、,、,、,、,共12种等可能的情况,依次代入1y x =-+知()()()()1,20,11,02,1--、、、在直线上,故概率为41123=.故选:D .【点拨】此题主要考查一次函数与概率的结合,依次列出各坐标点是解题的关键.8.B【分析】先将一次函数解析式变形为(2)1y x k =-+,即可确定定点坐标.解:∵21(2)1y kx k x k =-+=-+,当2x =时,1y =,∴无论k 取何值,该函数的图像总经过一个定点()2,1;故选:B .【点拨】本题考查了一次函数图像上点的坐标特征,将一次函数变形为(2)1y x k =-+是解题的关键.9.B【分析】根据勾股定理求得AB 的长,进而求得平移的值,根据平行四边形的性质求解即可.解:∵点B ,C 的坐标分别为(20),,(50),∴3BC = 90ABC ∠=︒,5AC =.4AB ∴=当点A 落在直线3y x =-时,43x =-解得7x =∴平移后点B (7,0)∴平移了72=5-个单位∴线段AC 扫过的面积为5420⨯=故选B【点拨】本题考查了平移的性质,求一次函数自变量的值,掌握平移的性质是解题的关键.10.D【分析】设1(0)y kx k -=≠,把x =3,y =2代入求出k 的值,把x =﹣1代入函数解析式即可得到相应的y 的值.解:由题意设1(0)y kx k -=≠,则由x =3时,y =2,得到:2﹣1=3k ,解得:13k =,则该函数解析式为:113y x =+,把x =﹣1代入113y x =+得:12(1)133y =⨯-+=,故选:D .【点拨】本题考查了待定系数法求一次函数的解析式,再根据给定x 的值求y 的值,这是基础题型,务必要掌握.11.2-【分析】根据正比例函数的定义:一般地,形如y kx =(k 是常数,0k ≠)的函数叫做正比例函数,得:11a -=且20a -≠,求解即可.解:根据题意得:11a -=,解得2a =或2-,20a -≠,解得2a ≠,2a ∴=-,故答案为:2-【点拨】本题考查了正比例函数的定义,根据正比例函数的定义求解是解题的关键.12.65-【分析】根据可得当3x =时,3y k =,当8x =时,8y k =,再根据自变量和函数值的变化关系可得32=8k k -,从而求得正比例函数解析式,再把3x =代入求值即可.解:由题意可得,当3x =时,3y k =,∵正比例函数y kx =(0)k ≠的自变量增加5,函数值减少2,∴358x =+=时,8y k =,∴32=8k k -,∴25k =-,∴正比例函数解析式为25y x =-.∴当3x =时,26355y =-⨯=-.【点拨】本题主要考查正比例函数的概念及性质,熟练掌握正比例函数的性质是解题的关键.13.2【分析】直接利用一次函数的定义分析得出k 的值即可.解:∵函数3(4)3k y k x -=-+是一次函数,∴40,31k k -≠-=,解得2k =,故答案为:2.【点拨】此题主要考查了一次函数的定义,正确把握定义是解题关键.14.19【分析】解方程组,先用含k 的代数式表示出x 、y ,根据以方程组的解为坐标的点在一次函数243y x =-+的图像上,得到关于k 的一元一次方程,求解即可.解:59x y x y k +=⎧⎨-=⎩①,②①+②得,259x k =+,∴592k x +=;-①②,得:259y k=-∴592k y -=把592k x +=,592k y -=代入243y x =-+,得:25+9435922k k =-⨯+-,解得,19k =,故答案为:19【点拨】本题考查了二元一次方程组的解法,解决本题的关键是用含k 的代数式表示出方程组中的x 、y .15.4-【分析】先把点(),a b 代入一次函数25y x =-,得到25b a =-,然后代入代数式计算即可.解:∵一次函数25y x =-的图像过点()a b ,,∴25b a =-,∴2125214b a a a -+=--+=-.故答案为:4-.【点拨】本题主要考查了一次函数图像上点的坐标特点、代数式求值等知识点,掌握凡是函数图像经过的点必能满足解析式是解答本题的关键.16.2【分析】根据直线21y x =-+的解析式求出m ,再求出点A 关于y 轴的对称点,再将对称点带入1y kx =+求出k .解:点A (2,m )在直线21y x =-+上,∴3m =-,点A (2,-3)关于y 轴对称的点为(-2,-3),∴321k -=-+,∴2k =,故答案为:2.【点拨】本题考查一次函数和轴对称的性质,解题的关键是能够根据轴对称的性质求出对称点的坐标.17.7800y x =-【分析】该员工的工资包括底薪1700元,每月超过300单且不超过500单的部分200×5=1000元,超过500单的7(x-500)元,然后求和即可.解:y=1700+200×5+7(x-500)=7x-800.故答案为:7800y x =-.【点拨】本题主要考查了列函数解析式,正确理解题意成为解答本题的关键.18.6627y x =-【分析】根据3月份用水量与水费的关系可得a 的值,根据4月分用水量和水费的关系即可求得b 的值,根据题意写出y 与x 之间的关系式即可解:3月份的用水量为53m ,水费为7.5元,未超过63m ,则57.5a =解得 1.5a =4月份的用水量为93m ,水费为27元,超过63m∴()27=6 1.596b⨯+-解得6b =设某户该月用水量为()3m 6x x >,应交水费为y =()1.5666x ⨯+-627x =-即627y x =-故答案为:6,627y x =-【点拨】本题考查了一元一次方程的应用,列一次函数关系式是解题的关键.19.(1)m ≠2)3m =【分析】(1)根据正比例函数的定义可得230m -≠,即可求解;(2)根据正比例函数的定义可得30m -=,即可求解.解:(1)∵2()(3)f x m x =-是正比例函数,∴230m -≠,∴m ≠(2)∵函数2()(3)3f x m x m =-+-是正比例函数,∴30m -=,∴3m =.【点拨】考查正比例函数的概念理解,熟练掌握正比例函数的定义是解题的关键.20.(1)2023;(2)在,理由见分析【分析】(1)直接把点(),m n 代入一次函数23y x =-求出m 、n 的关系,代入代数式进行计算即可;(2)把56x m =-代入直线23y x =-,求出y 的值即可.解:(1)∵点(),m n 在一次函数23y x =-的图象上,∴23n m =-,∴362032n m -+,()33362032m m =--+,6962032m m =--+,2023=;(2)点()56,5A m n -在直线23y x =-上.∵当56x m =-时,()2563y m =--,1015m =-,()523m =-,5n =.∴点()56,5A m n -在直线23y x =-上.【点拨】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.21.(1)y=2x+3;(2)2;(3)y=2x-5【分析】(1)根据题意设y 与x 的关系式为y-3=kx (k≠0);然后利用待定系数法求一次函数解析式;(2)把12x =-代入一次函数解析式可求得;(3)因为函数图象平移,所以k 不变,设平移后直线的解析式为y=2x+b ,把点(2,-1)代入求出b 的值,即可求出平移后直线的解析式.解:(1)∵y-3与x 成正比例,∴设y-3=kx (k≠0),把x=2时,y=7代入,得7-3=2k ,k=2;∴y 与x 的函数关系式为:y=2x+3,故答案为:y=2x+3;(2)当12x =-时代入,解得:12()322y =´-+=,故答案为:2;(3)∵函数图像平移,∴k 不变,设平移后的函数解析式为:y=2x+b ,代入点(2,-1),∴-1=2×2+b ,解得b=-5,故平移后的函数解析式为:y=2x-5,故答案为:y=2x-5.【点拨】本题要注意利用一次函数的性质,列出方程组,求出k 值,从而求得其解析式,另外求直线平移后的解析式时要注意平移时k 的值不变,只有b 发生变化.22.(1)()204800016y x x =+≤≤;(2)应该安排这10名清洁工清扫大房间,6名清扫小房间【分析】(1)设派x 人去清扫大房间,则(16)x -人清扫小房间,根据题意列出y (元)与x (人)之间的函数关系式即可;(2)把5000y =,代入204800y x =+求解即可.解:(1)有x 人清扫大房间,则有16x -人清扫小房间∴()()80460516204800016y x x x x =⨯+⨯-=+≤≤(2)2048005000x +=解得:10x =,166x -=答:应该安排这10名清洁工清扫大房间,6名清扫小房间.【点拨】本题考查了列一次函数解析式,已知函数值求自变量x 的值,属于基础题,第(1)问要写出自变量的取值范围是易错点.23.(1)5张白纸黏合的长度为182cm ;(2)362y x =+(x≥1,且x 为整数);(3)能,理由见分析.【分析】(1)5张白纸黏合,需黏合4次,重叠2×4=8cm ,所以总长就可得到;(2)x 张白纸黏合,需黏合(x-1)次,重叠2(x-1)cm ,所以总长可以表示出来;(3)解当y=362时得到的方程,若x 为自变量取值范围内的值则能,反之则不能.解:(1)53842182⨯-⨯=;答:5张白纸黏合的长度为182cm ;(2)382(1)362y x x x =--=+(x≥1,且x 为整数);(3)能,当y=362时,得到:36x+2=362,解得x=10.【点拨】考查了函数关系式和函数值的应用,解题关键是能根据题意列出函数关系式.24.(1)点P 在过点B 且与AB 垂直的直线上或PB AB ⊥或90ABP ∠=︒;(2)3y -【分析】(1)由等边三角形的性质易证AO=AB ,AC=AP ,∠CAP=∠OAB=60°;然后由图示知∠CAP+∠PAO=∠OAB+∠PAO ,即∠CAO=∠PAB .所以根据SAS 证得结论;(2)利用(1)中的结论PB ⊥AB .根据等边三角形的性质易求点B 的坐标为32B ⎫⎪⎪⎝⎭.再由旋转的性质得到当点P 移动到y 轴上的坐标是(0,-3),所以根据点B 、P 的坐标易求直线BP 的解析式.解:(1)AOB ∆ 与ACP ∆都是等边三角形,AO AB ∴=,AC AP =,60CAP OAB ∠=∠=︒.CAP PAO OAB PAO ∴∠+∠=∠+∠.CAO PAB ∴∠=∠.AOC ABP ∴∆∆≌.结论:点P 在过点B 且与AB 垂直的直线上或PB AB ⊥或90ABP ∠=︒.(2)点P 所在函数图象是过点B 且与AB 垂直的直线上,AOB ∆ 是等边三角形,()0,3A,322B ⎛⎫∴ ⎪ ⎪⎝⎭.当点C 移动到使点P 在y 轴上时,得()0,3P -.设点p 所在直线的解析式为:y kx b =+,把B ,P两点的坐标代入得:3,3,2b b =-⎧∴+=解得 3.k b ⎧=⎪⎨=-⎪⎩所以点P所在函数图象的解析式为3y -.【点拨】此题考查一次函数综合题,解题关键在于求出∠CAO=∠PAB .。
一次函数与正比例函数(练习)

2 已知:一次函数 y = (m -1)x + 2m + 1 求:⑴ 若y随x增大而增大,求:m的取值范围 ⑵若图象过2,3,4象限,求:m的取值范围.
解:⑴ m-1 > 0
∴m > 1
m -1 < 0 (2) 2m + 1 < 0
m<1
1 m<2
1 则: m < 2
3 已知:正比例函数的图象过(-2,-4)点,一次函数的图象过(1,5) 和(8,-6)点,⑴ 求:这两个函数的解析式.⑵ 若两直线相交于 A,求:点A的坐标 ⑶ 若一次函数的图象与x轴交于B,求:∆AOB 的面积.
练 习
1 已知:函数 y =(m-3)x
m
2
-m–1
+ m2 + 4m - 12
⑴ 当 m 取何值时该函数是一次函数? ⑵ 当 m 取何值时该函数是正比例函数? 解:⑴依题意: m - 3≠0 ∴m=2 或 m = -1
m2 – m -1=0
⑵依题意: m - 3≠0 m2 – m -1=1 m2 + 4m -12 = 0 ∴m=2
4 已知:直线 x -2y= -k + 6和x+3y=4k+1,若它们的交点在第四 象限内,求k的取值范围。
作 业
1、已知一个正比例函数和一个一次函数,它们的函 数图象都过M(-2,1),且一次函数的图象与y轴 交与Q(0,3) (1)求两个一次函数的解析式; (2)求两函数图像的交点坐标。
2、已知一次函数的图象经过(3,5)和 (-4,-9)两点。 (1)求此一次函数的解析式. (2Βιβλιοθήκη 若点(a,2)在函数图象上,求a的值
初中数学《一次函数、正比例函数》典型例题及答案解析

初中数学《一次函数、正比例函数》典型例题及答案解析1.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是()A.y=x﹣3. B.y=2x+3. C.y=﹣x+3. D.y=2x﹣3.【答案】C【解析】【分析】根据正比例函数图象确定B点坐标再根据图象确定A点的坐标,设出一次函数解析式,代入一次函数解析式,即可求出.【详解】∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵一次函数的图象过点A(0,3),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组,解得,则这个一次函数的解析式为y=−x+3,故选:C.【点睛】本题主要考查一次函数的解析式和一次函数的图象与性质,熟悉掌握是关键.2.下列式子中,表示y是x的正比例函数的是()A.y=. B.y=x+2. C.y=x2. D.y=2x.根据正比例函数的定义条件:k为常数且,自变量次数为1,判断各选项,即可得出答案.【详解】A、,自变量次数不为1,故本选项错误;B、. y=x+2,是和的形式,故本选项错误;C、y=x2,自变量次数不为1,故本选项错误;D、y=2x ,符合正比例函数的含义,故本选项正确;所以D选项是正确的.【点睛】本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数的定义条件是:k为常数且,自变量次数为1.3.定义(p,q)为一次函数y=px+q的特征数.若特征数是(2,k-2)的一次函数为正比例函数,则k的值是()A.0 B.-2 C.2 D.任何数【答案】C【解析】【分析】根据新定义写出一次函数的表达式;由正比例函数的定义确定k的值.【详解】解:根据题意,特征数是(2,k-2)的一次函数表达式为:y=2x+(k-2).因为此一次函数为正比例函数,所以k-2=0,解得:k=2.故选C.【点睛】本题主要考查一次函数、正比例函数的定义,有新意,但难度不大.4.一个正比例函数的图象经过(2,-1),则它的表达式为A.y=-2x B.y=2x C.D.设该正比例函数的解析式为,再把点代入求出的值即可.【详解】设该正比例函数的解析式为,正比例函数的图象经过点,,解得,这个正比例函数的表达式是.故选:.【点睛】考查的是待定系数法求正比例函数的解析式,熟知正比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.5.在平面直角坐标系中,记直线与两坐标围成的面积为,则最接近( )A.B.C.D.【答案】C【解析】令x=0,y=,令y=0,x=,则直线(k为正整数)与x轴的交点坐标为(,0),与y轴的交点坐标为(0,),∴直线与两坐标轴所围成的图形的面积为S k=,当k为正整数时,S k=当k=1,S1=;当k=2,S2=,,=,=,=,故选C.6.已知等腰三角形周长为,则底边长关于腰长的函数图象是( )A.B.C.D.【答案】D【解析】根据题意得y+2x=20,y=-2x+20,∵y>0且2x>y,∴-2x+20>0且2x>-2x+20,∴5<x<10,∴底边长y关于腰长x的函数关系为y=-2x+20(5<x<10),∵k=-2<0,∴y随x的增大而减小,故选D.7.如果是的正比例函数,是的一次函数,那么是的( )A.正比例函数B.一次函数C.正比例函数或一次函数D.不构成函数关系【答案】B【解析】由题意得:y=kx,x=k1z+b,则y=kk1z+kb,当b≠0时,y是z的一次函数,②当b=0时,y是z的正比例函数,综上所述,y是z的一次函数,故选B.A.B.C.D.【答案】A【解析】因为一次函数y=-2x+4的图像与x轴交点坐标是(2,0)与y轴交点坐标是(0,4),故选A.9.若点在函数的图象上,则下列各点在此函数图象上的是( )A.B.C.D.【答案】A【解析】∵点A(2,4)在函数y=kx的图象上,∴4=2k,解得k=2,∴一次函数的解析式为y=2x,A选项,∵当x=1时,y=2,∴此点在函数图象上,故A选项正确,B选项,∵当x=-2时,y=-4≠-1,∴此点不在函数图象上,故B选项错误,C选项,∵当x=-1时,y=-2≠2,∴此点不在函数图象上,故C选项错误,D选项,∵当x=2时,y=4≠-4,∴此点不在函数图象上,故D选项错误,故选A.10.一辆汽车以平均速度千米/时的速度在公路上行驶,则它所走的路程(千米)与所用的时间(时)的关系表达式为( )A.B.C.D.【答案】D【解析】根据路程=速度×时间得:汽车所走的路程s(千米)与所用的时间t(时)的关系表达式为:s=60t,故选D.11.正比例函数y=3x的大致图像是( )A.B.C.D.【答案】B【解析】∵3>0,∴图像经过一、三象限.点睛:本题考查了正比例函数图象与系数的关系:对于y=kx,当k>0时,y=kx的图象经过一、三象限;当k<0时,y=kx的图象经过二、四象限.12.已知函数y=k1x和,若常数k1,k2异号,且k1>k2,则它们在同一坐标系内的图象大致是(如图所示)()A.B.C.D.【答案】C【解析】首先由已知条件常数k1,k2异号,且k1>k2,得出k1,k2与0的关系,然后根据正比例函数及反比例函数的图象性质作答.解:因为k1,k2异号,且k1>0,k2<0,所以函数y=k1x的图象经过第一、三象限,函数的图象在第二、四象限,故选C.13.如图,在平面直角坐标系中,将△OAB沿直线y=-x平移后,点O′的纵坐标为6,则点B平移的距离为()A.4.5 B.6 C.8 D.10【答案】D【解析】根据题意得出O′点的纵坐标进而得出其横坐标,再得出O点到O′的距离,最后得出点B与其对应点B′之间的距离.解:∵点O的坐标为(0,0),△OAB沿x轴向右平移后得到△O′A′B′,点O的对应点O′在直线y=-x上,且O′点纵坐标为:6,故6=-x,解得:x=−8,即O到O′的距离为10,则点B与其对应点B′之间的距离为10.故选:D点睛:本题考查了函数图象上的点及平移的性质.根据函数解析式求出点的坐标是解题的关键.14.经过以下一组点可以画出函数y=2x图象的是()A.(0,0)和(2,1) B.(0,0)和(1,2)C.(1,2)和(2,1) D.(-1,2)和(1,2)【答案】B【解析】分别把各点坐标代入函数y=2x进行检验即可.解答:A. ∵当x=2时,y=4≠1,∴点(2,1)不符合,故本选项错误;B. ∵当x=1时,y=2;当x=0时,y=0,∴两组数据均符合,故本选项正确;C. ∵当x=2时,y=4≠1,∴点(2,1)不符合,故本选项错误;D. ∵当x=−1时,y=−2≠2;∴点(-1,2)不符合,故本选项错误.故选B.15.某正比例函数的图象如图所示,则此正比例函数的表达式为()A.y=x B.y=x C.y=-2x D.y=2x【答案】A【解析】【分析】本题可设该正比例函数的解析式为y=kx,然后结合图象可知,该函数图象过点A(-2,1),由此可利用方程求出k的值,进而解决问题.【详解】正比例函数的图象过点M(−2,1),∴将点(−2,1)代入y=kx,得:1=−2k,∴k=﹣,∴y=﹣x,故选:A.【点睛】本题考查了待定系数法求正比例函数解析式,牢牢掌握该法求函数解析式是解答本题的关键.16.已知在正比例函数y=(a-1)x的图像中,y随x的增大而减小,则a的取值范围是()A.a<1 B.a>1 C.a≥1 D.a≤1【答案】A【解析】∵y随x的增大而减小,∴a-1<0,∴a<1.故选A.点睛:本题考查了正比例函数图象与系数的关系:对于y=kx,当k>0时,y=kxb的图象经过一、三象限;当k<0时,y=kx的图象经过二、四象限.17.正比例函数y=x的大致图像是()A.A B.B C.C D.D【答案】C【解析】∵1>0,∴正比例函数y=x的大致图像经过一、三象限.故选C.点睛:本题考查了正比例函数图象与系数的关系:对于y=kx,当k>0时,y=kxb的图象经过一、三象限;当k<0时,y=kx的图象经过二、四象限.18.已知函数y=(k-1)为正比例函数,则()A.k≠±1 B.k=±1 C.k=-1 D.k=1【答案】C【解析】由题意得k2=1且k-1≠0,∴k=-1.故选C.19.6月份以来,猪肉价格一路上涨.为平抑猪肉价格,某省积极组织货源,计划由A、B、C三市分别组织10辆、10辆和8辆运输车向D、E两市运送猪肉,现决定派往D、E两地的运输车分别是18辆、10辆,已知一辆运输车从A市到D、E两市的运费分别是200元和800元,从B市到D、E两市的运费分别是300元和700元,从C市到D、E两市的运费分别是400元和500元.若设从A、B两市都派x辆车到D市,则当这28辆运输车全部派出时,总运费W(元)的最小值和最大值分别是()A.8000,13200 B.9000,10000 C.10000,13200 D.13200,15400【答案】C【解析】由题意可知A、B、C三市派往D市的运输车的辆数分别是x、x、(18-2x)辆,派往E市的运输车的辆数为10-x,10-x,2x-10,则总运费W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)=-800x+17200.依题意有0≤x≤10,0≤18-2x≤8,解得:5≤x≤9,当x=9时,W 最小 =10000元.故选C.点睛:选择方案问题的方法(1)从不同的角度感知问题中的数量关系,对实际问题中的数量关系既可以用函数的图像表示,也可以用方程和不等式表示,构建不同的模型,用不同的方法解决问题.(2)在解决问题中,能适时调整思路,解决问题后,能对解决问题步骤、程序和方法进行总结提炼.20.若m<-1,有下列函数:①(x>0);②y=-mx+1;③y=mx;④y=(m+1)x.其中y随x的增大而增大的是( )A.①②B.②③C.①③D.③④【答案】A【解析】对于反比例函数,当k<0,在每个象限内,y随x的增大而增大,故①正确;根据一次函数的性质,y随x的增大而增大,得出k>0,故④正确.故选A.21.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则函数y=kx-k的图象大致是()A.A B.B C.C D.D【答案】D【解析】y=kx-k=k(x-1),恒过(1,0);根据正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则k<0,易得D.故选D.22.如果通过平移直线得到的图象,那么直线必须().A.向上平移5个单位B.向下平移5个单位C.向上平移个单位D.向下平移个单位【解析】根据“上加下减常数项”,=+.看做由直线向上平移个单位得到.故选C.23.已知一次函数与的图象都经过A(,0),且与y轴分别交于B、C两点,则△ABC的面积为().A.4 B.5 C.6 D.7【答案】C【解析】根据题意得:a=4,b=-2,所以B(0,4),C(0,-2),则△ABC的面积为故选C.24.在糖水中继续放入糖x(g)、水y(g),并使糖完全溶解,如果甜度保持不变,那么y与x的函数关系一定是()A.正比例函数B.反比例函数C.图象不经过原点的一次函数D.二次函数【答案】A【解析】设原来溶液中有糖ag,水bg,则=,即y=x,为正比例函数.故选A.点睛:本题关键根据甜度不变列比例式求解.25.一次函数y=-x的图象平分()A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限【答案】D【解析】y=-x的图像平分第二、四象限.故选D.点睛:y=x的图像平分第一、三象限.26.已知正比例函数y=kx(k≠0),当x=–1时,y=–2,则它的图象大致是()A.B.C.D.【答案】C【解析】将x=-1,y=-2代入y= kx(k≠0)中得,k=2>0,∴函数图像经过原点,且经过第一、三象限.故选C.27.已知正比例函数y=(m+1)x,y随x的增大而减小,则m的取值范围是()A.m<-1 B.m>-1 C.m≥-1 D.m≤-1【答案】A【解析】∵y随着x的增大而减小,∴m+1<0,即m<-1.故选A.28.已知正比例函数y=kx(k≠0),点(2,–3)在函数上,则y随x的增大而()A.增大B.减小C.不变D.不能确定【答案】B【解析】将(2,-3)代入函数解析式得:2k=-3,解得k=-<0,∴y随着x的增大而减小.故选B.29.在正比例函数y=–3mx中,函数y的值随x值的增大而增大,则P(m,5)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】∵y随着x的增大而增大,∴-3m>0,解得m<0.∴P(m,5)在第二象限.故选B.点睛:正比例函数y=kx(k≠0),若y随着x的增大而增大,那么k>0;若y随着x的增大而减小,那么k<0.30.若正比例函数y=kx的图象在第一、三象限,则k的取值可以是()A.1 B.0或1C.±1 D.–1【答案】A【解析】∵函数图像经过一、三象限,∴k>0.故选A.31.关于函数y=2x,下列结论中正确的是()A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>0【答案】C【解析】A:当x=2时,y=4≠1,∴函数图像不经过(2,1),故错误;B:k=2>0,∴函数图像经过一、三象限,故错误;C:k>0,y随着x的增大而增大,故正确;D:当x<0时,y<0,故错误.故选C.点睛:掌握正比例函数图像的性质.32.若一个正比例函数的图象经过点(2,-3),则这个图象一定也经过点()A.(-3,2)B.(,-1)C.(,-1)D.(-,1)【答案】C【解析】∵正比例函数y=kx经过点(2,−3),∴−3=2k,解得k=−;∴正比例函数的解析式是y=−x;A. ∵当x=−3时,y≠2,∴点(−3,2)不在该函数图象上;故本选项错误;B. ∵当x=时,y≠−1,∴点(,−1)不在该函数图象上;故本选项错误;C. ∵当x=时,y=−1,∴点(,−1)在该函数图象上;故本选项正确;D. ∵当x=时,y≠1,∴点(1,−2)不在该函数图象上;故本选项错误。
(word完整版)一次函数、正比例函数的定义 练习题

17.3 一次函数、正比例的定义 练习题班级______________ 姓名___________一、填空题: 1. 如图(1),在直角坐标系中,直线l 所表示的函数是_______2. 函数21-+=x x y 中,自变量x 的取值范围是__________。
3. 函数82)3(-+=m x m y 是正比例函数,则=m __________,y 随x 的增大而__________。
4. 正比例函数图象经过两点A (2-,4)B (4,m ),则=m __________.5. (1)已知函数4)36(-+-=n x m y ,若它是一次函数,则应满足条件____________________;若它是正比例函数,则它应满足条件______________。
(2)设函数1)2(||2++-=-m x m y m ,当m =____________时,它是一次函数;当m=________时它是正比例函数。
6. 如图2直线ABC为甲地向乙地打长途电话所需付的话费y(元)与通话时间t(分钟)之间的函数关系的图象,当t≥3时,该图象的解析式为 ;从图象可知,通话2分钟需付电话费为 元;通话7分钟需付电话费 元.7、y -2与x 成正比例,当x=2 时,y=4 ,则x= _______时,y=-4 .8、已知y 与3x 成正比例,且当x=8 时,y=12 则y 与x 的函数解析式 9、已知一次函数y=kx+5的图象经过点(-1,2),则k= 。
10、某商店出售一种瓜子,其售价y (元)与瓜子质量x (千克)之间的关系如下表由上表得y与x之间的关系式是 .220y x图111、已知y —2与x 成正比例,当x =3时,y =1,则y 与x 之间的函数关系式为_____________. 12、正方形ABCD 的边长为5,P 为BC 边上一动点,设BP 长x ,△PCD 的面积y 与x 的函数关系式为_________________________,自变量x 的取值范围是_________________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一十三课时:正比例函数与一次函数
知识点1 一次函数和正比例函数的概念
若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数.例如:y=2x+3,y=-x+2,y=21x 等都是一次函数,y=2
1x ,y=-x 都是正比例函数. 【说明】 (1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b (k ,b 为常数,b ≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数.3)当b=0,k ≠0时,y= kx 仍是一次函数. 知识点二:一次函数图像的特点
两点确定一条直线,根据这个特点,我们在画一次函数的图像时,可以确定两个点,再过这两个点做直线就行了,而且,为了简单,我们常选过点(0,b )和)0,(k b -作直线。
由观察可知:
(1) 正比例函数的图像时一条直线,并经过两个象限。
(2) 当k>0,其图像经过第一、三象限,当k<0时,其图像经过第二、四象限。
知识点二:一次函数及图像的性质
两直线的位置关系:
直线111b x k l +=和直线222b x k l +=
⎩⎨⎧≠=相交与则则21212121,//,l l k k l l k k
知识点三:正比例函数图像与一次函数图像的关系
O y x 2 -1 一次函数b kx +=y 的图像是一条直线,它可以看作是由直线kx =y 沿y 轴平移b 个单位长度得到(当b >0时,向上平移;当b<0时,向下平移)
用待定系数法确定一次函数表达式的一般步骤
(1)设函数表达式为y=kx+b ;
(2)将已知点的坐标代入函数表达式,解方程(组);
(3)求出k 与b 的值,得到函数表达式.
知识点五 函数图象的平移(左加右减,上加下减)
例1 直线y=2x+1按坐标(2,-1)平移后的函数的表达式为________________
例2将直线y =3x 向左平移5个单位,得到直线 ;将直线y =-x -5向上平移5个单位,得到直线 .
题型一:概念类问题
(1)已知y 与x+1成正比例,且当x=5时,y=12,写出y 与x 之间的函数解析式
(2)已知函数)4()2m (y 32-+-=-m x m ,当m 为何值时,它是一次函数?
(3)已知函数9m )3m (y 2-++=x 是正比例函数,求m 值是多少?
题型二:求解析式问题(待定系数法)
1.若正比例函数的图像经过点(-1,2),则这个图像必经过点【 】
A .(1,2)
B .(-1,-2)
C .(2,-1)
D .(1,-2)
2. 坐标平面上,点P (2,3)在直线L 上,其中直线L 的方程式为2x +by =7,求b =?
A. 1
B.3
C.
21 D. 3
1 3.如图,是一个正比例函数的图像,把该图像向左平移一个单位长度,得到的函数图像的解析式为 .
题型三:一次函数图像性质问题 1.一次函数y =2x -2的图象不经过...的象限是( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.已知一次函数21y x =+,则y 随x 的增大而______(填“增大”或“减小”). 3. P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数y = -x 图象上的两点,则下列判断正确的是( )
A .y 1>y 2
B .y 1<y 2
C .当x 1<x 2时,y 1>y 2
D .当x 1<x 2时,y 1<y 2
4.已知函数y kx b =+的图象如图,则2y kx b =+的图象可能是( )。