2020年中考数学动态问题分项破解专题01 动点问题中的最值、最短路径问题(教师版)

合集下载

2020年中考数学(线段路径)最值问题解法分类(10种)及试题精练(PDF版带答案)

2020年中考数学(线段路径)最值问题解法分类(10种)及试题精练(PDF版带答案)

中考数学专题:线段/路径最值问题线段最值问题解法分类一、定点到定点⇒连线段点P在直线l上,AP+BP何时最小?二、定点到定线⇒作垂线点P在直线l上,AP何时最小?三、定点到定圆⇒连心线点P在圆O上,AP何时最小?线段最值问题一般转化为上述三个问题.例题赏析:1.如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP=6,当△PMN 的周长最小值为.思路:把点P分别沿OA、OB翻折得P1、P2,周长即为P1M+MN+P2N,转化为求P1、P2两点之间最小值,得△PMN最小值为P1P2=OP=6.2.如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是.思路:点N沿AD翻折至AC上,BM+MN=BM+MN',转化为求点B到直线AC的连线最小值,即BN'⊥AC时,最小值为2√2.3.如图,矩形ABCD中,AB=2,BC=3,以A为圆心、1为半径画圆,E是⊙A上一动点,F是BC 上的一动点,则FE+FD的最小值是.思路:点D沿BC翻折至D',DF+EF=D'F+EF,转化为求点D'到圆A上各点的最小距离,易求D'E=4.4.抛物线y=3/5x2-18/5x+3与直线y=3/5x+3相交于A、B两点,点M是线段AB上的动点,直线PM∥y轴,交抛物线于点N.在点M运动过程中,求出MN的最大值.思路:设M(m,3/5m2-18/5m+3),N(m,3/5m+3),用函数关系式表示MN=(3/5m+3)-(3/5m2-18/5m+3)=21/5m-3/5m2,求得最大值即可.5.在菱形ABCD中,对角线AC=8,BD=6,点E、F分别是边 AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF 的最小值,则这个最小值是思路:点E沿AC翻折,转化为点到点的距离.(将军饮马问题实质就是通过翻折转化为定点到定点的问题)6.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O 的最大距离为 .思路:取AB中点E,连接DE、OE,由两点间线段最短,得OD≤OE+DE,最大为1+√2.7.如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP 沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是简解:B'点运动路径为以C为圆心,BC为半径的圆弧,转化为点到圆的最短距离AC-B'C=1.8.如图,正方形ABCD的边长为1,中心为点O,有一边长大小不定的正六边形EFGHIJ绕点O可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD内(包括正方形的边),当这个六边形的边长最大时,AE的最小值为 .思路:正六边形最大半径为1/2,与正方形中心重合,E点运动路径为圆,转化为求点到圆的最短距离,如下图.9.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是 .思路:D是定点,C是直线AC上的动点,转化为求点到线的最短距离.10.在△ABC中,AB=AC=5,cos∠ABC=3/5,将△ABC绕点C顺时针旋转,得到△A'B'C,点E是BC上的中点,点F为线段AB上的动点,在△A'B'C绕点C顺时针旋转过程中,点F的对应点是F',求线段EF'长度的最大值与最小值的差.思路:先确定线段A'B'的运动轨迹是圆环,外圆半径为BC,内圆半径为AB边上的高,F'是A'B'上任意一点,因此F'的运动轨迹是圆环内的任意一点,由此转化为点E到圆环的最短和最长距离.E到圆环的最短距离为EF2=CF2-CE=4.8-3=1.8,E到圆环的最长距离为EF1=EC+CF1=3+6=9,其差为7.2.问:何时需要作辅助线翻折其中的定点(定线或定圆)?答:当动点所在直线不在定点(定线或定圆)之间时,需把定点(定线或定圆)沿动点所在直线翻折以使定点(定线或定圆)处于动点所在直线的两侧,从而便于连接相关线段或作垂线与动点所在直线找到交点.如上述例3,动点F所在直线不在定圆A和定点D之间,因而需把D点沿BC翻折至D',即可转化为定点D'到定圆A的最短距离,另外亦可把圆A沿BC翻折至另一侧,同样可以转化为定点D到定圆A'的最短距离,如下图.关键方法:动中求定,动点化定线;以定制动,定点翻两边.(1)动中求定,动点化定线:如例7、例8、例10,动点所在路径未画出时需先画出动点所在轨迹,一般动点所在轨迹为线或圆.(2)以定制动,定点翻两边:如例1、例2、例3、例5,定点(线或圆)在动点所在直线同侧时需翻折至两侧,转化为上述三种关系.练1、如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

2020年中考数学复习之动态问题 专题01 动点问题中的最值、最短路径问题(原卷版) (1)

2020年中考数学复习之动态问题 专题01 动点问题中的最值、最短路径问题(原卷版) (1)

专题01 动点问题中的最值、最短路径问题动点问题是初中数学阶段的难点,它贯穿于整个初中数学,自数轴起始,至几何图形的存在性、几何图形的长度及面积的最值,函数的综合类题目,无不包含其中.其中尤以几何图形的长度及面积的最值、最短路径问题的求解最为繁琐且灵活多变,而其中又有一些技巧性很强的数学思想(转化思想),本专题以几个基本的知识点为经,以历年来中考真题为纬,由浅入深探讨此类题目的求解技巧及方法.一、基础知识点综述1. 两点之间,线段最短;2. 垂线段最短;3. 若A、B是平面直角坐标系内两定点,P是某直线上一动点,当P、A、B在一条直线上时,PA PB 最大,最大值为线段AB的长(如下图所示);(1)单动点模型作图方法:作已知点关于动点所在直线的对称点,连接成线段与动点所在直线的交点即为所求点的位置. 如下图所示,P是x轴上一动点,求P A+PB的最小值的作图.P 是∠AOB 内一点,M 、N 分别是边OA 、OB 上动点,求作△PMN 周长最小值.作图方法:作已知点P 关于动点所在直线OA 、OB 的对称点P ’、P ’’,连接P ’P ’’与动点所在直线的交点M 、N 即为所求.5. 二次函数的最大(小)值()2y a x h k =-+,当a >0时,y 有最小值k ;当a <0时,y 有最大值k .二、主要思想方法利用勾股定理、三角函数、相似性质等转化为以上基本图形解答. (详见精品例题解析) 三、精品例题解析例1. (2019·凉山州)如图,正方形ABCD 中,AB =12,AE =3,点P 在BC 上运动(不与B 、C 重合),过点P 作PQ ⊥EP ,交CD 于点Q ,则CQ 的最大值为例2. (2019·凉山州)如图,已知A 、B 两点的坐标分别为(8,0),(0,8). 点C 、F 分别是直线x =-5和x 轴上的动点,CF =10,点D 是线段CF 的中点,连接AD 交y 轴于点E ,当△ABE 面积取最小值时,tan ∠BAD =( )OA .817 B . 717 C . 49 D . 59例3. (2019·南充)如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B 在x 轴的正半轴及原点上滑动,点E 为AB 的中点,AB =24,BC =5,给出结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;②△OAB 的面积的最大值为144;③当OD 最大时,点D 的坐标为)2626125,262625(,其中正确的结论是 (填写序号).例4. (2019·天津)已知抛物线2y x bx c =-+(b 、c 为常数,b >0)经过点A (-1,0),点M (m ,0)是x 轴正半轴上的动点,若点Q (1,2Q b y +2QM +b 的值.例5. (2019·舟山)如图,一副含30°和45°角的三角板ABC 和EDF 拼合在个平面上,边AC 与EF 重合,12AC cm .当点E 从点A 出发沿AC 方向滑动时,点F 同时从点C 出发沿射线BC 方向滑动.当点E 从点A 滑动到点C 时,点D 运动的路径长为 cm ;连接BD ,则△ABD 的面积最大值为 2cm .例6. (2019·巴中)如图,在菱形ABCD 中,连接BD 、AC 交于点O ,过点O 作OH ⊥BC 于点H ,以O 为圆心,OH 为半径的半圆交AC 于点M .(1)求证:DC是圆O的切线;(2)若AC=4MC,且AC=8,求图中阴影部分面积;(3)在(2)的前提下,P是线段BD上的一动点,当PD为何值时,PH+PM的值最小,并求出最小值.B D。

2020年(河南)中考数学压轴题全揭秘精品专题15 最短路径问题(含答案解析)

2020年(河南)中考数学压轴题全揭秘精品专题15 最短路径问题(含答案解析)

专题15最短路径问题模型一. 两点之间,线段最短模型二. “将军饮马”模型三. 双动点模型四. 垂线段最短【例1】(2019·河南南阳一模)如图,已知一次函数y=12x+2的图象与x轴、y轴交于点A、C,与反比例函数y=kx的图象在第一象限内交于点P,过点P作PB⊥x轴,垂足为B,且△ABP的面积为9.(1)点A的坐标为,点C的坐标为,点P的坐标为;(2)已知点Q在反比例函数y=kx的图象上,其横坐标为6,在x轴上确定一点M,是的△PQM的周长最小,BA'O求出点M的坐标.【分析】(1)根据一次函数的解析式求得A、C坐标,由S△ABP=12·AB·BP=9,设P点坐标为(m,12m+2),代入得到点P坐标;(2)先根据反比例函数解析式求得Q点坐标,作Q点(或P点)关于x轴的对称点Q’(P’),连接PQ’(QP’)与x轴的交点即为点M,用待定系数法求出直线PQ’(QP’的解析式).【解析】解:(1)在y=12x+2中,当x=0时,y=2;y=0时,x=-4,∴A点坐标为(-4,0),C点坐标为(0,2),设P点坐标为(m,12m+2),m>0,则AB=m+4,BP=12m+2,∵S△ABP=12·AB·BP=9,即12×(m+4)(12m+2)=9,解得:m=2或m=-10(舍),∴点P的坐标为(2,3);(2)如图,作点Q关于x轴的对称点Q’,连接PQ’交x轴于点M,此时,△PQM的周长最小,6,-1),设直线PQ’的解析式为:y=mx+b,得:23 61m bm b+=⎧⎨+=-⎩,解得:15mb=-⎧⎨=⎩,即直线PQ’的解析式为:y=-x+5,当y=0时,x=5,即M点坐标为(5,0),∴当△PQM的周长最小时,M点坐标为(5,0).【变式1-1】(2017·新野一模)已知抛物线y=ax2+bx+2经过A(﹣1,0),B(2,0),C三点.直线y=mx+12交抛物线于A,Q两点,点P是抛物线上直线AQ上方的一个动点,作PF⊥x轴,垂足为F,交AQ于点N.(1)求抛物线的解析式;(2)如图①,当点P运动到什么位置时,线段PN=2NF,求出此时点P的坐标;(3)如图②,线段AC的垂直平分线交x轴于点E,垂足为D,点M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.【答案】见解析.【解析】解:(1)∵抛物线y=ax2+bx+2经过A(﹣1,0),B(2,0),∴20 4220a ba b-+=⎧⎨++=⎩,解得a=﹣1,b=1,∴抛物线的解析式为y=﹣x2+x+2.(2)直线y=mx+12交抛物线与A、Q两点,将A(﹣1,0)代入得:m=12,∴直线AQ的解析式为y=12x+12.设点P的横坐标为n,则P(n,﹣n2+n+2),N(n,12n+12),F(n,0),∴PN=﹣n2+n+2﹣(12n+12)=﹣n2+12n+32,NF=12n+12,∵PN=2NF,即﹣n2+12n+32=2×(12n+12),解得:n=﹣1或12.当n=﹣1时,点P与点A重合,舍去.故点P的坐标为(12,94).(3)∵y=﹣x2+x+2,=﹣(x﹣12)2+94,∴M(12,94).∵A、C关于直线DE对称,∴连接AM交直线DE与点G,连接CG、CM,此时,△CMG的周长最小,设直线AM的函数解析式为y=kx+b,将A(﹣1,0),M(12,94)代入并解得:k=32,b=32,∴直线AM的函数解析式为y=32x+32,∵D为AC的中点,∴D(﹣12,1).可得直线AC的解析式为:y=2x+2,直线DE的解析式为y=﹣12x+34.将y=﹣12x+34与y=32x+32联立,解得:x=﹣38,y=1516.∴在直线DE上存在点G,使△CMG的周长最小,G(﹣38,1516).【变式1-2】(2019·三门峡二模)已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D 是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE,设OD =m.(1)问题发现如图1,△CDE的形状是三角形.(2)探究证明如图2,当6<m<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.图1 图2【答案】见解析.【解析】解:(1)证明:由旋转性质,得:∠DCE=60°,DC=EC,∴△CDE是等边三角形;故答案为:等边;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=∴△BDE的周长最小值为:+4.1.(2018·焦作一模)如图1,已知抛物线y=﹣x2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),点P是抛物线上一动点,过点P作x轴的垂线PQ,过点A作AQ⊥PQ于点Q,连接AP.(1)填空:抛物线的解析式为,点C的坐标;(2)点P在抛物线上运动,若△AQP∽△AOC,求点P的坐标;(3)如图2,当点P位于抛物线的对称轴的右侧,若将△APQ沿AP对折,点Q的对应点为点Q',请直接写出当点Q'落在坐标轴上时点P的坐标.图1 图2【答案】(1)y=﹣x2+3x+4,(﹣1,0);(2)(3)见解析.【解析】解:(1)∵抛物线y=﹣x2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),∴-16a+4b+c=0,c=4,解得:b=3,c=4,∴抛物线解析式为y=﹣x2+3x+4,当y=0时,﹣x2+3x+4=0,解得x=﹣1,x=4,即C(﹣1,0);答案为:y=﹣x2+3x+4;(﹣1,0);(2)∵△AQP∽△AOC,∴AQ AOPQ CO=4,即AQ=4PQ,设P(m,﹣m2+3m+4),则PQ=|4﹣(﹣m2+3m+4|=|m2﹣3m|,∴4|m2﹣3m|=m,解得:m1=0(舍去),m2=134,m3=114,∴P点坐标为(134,5116)或(114,7516).(3)设P(m,﹣m2+3m+4),∵抛物线对称轴为:x =32, ∴m >32, ①当点Q ′落在x 轴上时,延长QP 交x 轴于H ,则PQ =m 2﹣3m ,由折叠性质知:∠AQ ′P =∠AQP =90°,AQ ′=AQ =m ,PQ ′=PQ =m 2﹣3m , ∵∠AQ ′O =∠Q ′PH , ∴△AOQ ′∽△Q ′HP , ∴'''OA AQ Q B PQ =, 即24'3m Q B m m=-,得:Q ′B =4m ﹣12, ∴OQ ′=12﹣3m ,在Rt △AOQ ′中,由勾股定理得:42+(12﹣3m )2=m 2, 解得:m 1=4,m 2=5,即P 点坐标为(4,0),(5,﹣6); ②当点Q ′落在y 轴上,此时以点A 、Q ′、P 、Q 所组成的四边形为正方形, ∴PQ =PQ ′, 即|m 2﹣3m |=m ,得m 1=0(舍去),m 2=4,m 3=2, P 点坐标为(4,0),(2,6), 综上所述,点P 的坐标为(4,0)或(5,﹣6)或(2,6).2.(2019·中原名校大联考)如图,直线y =﹣x +5与x 轴交于点B ,与y 轴交于点C ,抛物线y =﹣x 2+bx +c 与直线y =﹣x +5交于B ,C 两点,已知点D 的坐标为(0,3)(1)求抛物线的解析式;(2)点M ,N 分别是直线BC 和x 轴上的动点,则当△DMN 的周长最小时,求点M ,N 的坐标.【答案】见解析.【解析】解:(1)在y=﹣x+5中,当x=0,y=5,当y=0,x=5,点B、C的坐标分别为(5,0)、(0,5),将(5,0)、(0,5),代入y=﹣x2+bx+c,并解得:b=4,c=5即二次函数表达式为:y=﹣x2+bx+5.(2)在y=﹣x2+bx+5中,当y=0时,x=﹣1或5,∴A(﹣1,0),OB=OC=2,∴∠OCB=45°;过点D分别作x轴和直线BC的对称点D′(0,﹣3)、D″,∵∠OCB=45°,∴CD″∥x轴,点D″(2,5),连接D′D″交x轴、直线BC于点N、M,此时△DMN的周长最小,设直线D’D’’的解析式为:y=mx+n将D′(0,﹣3),D″(2,5),代入解得:m=4,n=-3,直线D’D’’的解析式为:y=4x﹣3,∴N(34,0).联立y=4x﹣3,y=﹣x+5得:x=85,y=175,即M(85,175).3.(2017·预测卷)已知,在平面直角从标系中,A点坐标为(0,4),B点坐标为(2,0),C(m,6)为反比例函数123y=图象上一点.将△AOB绕B点旋转至△A′O′B处.(1)求m的值;(2)求当AO′最短和最长时A′点的坐标.【答案】见解析.【解析】解:(1)∵C(m,6)为反比例函数123y=图象上一点,∴m=23;(2)当AO′最短时A′点的坐标(2+65,85),当AO′最长时A′点的坐标(2﹣65,﹣85).①当点O′在线段AB上时,AO′最短,过点O′作O′N⊥x轴于N,过点A′作A′M⊥O′N于M,∵O′N∥OA,∴''BN O N O B OB OA AB==,即'2425 BN O N==∴BN=25,O′N=45.由∠A′MO′=∠A′O′B=∠O′NB=90°,得:∠MA′O′=∠NO′B,∴△A′MO′∽△O′NB,∴''2 'A M O MO N BN==,∴A′M,O′M即A’();②当点O′在线段AB延长线上时,AO′最长,同理可得:(2).4.(2017·郑州一模)如图,⊙O的半径为2,点O到直线l距离为3,点P是直线l上的一个动点,PQ切⊙O 于点Q,则PQ的最小值为()A B C.2D.3【答案】A.【解析】解:由垂线段最短知,当OP⊥l时,OP取最小值,而由PQ PQ取最小值,过点O作OP⊥l于P,过P作⊙O的切线PQ,切点为Q,连接OQ,则OP=3,OQ=2,∵PQ切⊙O于点Q,∴∠OQP=90°,由勾股定理得:PQ,即PQ,故答案为:A .5.(2019·许昌月考)如图,在菱形ABCD 中,∠ABC =60°,AB =2,点P 是这个菱形内部或边上的一点,若以点P 、B 、C 为顶点的三角形是等腰三角形,则P 、D (P 、D 两点不重合)两点间的最短距离为 .【答案】 2.【解析】解:(1)BC 为腰,且∠PCB 为顶角时,以C 为圆心,以BC 为半径画弧,点P 在弧上,由题意知,点P 在菱形外或与A 、D 重合,不符合题意;(2)以BC 为腰,且∠PBC 为顶角时,点P 在以B 为圆心,以AB 为半径的圆上,则PD 的最小值为:BD -BC BC -BC ﹣2;(3)BC 为底时,则点P 在线段BC 的垂直平分线上,由垂线段最短知,PD 最小为:1+1=2;∵2<2,∴PD 的最小值为:﹣2.6.(2019·郑州外国语模拟)在平面直角坐标系中,抛物线y =-x 2+bx +c 经过点A 、B 、C ,已知A (-1,0),C (0,3).(1)求抛物线的解析式;(2)如图,抛物线的顶点为E ,EF ⊥x 轴于F ,N 是直线EF 上一动点,M (m ,0)是x 轴上一个动点,请直接写出CN +MN +12MB 的最小值.【答案】见解析.【解析】解:(1)将A (-1,0),C (0,3)代入y =-x 2+bx +c 得:103b c c --+=⎧⎨=⎩,解得:23b c =⎧⎨=⎩,即抛物线的解析式为:y =-x 2+2x +3;(2)首先构造出12MB ,将AB 绕点B 顺时针旋转30°,交y 轴于H ,过M 作MG ⊥BH 于G ,则MG =12MB ,CN +MN +12MB 的最小值即CN +MN +MG 的最小值, 由图可知,当C 、N 、M 、G 共线,且CG ⊥BH 时,取得最小值,即∠HCG =30°,∵OB =3,∠ABH =30°,∴AH H (0),∴CH∴CG =CH ·cos ,即CN +MN +12MB 的最小值为32. 7.(2019·郑州实验中学模拟)如图,已知抛物线y =﹣x 2+bx +c 与一直线相交于A (1,0)、C (﹣2,3)两点,与y 轴交于点N ,其顶点为D .(1)求抛物线及直线AC 的函数关系式;(2)若P 是抛物线上位于直线AC 上方的一个动点,求△APC 的面积的最大值;(3)在对称轴上是否存在一点M ,使△ANM 的周长最小.若存在,请求出△ANM 周长的最小值;若不存在,请说明理由.【答案】见解析.【解析】解:(1)将A (1,0),C (﹣2,3)代入y =﹣x 2+bx +c ,得:10423b c b c -++=⎧⎨--+=⎩,解得:23b c =-⎧⎨=⎩, ∴抛物线的函数解析式为:y =﹣x 2﹣2x +3;设直线AC 的解析式为:y =kx +n ,将A (1,0),C (﹣2,3)代入y =kx +n ,得:k +n =0,-2k +n =3,解得:k =-1,n =1,即直线AC 的解析式为y =﹣x +1.(2)过点P 作PF ∥y 轴交直线AC 于点F ,设点P (x ,﹣x 2﹣2x +3),则点F (x ,﹣x +1),(﹣2<x <1)∴PF =﹣x 2﹣2x +3﹣(﹣x +1)=﹣x 2﹣x +2.∴S △APC =12(x A -x C )•PF =﹣32x 2﹣32x +3 =﹣32(x +12)2+278. ∴当x =﹣12时,△APC 的面积取最大值,最大值为278. (3)当x =0时,y =﹣x 2﹣2x +3=3,∴点N 的坐标为(0,3).由y =﹣x 2﹣2x +3=﹣(x +1)2+4,得:抛物线的对称轴为x =﹣1.∴点C ,N 关于抛物线的对称轴对称,设直线AC 与抛物线的对称轴的交点为点M ,∴MN=CM,∴AM+MN=AM+MC=AC,此时△ANM周长有最小值.由勾股定理得:AC=,AN=∴C△ANM=AM+MN+AN=AC+AN=∴△ANM周长的最小值为8.(2018·郑州预测卷)如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3.(1)求抛物线的解析式;(2)连接CB交EF于点M,连接AM交OC于点R,连接AC,求△ACR的周长;(3)设G(4,-5)在该抛物线上,P是y轴上一动点,过点P作PH⊥EF于点H,连接AP,GH,问AP+PH +HG是否有最小值?如果有,求出点P的坐标;如果没有,请说明理由.【答案】见解析.【解析】解:(1)∵四边形OCEF为矩形,OF=2,EF=3,∴C (0,3),E (2,3).将C (0,3),E (2,3)代入y=-x2+bx+c得:b=2,c=3,∴抛物线的解析式为:y=-x2+2x+3;(2)在y=-x2+2x+3中,当y=0时,x1=-1,x2=3,∴A(-1,0),B(3,0),∵AO=1,CO=3,∴在Rt△AOC中,由勾股定理得:AC ∵CO=BO=3,∴∠OBC=∠OCB=45°,∴FM=BF=1,∵RO∥MF,∠RAO=∠MAF,∴△ARO∽△AMF,∴RO AOMF AF=,得RO=13,∴CR=OC-OR=3-13=83,AR,∴△ACR的周长为:AC+CR+AR=83+;(3)取OF中点A′,连接A′G交直线EF的延长线于点H,过点H作HP′⊥y轴于点P′,连接AP′,当P在P′处时,AP+PH+HG最小,A′(1,0),设直线A′G的解析式为:y=kx+m,将G(4,-5),A′(1,0)代入得:k=53-,b=53,∴直线A′G的解析式为:y=53-x+53.当x=2时,y=53 -,即点H的坐标为(2,53 -),∴符合题意的点P的坐标为(0,53 -).9. (2019·郑州联考)如图,在平面直角坐标系中,抛物线y2x-与x轴交于A,C(A在C 的左侧),点B 在抛物线上,其横坐标为1,连接BC ,BO ,点F 为OB 中点.(1)求直线BC 的函数表达式;(2)若点D 为抛物线第四象限上的一个动点,连接BD ,CD ,点E 为x 轴上一动点,当△BCD 的面积的最大时,求点D 的坐标,及|FE ﹣DE |的最大值.【答案】见解析.【解析】解:(1)在y2x -y =0,解得:x 1=32,x 2=72, ∴A (32,0),C (72,0) 当x =1时,y =即B (1,,设直线BC 的解析式为y =kx +b得:702k b k b ⎧+=⎪⎨+=⎪⎩,解得5k b ⎧=⎪⎪⎨⎪=⎪⎩, 直线BC 的解析式为y=x. (2)设点D (m,255-+),则点H (m,5-m+5) 过点D 作DH ⊥x 轴交BC 于点H ,HD =5-m +5﹣(255-+)=294m ⎫-+⎪⎝⎭ S △BCD =12×DH ×(x C -x B ) =54DH , ∴当m =94时,HD 取最大值,此时S △BCD 的面积取最大值.此时D (94. 作D 关于x 轴的对称点D ′则D ′(94), 连接D ′H 交x 轴于一点E ,此时|D ′E ﹣FE |最大,最大值为D ′F 的长度,∵F (12)∴D ′F ,即|FE ﹣DE |. 10.(2019·三门峡一模)反比例函数k y x=(k 为常数,且k ≠0)的图象经过点A (1,3),B (3,m ). (1)求反比例函数的解析式及点B 的坐标;(2)在x 轴上找一点P ,使P A +PB 的值最小,求满足条件的点P 的坐标.【答案】见解析.【解析】解:(1)将点A(1,3)代入kyx=得:k=3,即反比例函数解析式为:3yx =,将点B(3,m)代入3yx=得:m=1,即B(3,1).(2)作点A关于x轴的对称点A’(1,-3),连接A’B交x轴于点P,此时P A+PB最小,如图所示,设直线A’B的解析式为:y=kx+b,∴331k bk b+=-⎧⎨+=⎩,解得:25kb=⎧⎨=-⎩,即直线A’B的解析式为:y=2x-5,当y=0时,x=52,即P(52,0).ABO x y。

2020中考常见最值问题总结归纳微专题一几何最值单线段最值单动点型(解析版)

2020中考常见最值问题总结归纳微专题一几何最值单线段最值单动点型(解析版)

2020中考常见最值问题总结归纳微专题一:单线段最值+单动点型WORKINGPLAN微专题一:单线段最值+单动点型类型一:动点轨迹--直线型考法指导动点轨迹为一条直线时,利用“垂线段最短”求最值。

(1)当动点轨迹确定时可直接运用垂线段最短求最值(2)当动点轨迹不易确定是直线时,可通过以下三种方法进行确定①观察动点运动到特殊位置时,如中点,端点等位置时是否存在动点与定直线的端点连接后的角度不变,若存在该动点的轨迹为直线。

②当某动点到某条直线的距离不变时,该动点的轨迹为直线。

③当一个点的坐标以某个字母的代数式表示时,若可化为一次函数,则点的轨迹为直线。

【典例精析】例题1.(2020·全国初三单元测试)如图,矩形ABCD 中,4AB =,6BC =,点P 是矩形ABCD 内一动点,且∆∆=PAB PCD S S ,则PC PD +的最小值为_____.【答案】【详解】 ABCD 为矩形,AB DC ∴=又=PAB PCD S S∴点P 到AB 的距离与到CD 的距离相等,即点P 线段AD 垂直平分线MN 上,连接AC ,交MN 与点P ,此时PC PD +的值最小,且PC PD AC +====故答案为:【针对训练】1.(2018·湖北中考真题)如图,等腰Rt △ABC 中,斜边AB 的长为2,O 为AB 的中点,P 为AC 边上的动点,OQ ⊥OP 交BC 于点Q,M 为PQ 的中点,当点P 从点A 运动到点C 时,点M 所经过的路线长为( )A.4 B.2 C .1 D .2【答案】C【详解】连接OC ,作PE ⊥AB 于E,MH ⊥AB 于H,QF ⊥AB 于F ,如图,∵△ACB 为到等腰直角三角形,∴AC=BC=2,∠A=∠B=45°, ∵O 为AB 的中点,∴OC ⊥AB,OC 平分∠ACB,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ,在Rt △AOP 和△COQ 中A OCQ AO COAOP COQ ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴Rt △AOP ≌△COQ,∴AP=CQ,易得△APE 和△BFQ 都为等腰直角三角形,∴∴PE+QF=2,CQ+BQ,=2BC=2 ∵M 点为PQ 的中点,∴MH 为梯形PEFQ 的中位线,∴MH=12,PE+QF,=12, 即点M 到AB 的距离为12, 而CO=1,∴点M 的运动路线为△ABC 的中位线,∴当点P 从点A 运动到点C 时,点M 所经过的路线长=12AB=1, 故选C,2.(2017·江苏中考真题)如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE的边CD所在的直线与线段AB垂直相交于点P,且满足PC=PA.若点P沿AB方向从点A运动到点B,则点E运动的路径长为______,【答案】【详解】解:如图,由题意可知点C运动的路径为线段AC′,点E运动的路径为EE′,由平移的性质可知AC′=EE′,在Rt,ABC′中,易知AB=BC′=6,,ABC′=90°,,EE′=AC故答案为:3.如图,等边三角形ABC的边长为4,点D是直线AB上一点.将线段CD绕点D顺时针旋转60°得到线段DE,连结BE.(1)若点D在AB边上(不与A,B重合)请依题意补全图并证明AD=BE;(2)连接AE,当AE的长最小时,求CD的长.【答案】(1)见解析;(2)【详解】解:(1)补全图形如图1所示,AD=BE,理由如下:∵∵ABC是等边三角形,∵AB=BC=AC,∵A=∵B=60°,由旋转的性质得:∵ACB=∵DCE=60°,CD=CE,∵∵ACD=∵BCE,∵∵ACD∵∵BCE(SAS),∵AD=BE.(2)如图2,过点A作AF∵EB交EB延长线于点F.∵∵ACD∵∵BCE,∵∵CBE=∵A=60°,∵点E的运动轨迹是直线BE,根据垂线段最短可知:当点E与F重合时,AE的值最小,此时CD=CE=CF,∵∵ACB=∵CBE=60°,∵AC∵EF,∵AF∵BE,∵AF∵AC,在Rt∵ACF中,,∵CD=CF=类型二:动点轨迹--圆或圆弧型考法指导动点的轨迹为定圆时,可利用:“一定点与圆上的动点距离最大值为定点到圆心的距离与半径之和,最小值为定点到圆心的距离与半径之差”的性质求解。

初中数学中考复习专题 最短路径问题 (24张PPT)

初中数学中考复习专题 最短路径问题 (24张PPT)

【例题分层探究】 问题 1:边 CD 是定值,此问题可转化为计算 CE+DE 的最小值问题. 问题 2:线段 CD,EF 均为定值,此问题可借助轴对称 求最短路径的方法计算出 DE+CF 的最小值.
初中数学中考复习专题 最短路径问题 (24张PPT)
初中数学中考复习专题 最短路径问题 (24张PPT) 初中数学中考复习专题 最短路径问题 (24张PPT)
∵C(0,-5) ∴C′(0,5) ∴直线C′D为y=-7x+5
D(2,-9)
ME
x
AO
B
∴y=0 , 即-7x+5=0 ∴m=5 ∕ 7
∴x=5 ∕ 7
C D
初中数学中考复习专题 最短路径问题 (24张PPT)
初中数学中考复习专题 最短路径问题 (24张PPT)
中考链接
24 如图 Z8-3,在平面直角坐标系中,矩形 OACB 的
A
B l
在直线l上求一 点P,使 PA+PB值最小
作B关于l 的对称点 B',连A B'与l交 点即为P
图形
原理
两点之间线段 最短
PA+PB最小值 为AB
原理
两点之间线段 最短
PA+PB最小值 为AB
问题3
作法
l1
P
分别作点P关于
l2
两直线的对称
在直线l1、l2上 点P'和P",连 分别求点M P'P"与两直线
AM+MN+NB的 值最小.
作点A关于l2的 对称点A',作 点B关于l1的对 称点B',连A 'B'交l2于M
,交l1于N.
图形
原理
两点之间线段 最短.
AM+MN+NB 的最小值为线 段A'B'的

2020中考数学二轮复习几何专题突破 动点最值题型解法技巧(原卷版)

2020中考数学二轮复习几何专题突破     动点最值题型解法技巧(原卷版)

2020中考数学几何专题突破模块四:动点最值问题1.(2019·安徽中考真题)如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是()A.0 B.4 C.6 D.82.(2018·贵州中考真题)如图,在△ABC中,BC=6,BC边上的高为4,在△ABC的内部作一个矩形EFGH,使EF在BC边上,另外两个顶点分别在AB、AC边上,则对角线EG 长的最小值为_____.3.(2019·吉林中考真题)如图,在矩形ABCD 中,4,3AD cm AB cm ==,E 为边BC 上一点,BE AB =,连接AE .动点P Q 、从点A 同时出发,点P 以2/cm s 的速度沿AE 向终点E 运动;点Q 以2/cm s 的速度沿折线AD DC -向终点C 运动.设点Q 运动的时间为()x s ,在运动过程中,点P ,点Q 经过的路线与线段PQ 围成的图形面积为()2y cm .⑴AE =________cm ,EAD ∠=________°;⑵求y 关于x 的函数解析式,并写出自变量x 的取值范围; ⑶当54PQ cm =时,直接写出x 的值.4.(2019·湖北中考真题)如图,AB 是O 的直径,M 、N 是弧AB (异于A 、B )上两点,C 是弧MN 上一动点,ACB ∠的角平分线交O 于点D ,BAC ∠的平分线交CD 于点E .当点C 从点M 运动到点N 时,则C 、E 两点的运动路径长的比是( )A 2B .2πC .32D 55.(2019·湖南中考真题)如图,点E 、F 、G 、H 分别在矩形ABCD 的边AB 、BC 、CD 、DA (不包括端点)上运动,且满足AE CG =,AH CF =. (1)求证:AEH CGF ∆≅∆;(2)试判断四边形EFGH 的形状,并说明理由.(3)请探究四边形EFGH 的周长一半与矩形ABCD 一条对角线长的大小关系,并说明理由.6.(2020·湖南)如图,△ABC 中,AB =AC =10,tanA =2,BE ⊥AC 于点E ,D 是线段BE 上的一个动点,则55CD BD +的最小值是( )A .25B .45C .53D .107.(2019·陕西中考真题)如图,在正方形ABCD 中,AB=8,AC 与BD 交于点O ,N 是AO 的中点,点M 在BC 边上,且BM=6. P 为对角线BD 上一点,则PM —PN 的最大值为___.8.(2019·南省衡阳市)如图,在等边△ABC中,AB=6cm,动点P从点A出发以l cm/s的速度沿AB匀速运动.动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动.设运动时间为以t(s).过点P作PE⊥AC于E,连接PQ交AC边于D.以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;(3)求DE的长;(4)取线段BC的中点M,连接PM,将△BPM沿直线PM翻折,得△B′PM,连接AB′,当t 为何值时,AB'的值最小?并求出最小值.9.(2019•吉林省长春市)如图,在Rt△ABC中,∠C=90°,AC=20,BC=15.点P从点A 出发,沿AC向终点C运动,同时点Q从点C出发,沿射线CB运动,它们的速度均为每秒5个单位长度,点P到达终点时,P、Q同时停止运动.当点P不与点A、C重合时,过点P作PN⊥AB于点N,连结PQ,以PN、PQ为邻边作□PQMN.设□PQMN与△ABC重叠部分图形的面积为S,点P的运动时间为t秒.(1)①AB的长为;②PN的长用含t的代数式表示为.(2)当□PQMN为矩形时,求t的值;(3)当□PQMN与△ABC重叠部分图形为四边形时,求S与t之间的函数关系式;(4)当过点P且平行于BC的直线经过□PQMN一边中点时,直接写出t的值.10.(2019•江苏省苏州市)已知矩形ABCD 中,AB =5cm ,点P 为对角线AC 上的一点,且AP =25cm .如图①,动点M 从点A 出发,在矩形边上沿着A B C →→的方向匀速运动(不包含点C ).设动点M 的运动时间为t (s ),APM ∆的面积为S (cm ²),S 与t 的函数关系如图②所示:(1)直接写出动点M 的运动速度为 /cm s ,BC 的长度为 cm ;(2)如图③,动点M 重新从点A 出发,在矩形边上,按原来的速度和方向匀速运动.同时,另一个动点N 从点D 出发,在矩形边上沿着D C B →→的方向匀速运动,设动点N 的运动速度为()/v cm s .已知两动点M 、N 经过时间()x s 在线段BC 上相遇(不包含点C ),动点M 、N 相遇后立即停止运动,记此时APM DPN ∆∆与的面积为()()2212,S cm S cm .①求动点N 运动速度()/v cm s 的取值范围;②试探究12S S ⋅是否存在最大值.若存在,求出12S S ⋅的最大值并确定运动速度时间x 的值;若不存在,请说明理由.①(图)PBCDAS (cm²)t (s )②图O2.57.511.(2019•江苏省扬州市)如图,四边形ABCD是矩形,AB=20,BC=10,以CD为一边向矩形外部作等腰直角△GDC,∠G=90°.点M在线段AB上,且AM=a,点P沿折线AD﹣DG 运动,点Q沿折线BC﹣CG运动(与点G不重合),在运动过程中始终保持线段PQ∥A B.设PQ与AB之间的距离为x.(1)若a=12.①如图1,当点P在线段AD上时,若四边形AMQP的面积为48,则x的值为;②在运动过程中,求四边形AMQP的最大面积;(2)如图2,若点P在线段DG上时,要使四边形AMQP的面积始终不小于50,求a的取值范围.12.(2019•山东省青岛市)已知:如图,在四边形ABCD中,AB∥CD,∠ACB=90°,AB=10cm,BC=8cm,OD垂直平分A C.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE⊥AB,交BC于点E,过点Q作QF∥AC,分别交AD,OD于点F,G.连接OP,EG.设运动时间为t(s)(0<t<5),解答下列问题:(1)当t为何值时,点E在∠BAC的平分线上?(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE⊥OQ?若存在,求出t的值;若不存在,请说明理由.13.(2019•天津市)在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°.矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.(Ⅰ)如图①,求点E的坐标;(Ⅱ)将矩形CODE沿x轴向右平移,得到矩形C′O′D′E′,点C,O,D,E的对应点分别为C′,O′,D′,E′.设OO′=t,矩形C′O′D′E′与△ABO重叠部分的面积为S.①如图②,当矩形C′O′D′E′与△ABO重叠部分为五边形时,C′E′,E′D′分别与AB 相交于点M,F,试用含有t的式子表示S,并直接写出t的取值范围;②当3≤S≤53时,求t的取值范围(直接写出结果即可).。

人教版初中数学 2020年中考数学复习 专题 最短路径问题(36张ppt)

人教版初中数学 2020年中考数学复习 专题  最短路径问题(36张ppt)
第5题图
课后精练 6.如图,在锐角△ABC中,AB=4,∠BAC=45°, ∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动 点,则BM+MN的最小值是___2___.
第6题图
课后精练 7.如图,在平面直角坐标系中,平行四边形ABCD 的坐标分别为A(-1,0),B(0,2),C(3,2),D(2,0), 点P是AD边上的一个动点,若点A关于BP的对称点为A′, 则A′C的最小值为__________.
单击此处编辑母版标题样式
的最小值是( C )
A.3
B.4
第 3 题图 C.5 D.6
课后精练
4.如图,矩形 ABCD 中,AB=4,AD=2,E 为边 AD 上一个动点,连接 BE,取 BE 的中点 G,点 G 绕点 E 逆时针旋转 90°得到点 F,连接 CF,则△CEF 面积
的最小值是( B )
答案图
第 4 题图
【提示】如图,过点F作AD的垂线交AD 的延长线于点H;证明△FEH∽△EBA,
∴C(0,-k),OC=k.
∵点 P 在第一象限内的抛物线上,∴∠ABP 为钝角.
因此若两个三角形相似,只可能是△ABC∽△APB
或△ABC∽△PAB.
①若△ABC∽△APB,则有∠BAC=∠PAB.
设 P(x,y),过点 P 作 PN⊥x 轴于点 N,如图 1,
图1
则 ON=x,PN=y.
课堂精讲
中考·数学
2020版
第一部分 系统复习
专题11 最短路径问题
考点解读
最短路径问题在近三年成都中考中都占了重要地位, 都是在大题中结合题目的背景进行综合考查,重在考查 学生对知识应用能力.考查的基本类型有:线段和最小、 差最大、多条线段和最小、点到点的距离与点到直线距 离之和最小、多条线路上速度不同时的最短时间问题, 这些问题大多是利用数形结合、转化思想将问题转化为 两点间线段最短或者垂线段最短来加以解决.

(完整版)2020年中考数学动态问题图形最值问题探究(含答案)

(完整版)2020年中考数学动态问题图形最值问题探究(含答案)

专题 09 动点类题目图形最值问题研究题型一:矩形中的相似求解例 1.( 2019·绍兴) 如图,矩形 ABCD 中, AB=a , BC=b ,点 M 、 N 分别在边 AB 、 CD上,点 E 、 F 分别在边 BC 、 AD 上, MN 、EF 交于点 P. 记 k=MN:EF.( 1)若 a : b 的值为 1,当 MN ⊥ EF 时,求 k 的值 .( 2)若 a : b 的值为 1,求 k 的最大值和最小值 .2( 3)若 k 的值为 3,当点 N 是矩形的极点,∠MPE =60°, MP=EF=3 PE 时,求 a :b 的值 .AFD NMBEC题型二:二次函数中几何图形最值求解 例 2.( 2019·衡阳) 如图,二次函数y =x 2+bx+c 的图象与 x 轴交于点 A (﹣ 1, 0)和点 B(3, 0),与 y 轴交于点 N ,以 AB 为边在 x 轴上方作正方形 ABCD ,点 P 是 x 轴上一动点,连接 CP ,过点 P 作 CP 的垂线与y 轴交于点 E .(1)求该抛物线的函数关系表达式;(2)当点 P 在线段 OB (点 P 不与 O 、B 重合)上运动至哪处时,线段OE 的长有最大值?并求出这个最大值;( 3)在第四象限的抛物线上任取一点M ,连接 MN 、MB .请问: △ MBN 的面积可否存在最大值?若存在,求出此时点M 的坐标;若不存在,请说明原由.题型三:二次函数中面积最值的求解例 3.( 2019·自贡)如图,已知直线AB 与抛物线C : y ax 2 2x c 订交于点A( -1,0)和点 B( 2,3)两点 .(1)求抛物线 C 函数表达式;(2)若点 M 是位于直线AB 上方抛物线上的一动点,以MA、MB为相邻的两边作平行四边形 MANB ,当平行四边形 MANB 的面积最大时,求此时平行四边形MANB 的面积 S 及点 M的坐标;(3)在抛物线 C 的对称轴上可否存在定点F,使抛物线 C 上任意一点 P 到点 F 的距离等于到直线y 17F 的坐标;若不存在,请说明原由 .的距离,若存在,求出定点4题型四:反比率函数中面积最值的求解例 4.( 2018·扬州一模)如图1,反比率函数y= k( x> 0)的图象经过点A( 23, 1),射x线 AB 与反比率函数图象交于另一点B( 1,a),射线 AC 与 y 轴交于点C,∠ BAC=75°,AD ⊥ y 轴,垂足为 D .(1)求 k 的值;(2)求 tan∠ DAC 的值及直线AC 的解析式;(3)如图 2, M 是线段 AC 上方反比率函数图象上一动点,过M 作直线 l⊥ x 轴,与 AC 相交于点 N,连接 CM,求△ CMN 面积的最大值.题型五:反比率函数中面积最值的求解例 5.( 2019·达州)如图 1,已知抛物线 y=- x2+bx+c 过点 A(1,0), B(- 3,0).(1)求抛物线的解析式及其极点 C 的坐标;(2)设点 D 是 x 轴上一点,当tan(∠ CAO+∠ CDO ) =4 时,求点 D 的坐标;(3)如图 2,抛物线与 y 轴交于点 E,点 P 是该抛物线上位于第二象限的点,线段PA 交BE 于点 M,交 y 轴于点 N,△ BMP 和△ EMN 的面积分别为m、 n,求 m- n 的最大值 .题型六:二次函数中最值及最短路径题型例 6.(2019·绵阳)在平面直角坐标系中,将二次函数y=ax2( a>0)的图象向右平移 1 个单位,再向下平移 2 个单位,获取以以下图的抛物线,该抛物线与x 轴交于点 A、 B(点 A 在点 B 的左侧),OA=1,经过点 A 的一次函数 y=kx+b( k≠0)的图象与 y 轴正半轴交于点C,且与抛物线的另一个交点为D,△ ABD 的面积为 5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点 E 在一次函数的图象下方,求△ACE 面积的最大值,并求出此时点E 的坐标;(3)若点 P 为 x 轴上任意一点,在( 2)的结论下,求PE+ 3PA 的最小值.5例 7.( 2019·潍坊)如图,在平面直角坐标系xoy 中, O 为坐标原点,点A( 4, 0),点 B (0, 4),△ ABO 的中线 AC 与 y 轴交于点 C,且⊙M 经过 O, A, C 三点.(1)求圆心 M 的坐标;(2)若直线 AD 与⊙ M 相切于点 A,交 y 轴于点 D,求直线 AD 的函数表达式;(3)在过点 B 且以圆心M 为极点的抛物线上有一动点P,过点 P 作 PE∥ y 轴,交直线AD 于点 E.若以 PE 为半径的⊙ P 与直线 AD 订交于另一点 F .当 EF = 4 5 时,求点 P 的坐标.答案与解析题型一:矩形中的相似求解例1.( 2019·绍兴)如图,矩形 ABCD 中, AB=a, BC=b,点 M、 N 分别在边 AB、 CD 上,点 E、 F 分别在边BC、 AD 上, MN 、EF 交于点 P. 记 k=MN:EF.(1)若 a: b 的值为 1,当 MN ⊥ EF 时,求 k 的值 .(2)若 a: b 的值为1,求 k 的最大值和最小值 . 2( 3)若 k 的值为 3,当点 N 是矩形的极点,∠MPE =60°, MP=EF=3 PE 时,求 a:b 的值.A FDNMB E C【解析】( 1)当 a: b=1 时,可得四边形ABCD 为正方形,由MN ⊥ EF ,可证 MN =EF ,即 k=1;( 2)先确定 MN 和 EF 的取值范围,当 MN 取最大值, EF 取最小值时, k 的值最大,否则反之;( 3)依照 N 是矩形极点,分两种情况谈论,即N 分别与 D 点和 C 点重合,依照不同样图形求解 .【答案】见解析.【解析】解:( 1)当 a:b=1 时,即 AB=BC,∵四边形 ABCD 是矩形,∴四边形 ABCD 是正方形,过 F 作 FG ⊥ BC 于 G,过 M 作 MH ⊥CD 于 H,以以下图所示,A FDNMHBG E C ∵MN⊥ EF ,∴∠ NMH =∠ EFG ,∵∠ MHN =∠ FGE =90°, MH =FG ,∴△ MNH ≌△ FEG ,∴MN=EF ,即 k=1;( 2)由题意知: b=2a,所以得: a≤EF ≤5a,2a≤MN ≤5a ,所以当 MN 取最大值, EF 取最小值时, k 取最大值,为 5 ;25当 MN 取最小值, EF 取最大值时, k 取最小值,为;5( 3)以以下图所示,A F DP NMBEC连接 FN ,ME,设PE=x,则 EF =MP=3x, PF=2x,MN =3EF=9 x, PN=6x,∴PF PN PE PM又∵∠ FPN =∠ MPE,∴△ FPN∽△ EPM ,∴∠ PFN=∠ PEM,∴FN∥ ME ,①当 N 点与 D 点重合时,由FN ∥ ME 得, M 点与 B 点重合,AF(N)DP HB C (M )E过F 作 FH ⊥ BD 于 H ,∵∠ MPE=60°,∴∠ PFH =30°,∴ PH=x , FH = 3x , BH=BP+PH=4x , DH =5x ,在 Rt △ DFH 中, tan ∠FDH =3 ,5即 a:b=3;5②当 N 点与 C 点重合时,过A FDM H PBE(N ) C过点 E 作 EH ⊥ MN 于 H ,连接 EM ,则 PH =x ,EH= 3x , CH=PC+PH =13x ,在 Rt △ ECH 中, tan ∠ECH =3 , 13∵ ME ∥ FC ,∴∠ MEB=∠ FCB=∠ CFD ,∵∠ B=∠ D ,∴△ MEB ∽△ CFD ,∴CD FC=2,MB MECD 2BM 2 3即 a:b=BC;BC13综上所述, a:b 的值为3 或 2 3 .513题型二:二次函数中几何图形最值求解例 2.( 2019·衡阳) 如图,二次函数y =x 2+bx+c 的图象与 x 轴交于点 A (﹣ 1, 0)和点 B(3, 0),与 y 轴交于点 N ,以 AB 为边在 x 轴上方作正方形 ABCD ,点 P 是 x 轴上一动点,连接 CP ,过点 P 作 CP 的垂线与 y 轴交于点 E .(1)求该抛物线的函数关系表达式;(2)当点 P 在线段 OB (点 P 不与 O 、B 重合)上运动至哪处时,线段OE 的长有最大值?并求出这个最大值;( 3)在第四象限的抛物线上任取一点M ,连接 MN 、MB .请问: △ MBN 的面积可否存在最大值?若存在,求出此时点M 的坐标;若不存在,请说明原由.【解析】( 1)将点 A 、B 的坐标代入二次函数解析式求解; ( 2)由 △ POE ∽△ CBP 得出比率 线段,可表示 OE 的长,利用二次函数的性质可求出线段 OE 的最大值;(3)过点 M 作 MH ∥ y轴交 BN 于点 H ,由 S △MNB =S △BMH +S △MNH 即可求解. 【答案】见解析 .【解析】解:( 1) ∵抛物线 y = x 2+bx+c 经过 A (﹣ 1, 0), B ( 3, 0),1 b c 09 3bc ,0 解得:b 2 c,3抛物线函数关系表达式为y = x 2﹣2x ﹣ 3;( 2)由题意知: AB = OA+OB = 4,在正方形 ABCD 中, ∠ ABC = 90°, PC ⊥ BE , ∴∠ OPE+∠ CPB = 90°,∠CPB +∠ PCB = 90°, ∴∠ OPE =∠ PCB ,又∵∠ EOP = ∠ PBC = 90°,∴△ POE ∽△ CBP ,∴BC OP ,BP OE∴4 x , 3 xOE2∴OE =1x 2 3x1 x 3 9 ,44 216当 x3时,即 OP =3时线段 OE 长有最大值,最大值为9 .2216(3)存在.如图,过点 M 作 MH ∥y 轴交 BN 于点 H ,∴N 点坐标为( 0,﹣ 3),设直线 BN 的解析式为 y =kx+b ,3k b 0 ∴,b3∴直线 BN 的解析式为y =x ﹣ 3,设 M ( m , m 2﹣2m ﹣ 3),则 H ( m , m ﹣ 3), ∴MH = m ﹣ 3﹣( m 2 ﹣2m ﹣3)=﹣ m 2+3 m ,∴S △MNB =S △BMH +S △MNH =11 m 2m 2 3m3 27 ,2228∴a = 3时, △ MBN 的面积有最大值,最大值是27,此时 M 点的坐标为( 3,15).2824题型三:二次函数中面积最值的求解例 3.( 2019·自贡) 如图,已知直线 AB 与抛物线 C : y ax 2 2xc 订交于点 A ( -1,0)和点 B ( 2,3)两点 .(1)求抛物线 C 函数表达式;(2)若点 M 是位于直线 AB 上方抛物线上的一动点, 以 MA 、MB 为相邻的两边作平行四边的坐标;(3)在抛物线 C 的对称轴上可否存在定点 F ,使抛物线 C 上任意一点 P 到点 F 的距离等于到直线 y17 F 的坐标;若不存在,请说明原由 .的距离,若存在,求出定点4【答案】见解析 .【解析】解:( 1)把 A ( -1,0),B ( 2,3)代入抛物线得:a 2 c 04a 4 c 3解得a 1c 3∴抛物线的函数表达式为:y=-x 2+2x+3( 2)∵ A ( -1,0), B ( 2,3),∴直线 AB 的解析式为: y=x+1,以以下图所示,过 M 作 MN ∥ y 轴交 AB 于 N ,设 M(m,- m 2+2m+3), N(m,m+1) ,( -1< m <2)∴MN =- m 2+m+2,∴S △△△ 1x A ) MNABM =S AMN +S BMN = ( x B2∴S △ ABM =1( m 2 m 2)33 (m 1 ) 227 ,22 28∴当1 时, △ ABM 的面积有最大值 27,而 S □MANB△ ABM27 ,此时1 7 m8=2S=M (, )242 2( 3)存在,点 F (1,15)4原由以下:抛物线极点为D ,则 D ( 1,4),则极点 D 到直线 y17 的距离为 1 ,174 4设 F (1, n) 、 P(x, x 22x 3) ,设 P 到直线 y的距离为 PG.4则 PG=17( x 2 2 x3) x 22x 5 ,44∵P 为抛物线上任意一点都有 PG=PF ,∴当 P 与极点 D 重合时,也有 PG=PF .此时 PG= 1,即极点 D 到直线 y17 的距离为 1 ,44 41∴PF =DF = ,∴ F (1,15) ,4∵PG=PF ,∴PG 2=PF 2, ∵ PF 2( x 1)2(15x 2 2x 3)2( x 1)2(x 22x3 )244PG 2( x 22x 5) 2(15 43)25)2∴ (x 1)2x 2 2x 3)2 ( x 1)2( x 2 2 x (x 22x44 4整理化简可得 0x=0,∴当 F (1,15) 时,无论 x 取任何实数,均有 PG=PF .4题型四:反比率函数中面积最值的求解k例 4.( 2018·扬州一模) 如图 1,反比率函数 y= x ( x > 0)的图象经过点 A (2 3, 1),射线 AB 与反比率函数图象交于另一点 B ( 1, a ),射线 AC 与 y 轴交于点 C ,∠ BAC=75°,AD ⊥y 轴,垂足为 D . (1)求 k 的值;(2)求 tan ∠ DAC 的值及直线 AC 的解析式;(3)如图 2, M 是线段 AC 上方反比率函数图象上一动点,过 M 作直线 l ⊥ x 轴,与 AC 相交于点 N ,连接 CM ,求 △ CMN 面积的最大值.11【答案】见解析.【解析】解:( 1)∵将 A(2 3 , 1)代入反比率函数y=k ,x∴k= 2 3 ;(2)由( 1)知,反比率函数解析式为y=2 3,x∵点 B( 1, a)在反比率函数y=23 的图象上,x∴a= 2 3 ,∴点 B( 1, 2 3 )过 B 作 BE⊥ AD 于 E,以以下图所示,则AE=BE =2 3 ﹣1.∴∠ ABE=∠ BAE=45°又∵∠ BAC=75°,∴∠ DAC =30°3∴DC = tan30°·AD= 2 3 = 2,∴OC= 1,即 C( 0,﹣ 1)设直线 AC 的解析式为y=kx+b12∴ 2 3kb 1 ,b1解得k3 3 b1∴直线 AC 的解析式为 y = 3 x ﹣ 13( 3)设 M ( m ,2 3), N ( m , 3m ﹣ 1)m3则 MN =2 3- (3 m ﹣ 1)=2 3﹣ 3 m+1,m3 m 3∴S △CMN = 1 (23 ﹣ 3 m+1) m =﹣ m 2+ m+2m 3=﹣3( m ﹣ 3 ) 2+ 9 3628当 m =3时, △ CMN 的面积有最大值,最大值为9 3 .28题型五:反比率函数中面积最值的求解例 5.( 2019·达州) 如图 1,已知抛物线 y=- x 2+bx+c 过点 A(1,0), B(- 3,0).(1)求抛物线的解析式及其极点 C 的坐标;(2)设点 D 是 x 轴上一点,当tan (∠ CAO+∠ CDO ) =4 时,求点 D 的坐标;(3)如图 2,抛物线与 y 轴交于点 E ,点 P 是该抛物线上位于第二象限的点,线段PA 交BE 于点 M ,交 y 轴于点 N , △ BMP 和 △ EMN 的面积分别为 m 、 n ,求 m - n 的最大值 .【答案】见解析 .2【解析】解:( 1)把点( 1,0),(﹣ 3, 0)代入 y =﹣ x +bx+c ,得,0 1 b c , 0 9 3bc解得 b =﹣ 2, c = 3,2 2,∴y =﹣ x ﹣ 2x+3 =-( x+1) +4∴此抛物线解析式为: y =﹣ x 2﹣2x+3,极点 C 的坐标为(﹣ 1, 4);13(2)由( 1)知:抛物线对称轴为x =﹣ 1,设抛物线对称轴与x 轴交于点 H , H (﹣ 1, 0),在 Rt △ CHO 中, CH =4, OH = 1,∴ t an ∠COH = CH=4,OH∵∠ COH = ∠ CAO+∠ ACO ,∴当 ∠ ACO = ∠ CDO 时,tan ( ∠CAO+∠CDO )= tan ∠ COH = 4,以以下图所示,当点 D 在对称轴左侧时,∵∠ ACO =∠ CDO , ∠ CAO =∠ CAO ,∴△ AOC ∽△ ACD ,∴ AC AO ,AD AC∵AC = 2 5 , AO = 1,∴AD = 20, OD = 19,∴D (﹣ 19, 0);当点 D 在对称轴右侧时,点D 关于直线 x = 1 的对称点 D'的坐标为( 17, 0),∴点 D 的坐标为(﹣ 19,0)或( 17, 0);( 3)设 P ( a ,﹣ a 2﹣ 2a+3),设直线 PA 的解析式为: y=kx+b ,将 P ( a ,﹣ a 2﹣ 2a+3), A ( 1, 0)代入 y = kx+b ,ak ba 2 2a 3 k b,解得, k =﹣ a ﹣ 3, b = a+3 ,∴ y =(﹣ a ﹣ 3) x+a+3,当 x = 0 时, y = a+3,∴ N ( 0,a+3),14以以下图所示,∵m=S △ BPM = S △BPA ﹣ S 四边形 BMNO ﹣ S △AON , n=S △EMN = S △EBO ﹣ S 四边形 BMNO ,∴m - n = S △BPA ﹣ S △EBO ﹣ S △AON= 1×4×(﹣ a 2﹣ 2a+3)﹣ 1 ×3×3﹣ 1×1×( a+3) 2 2 2=﹣ 2( a+ 9 ) 2+ 81,8 32 ∴当 a =﹣ 9 时, m - n 有最大值81.832题型六:二次函数中最值及最短路径题型例 6.(2019·绵阳) 在平面直角坐标系中,将二次函数y=ax 2( a >0)的图象向右平移1 个单位,再向下平移 2 个单位,获取以以下图的抛物线,该抛物线与 x 轴交于点 A 、 B (点 A在点 B 的左侧) ,OA=1,经过点 A 的一次函数 y=kx+b ( k ≠0)的图象与 y 轴正半轴交于点 C ,且与抛物线的另一个交点为D , △ ABD 的面积为 5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点 E 在一次函数的图象下方,求 △ACE 面积的最大值,并求出此时点 E 的坐标;(3)若点 P 为 x 轴上任意一点,在(2)的结论下,求PE+ 3PA 的最小值.5【答案】见解析 .【解析】解:( 1)由平移知,平移后获取的抛物线解析式为y=a ( x-1)2 -2,∵OA=1,15∴点 A 的坐标为( -1,0),代入抛物线的解析式得, 4a-2=0 ,得: a= 1,2∴抛物线的解析式为 y1 x 1 21 x2 x3 .2 ,即 y222令 y=0,解得 x 1=-1 , x 2 =3,∴B ( 3,0),∴AB =OA +OB=4,∵△ ABD 的面积为 5,1∴S △ ABD = AB ·y D =5∴ y D = 5,25 1 x 2 x 3 ,解得 x 1=-2, x 2=4,2225∴D ( 4, ),设直线 AD 的解析式为 y=kx+b ,∴ 4kb5k12 ,2 ,解得:k b 0b1 2∴直线 AD 的解析式为: y=1x+ 1 . 2 2( 2)过点 E 作 EM ∥y 轴交 AD 于 M ,以以下图所示,设 E ( a , 1a 2- a - 3 ), M (a , 1 a+ 1),2 2 2 2∴ME = - 1a 2+ 3a+2 ,2 2∴S △ ACE =S △ AME - S △CME =- 1 ( a 2- 3a - 4) =- 1 ( a - 3 ) 2+25,44 2 1616∴当 a= 3 时, △ ACE 的面积有最大值,最大值是25,此时 E 点坐标为( 3 , 15 ).21628( 3)作 E 关于 x 轴的对称点 F ,连接 EF 交 x 轴于点 G ,过点 F 作 FH ⊥ AE 于点 H ,交轴于点 P ,∴AG = 5 , EG = 15,2 8AG 4 ∴,EG3∵∠ AGE=∠ AHP =90° ∴sin ∠= PHEG 3EAGAE,AP53∴PH = AP ,∵E 、 F 关于 x 轴对称,∴PE =PF ,3∴PE + 5 AP=FP+HP=FH ,此时 FH 最小,∵ E F =15, ∠AEG =∠ HEF ,4∴sin ∠ AEG=sin ∠ HEF =AGFH4 AEAE 5∴FH =3.即 PE+ 3PA 的最小值是3. 5例 7.( 2019·潍坊) 如图,在平面直角坐标系 xoy 中, O 为坐标原点,点A ( 4, 0),点 B( 0, 4),△ ABO 的中线 AC 与 y 轴交于点 C ,且 ⊙M 经过 O , A , C 三点.( 1)求圆心 M 的坐标;( 2)若直线 AD 与 ⊙ M 相切于点 A ,交 y 轴于点 D ,求直线 AD 的函数表达式;(3)在过点B 且以圆心 M 为极点的抛物线上有一动点 P ,过点 P 作 PE ∥ y 轴,交直线 AD于点 E .若以 PE 为半径的 ⊙ P 与直线 AD 订交于另一点 F .当 EF = 4 5 时,求点 P 的坐标.17【答案】见解析.【解答】解:( 1)∵ AC 为△ ABO 的中线,点B( 0,4),∴点 C(0, 2),∵点 A( 4, 0),点M 为线段 AC 的中点,即 M( 2, 1);(2)∵⊙P 与直线 AD ,则∠ CAD = 90°,设∠ CAO=α,则∠ CAO=∠ ODA=∠ PEH =α,tan∠ CAO=OC1αα5, cosα=25 ,OA2= tan ,则 sin=55AC= 10 ,则 CD=AC= 10,sin则 D ( 0,﹣ 8),设直线 AD 的解析式为: y= mx+n:b8得:,解得: k=2, b=- 8,4k b 0直线 AD的表达式为: y=2x﹣ 8;(3)抛物线的表达式为:y= a( x﹣ 2)2+1,3将点 B 坐标代入上式并解得:a=,故抛物线的表达式为:y=3x2﹣ 3x+4,41过点 P 作 PH ⊥ EF,则 EH =EF= 2 5 ,18(完满版)2020年中考数学动向问题图形最值问题研究(含答案) 21 / 21 cos ∠PEH = EH cos 2 5PE 5得: PE = 5,设点 P ( x , 3 x 2﹣ 3x+4),则点 E ( x ,2x ﹣ 8),4则 PE = 3 x 2﹣ 3x+4 ﹣ 2x+8=5,4解得 x = 14 或 2(舍),3则点 P ( 14 , 19 ).3 3 19。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题01 动点问题中的最值、最短路径问题动点问题是初中数学阶段的难点,它贯穿于整个初中数自数轴起始,至几何图形的存在性、几何图形的长度及面积的最值,函数的综合类题目,无不包含其中.其中尤以几何图形的长度及面积的最值、最短路径问题的求解最为繁琐且灵活多变,而其中又有一些技巧性很强的数学思想(转化思想),本专题以几个基本的知识点为经,以历年来中考真题为纬,由浅入深探讨此类题目的求解技巧及方法.一、基础知识点综述1. 两点之间,线段最短;2. 垂线段最短;3. 若A、B是平面直角坐标系内两定点,P是某直线上一动点,当P、A、B在一条直线上时,PA PB 最大,最大值为线段AB的长(如下图所示);(1)单动点模型作图方法:作已知点关于动点所在直线的对称点,连接成线段与动点所在直线的交点即为所求点的位置. 如下图所示,P是x轴上一动点,求P A+PB的最小值的作图.P 是∠AOB 内一点,M 、N 分别是边OA 、OB 上动点,求作△PMN 周长最小值.作图方法:作已知点P 关于动点所在直线OA 、OB 的对称点P ’、P ’’,连接P ’P ’’与动点所在直线的交点M 、N 即为所求.5. 二次函数的最大(小)值()2y a x h k =-+,当a >0时,y 有最小值k ;当a <0时,y 有最大值k .二、主要思想方法利用勾股定理、三角函数、相似性质等转化为以上基本图形解答. (详见精品例题解析) 三、精品例题解析例1. (2019·凉山州)如图,正方形ABCD 中,AB =12,AE =3,点P 在BC 上运动(不与B 、C 重合),过点P 作PQ ⊥EP ,交CD 于点Q ,则CQ 的最大值为【答案】4.【解析】解:∵PQ ⊥EP ,∴∠EPQ =90°,即∠EPB +∠QPC =90°,∵四边形ABCD 是正方形,∴∠B =∠C =90°,∠EPB +∠BEP =90°,∴∠BEP =∠QPC ,∴△BEP ∽△CPQ ,O∴BE BP CP CQ=,∵AB=12,AE=3,∴BE=9,设CQ=y,BP=x,CP=12-x,(0<x<12)∴912xx y=-,即()()21216499x xy x-==--+,∴当x=6时,y有最大值为4,即CQ的最大值为4.【点睛】此题为“一线三直角模型”,解题方法为相似三角形性质求解,综合利用二次函数的性质求解最值问题.例2.(2019·自贡)如图,已知A、B两点的坐标分别为(8,0),(0,8). 点C、F分别是直线x=-5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取最小值时,tan ∠BAD=()A.817B.717C.49D.59【答案】B.【解析】解:S△ABE=142BE OA BE ⨯⨯=,当BE取最小值时,△ABE面积为最小值.设x=-5与x轴交于点G,连接DG,因为D为CF中点,△CFG为直角三角形,所以DG=15 2CD=,∴D点的运动轨迹为以G为圆心,以5半径的圆上,如图所示由图可知:当AD与圆G相切时,BE的长度最小,如下图,过点E作EH⊥AB于H,∵OG=5,OA=8,DG=5,在Rt△ADG中,由勾股定理得:AD=12,△AOE∽△ADG,∴AO AD OE DG=,求得:OE=10 3,由OB=OA=8,得:BE=143,∠B=45°,AB=∴EH=BH=,AH=AB-BH,∴tan ∠BAD=717EH AH ==, 故答案为B .【点睛】此题解题的关键是找到△ABE 面积最小时即是AD 与D 的远动轨迹圆相切的时刻. 进而构造以∠BAD 为内角的直角三角形,利用勾股定理求出边长,代入三角函数定义求解.例3. (2019·南充)如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B 在x 轴的正半轴及原点上滑动,点E 为AB 的中点,AB =24,BC =5,给出结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;①①OAB 的面积的最大值为144;①当OD 最大时,点D 的坐标为)2626125,262625(,其中正确的结论是 (填写序号).【答案】①①.【解析】解:根据题意可知:OE =12AB =12, 即E 的轨迹为以O 为圆心以12为半径的四分之一圆(第一象限的部分),根据弧长公式,得点E 的路径长为:9012180π⨯⨯=6π,故①错误; 因为AB =24,当斜边AB 上的高取最大值时,①OAB 的面积取最大值,点O 在以AB 为直径的圆上(圆心为E ),当OE ⊥AB 时,斜边AB 上的高最大,所以①OAB 的面积取最大值为:124122⨯⨯=144,故②正确; 连接OE 、DE ,得:OD≤OE+DE,当O、E、D三点共线时取等号,即OD的最大值为25,如图,过点D作DF⊥y轴于F,过点E作EG⊥y轴于G,可得:25DF OD==,即:1225EG DF=,512AF ADEG AE==,即:51125AF EG DF==,设DF=x,在Rt△ADF中,由勾股定理得:221255x x⎛⎫+=⎪⎝⎭,解得:x=26,在Rt△ODF中,由勾股定理得:OF=26,即点D的坐标为)2626125,262625(,故③正确.综上所述,答案为:②③.例4.(2019·天津)已知抛物线2y x bx c=-+(b、c为常数,b>0)经过点A(-1,0),点M(m,0)是x轴正半轴上的动点.若点Q(1,2Qb y+2QM+b的值.【答案】见解析.【解析】解:∵2y x bx c =-+经过点A (-1,0),∴1+b +c =0,即21y x bx b =---∵点Q (1,2Q b y +)在抛物线2y x bx c =-+上, ∴324Q by =--, 即13,224bQ b ⎛⎫+-- ⎪⎝⎭,∵b >0,∴Q 点在第四象限,22QM AM QM ⎫+=+⎪⎝⎭所以只要构造出2AM QM ⎛⎫+ ⎪⎝⎭2QM +的最小值取N (1,0),连接AN ,过M 作MG ⊥AN 于G ,连接QM ,如图所示,△AGM 为等腰直角三角形,GM =2AM ,即当G 、M 、Q 三点共线时,GM +MQ 2QM +取最小值,此时△MQH 为等腰直角三角形,∴QM 324b⎫+⎪⎭,GM =2AM =()12m +()322=2122244b QM AM QM m ⎛⎫⎤⎫+=++++= ⎪⎥⎪⎭⎝⎭⎣⎦ ①∵QH =MH ,∴324b +=12b m +-,解得:m =124b - ②联立①②得:m =74,b =4.2QM +的最小值为4时,b =4.2QM +转化为2AM QM ⎫+⎪⎝⎭,进而根据两点之间线段最短及等腰三角形性质求解. 例5. (2019·舟山)如图,一副含30°和45°角的三角板ABC 和EDF 拼合在个平面上,边AC 与EF 重合,12AC cm =.当点E 从点A 出发沿AC 方向滑动时,点F 同时从点C 出发沿射线BC 方向滑动.当点E 从点A 滑动到点C 时,点D 运动的路径长为 cm ;连接BD ,则△ABD 的面积最大值为 2cm .【答案】 【解析】解:如图1所示,当E 运动至E ’,F 滑动到F ’时,图1过D ’作D ’G ⊥AC 于G ,D ’H ⊥BC 交BC 延长线于点H ,可得∠E ’D ’G =∠F ’D ’H ,D ’E ’=D ’F ’,∴Rt △E ’D ’G ≌Rt △F ’D ’H ,∴D ’G =G ’H ,D '∴D ’在∠ACH 的角平分线上,即C ,D ,D ’三点共线.通过分析可知,当D ’E ’⊥AC 时,DD ’的长度最大,随后返回初始D 点,如图2所示,D 点的运动路径为D →D ’→D ,行走路线长度为2DD ’;图2∵∠BAC =30°,AC =12,DE =CD∴BC=CD =DE=由图知:四边形E ’CF ’D ’为正方形,CD ’=EF =12,∴DD ’=CD ’-CD =12-D 点运动路程为2DD ’=24-图3如图3所示,当点D 运动至D ’时,△ABD ’的面积最大,最大面积为:'''''''ABC AE D BD F E CF D S S S S ++-△△△正方形=(((211112222⨯+⨯--⨯⨯=-【点睛】准确利用全等、角平分线判定得到D 点的运动轨迹是关键,利用三角函数及勾股定理求解,计算较为繁琐,尤其是利用割补法求解三角形的面积时对学生计算能力要求较高,此题难度较大,新颖不失难度.BD'BD'例6. (2019·巴中)如图,在菱形ABCD 中,连接BD 、AC 交于点O ,过点O 作OH ⊥BC 于点H ,以O 为圆心,OH 为半径的半圆交AC 于点M .(1)求证:DC 是圆O 的切线;(2)若AC =4MC ,且AC =8,求图中阴影部分面积;(3)在(2)的前提下,P 是线段BD 上的一动点,当PD 为何值时,PH +PM 的值最小,并求出最小值.【答案】见解析.【解析】(1)证明:过点O 作ON ⊥CD 于N ,AC 是菱形ABCD 的对角线,∴AC 平分∠BCD ,∵OH ⊥BC ,ON ⊥CD ,∴OH =ON ,又OH 为圆O 的半径,∴ON 为圆O 的半径,即CD 是圆O 的切线.(2)由题意知:OC =2MC =4,MC =OM =2,即OH =2,在Rt △OHC 中,OC =2OH ,可得:∠OCH =30°,∠COH =60°,B D11 由勾股定理得:CH==23OCH OMHS S S π-=△阴影扇形(3)作点M 关于直线BD 的对称点M ’,连接M ’H 交BD 于点P , 可知:PM =PM ’即PH +PM =PH +PM ’=HM ’,由两点之间线段最短,知此时PH +PM 最小, ∵OM ’=OM =OH ,∠MOH =60°,∴∠MM ’H =30°=∠HCM ,∴HM ’=HC=即PH +PM的最小值为在Rt △M ’PO 及Rt △COD 中,OP =OM ’ tan 30°=3,OD =OC tan 30°即PD =OP +OD=B D。

相关文档
最新文档