第4节 网络最大流问题
最大流常见算法

最大流常见算法最大流问题是图论中的一个重要问题,其求解方法有多种,本文将介绍最常见的几种算法。
一、最大流问题简介最大流问题是在一个网络中寻找从源点到汇点的最大流量的问题。
网络是由一些节点和连接这些节点的边构成的,每条边都有一个容量,表示该边所能承载的最大流量。
源点是流量的起点,汇点是流量的终点。
在网络中,还可能存在其他节点和边。
二、Ford-Fulkerson算法Ford-Fulkerson算法是最早用于解决最大流问题的算法之一。
该算法基于增广路径来不断增加流量,直到无法再找到增广路径为止。
1. 算法步骤(1)初始化:将所有边上的流量设为0。
(2)寻找增广路径:从源点开始进行深度优先或广度优先搜索,在搜索过程中只选择剩余容量不为0且没有被标记过的边,并记录路径上容量最小值min。
(3)更新路径上各个边上的流量:将路径上各个边上的流量加上min。
(4)返回第二步,直到无法找到增广路径为止。
2. 算法分析Ford-Fulkerson算法可以保证在有限步内求解出最大流,但是其时间复杂度与增广路径的选择有关,最坏情况下可能需要指数级的时间复杂度。
三、Edmonds-Karp算法Edmonds-Karp算法是基于Ford-Fulkerson算法的一种改进算法。
该算法使用BFS来寻找增广路径,可以保证在多项式时间内求解出最大流。
1. 算法步骤(1)初始化:将所有边上的流量设为0。
(2)寻找增广路径:从源点开始进行BFS,在搜索过程中只选择剩余容量不为0且没有被标记过的边,并记录路径上容量最小值min。
(3)更新路径上各个边上的流量:将路径上各个边上的流量加上min。
(4)返回第二步,直到无法找到增广路径为止。
2. 算法分析Edmonds-Karp算法相对于Ford-Fulkerson算法来说,在同样的网络中,其时间复杂度更低,可以保证在O(VE^2)的时间内求解出最大流。
但是在某些特殊情况下仍然可能需要指数级时间复杂度。
最大流与最小费用流

§7 最大流问题7.1 最大流问题的数学描述 7.1.1 网络中的流定义 在以V 为节点集,A 为弧集的有向图),(A V G =上定义如下的权函数:(i )R A L →:为孤上的权函数,弧A j i ∈),(对应的权),(j i L 记为ij l ,称为孤),(j i 的容量下界(lower bound );(ii )R A U →:为弧上的权函数,弧A j i ∈),(对应的权),(j i U 记为ij u ,称为孤),(j i 的容量上界,或直接称为容量(capacity );(iii )R V D →:为顶点上的权函数,节点V i ∈对应的权)(i D 记为i d ,称为顶点i 的供需量(supply /demand );此时所构成的网络称为流网络,可以记为),,,,(D U L A V N =。
由于我们只讨论A V ,为有限集合的情况,所以对于弧上的权函数U L ,和顶点上的权函数D ,可以直接用所有孤上对应的权和顶点上的权组成的有限维向量表示,因此D U L ,,有时直接称为权向量,或简称权。
由于给定有向图),(A V G =后,我们总是可以在它的弧集合和顶点集合上定义各种权函数,所以流网络一般也直接简称为网络。
在流网络中,弧),(j i 的容量下界ij l 和容量上界ij u 表示的物理意义分别是:通过该弧发送某种“物质”时,必须发送的最小数量为ij l ,而发送的最大数量为ij u 。
顶点V i ∈对应的供需量i d 则表示该顶点从网络外部获得的“物质”数量(0>i d 时),或从该顶点发送到网络外部的“物质”数量(0<i d 时)。
下面我们给出严格定义。
定义 对于流网络),,,,(D U L A V N =,其上的一个流(flow )f 是指从N 的弧集A 到R 的一个函数,即对每条弧),(j i 赋予一个实数ij f (称为弧),(j i 的流量)。
如果流f 满足∑∑∈∈∈∀=-Ai j j i ji A j i j ij V i d f f ),(:),(:,,(1)A j i u f l ij ij ij ∈∀≤≤),(,, (2)则称f 为可行流(feasible flow )。
运筹学钱颂迪答案

运筹学钱颂迪答案【篇一: 803 运筹学】class=txt>运筹学考试大纲一、考试性质运筹学是我校航空运输管理学院硕士生入学考试的综合考试科目之一,它是我校为招收交通运输规划与管理学科硕士研究生而实施的水平考试,其评价标准是普通高等院校优秀本科毕业生能够达到的及格以上水平,以保证被录取者较好地掌握了必备的专业基础知识。
本门课程主要考试内容包括:线性规划及其对偶理论、运输问题、目标规划、整数规划、动态规划、图与网络分析,注重考察考生是否已经掌握运筹学最基本的理论知识与方法。
二、考试形式与试卷结构1.答卷方式:闭卷、笔试2.答卷时间: 180 分钟3.题型比例:满分 150 分,基本概念 20% ,计算及证明题 80%三、考查要点1.线性规划及对偶理论:单纯形法,改进单纯形法。
线性规划的对偶理论,对偶单纯形法,灵敏度分析;2.运输问题:运输问题的数学模型;用表上作业法求解运输问题;产销不平衡的运输问题及其求解方法;3.目标规划:目标规划的数学模型,目标规划的图解法与单纯形法;4.整数规划:0-1 型整数规划,分支定界解法,割平面解法,指派问题;5.动态规划:动态规划的基本概念和基本方法,动态规划的最优性原理与最优性定理,动态规划与静态规划的关系,动态规划的应用;6.图与网络分析:图与树的基本概念,最短路问题,网络最大流问题,最小费用最大流问题,中国邮路问题,网络计划。
四、主要参考书目1、郭耀煌,李军 .运筹学原理与方法. 成都:西南交通大学出版社,2004 ;2 、钱颂迪主编. 运筹学(修订版). 北京:清华大学出版社,1991 。
【篇二:运筹学大纲(13 、 14 级使用)2014.9 】(理论课程)开课系(部):数理教研部课程编号:380020 、 381703课程类型:专业必修课或学科必修课总学时: 48 或 32学分:3或2适用专业:信息管理与信息系统、投资学、工业工程、工程管理、经济统计学、物流管理开课学期: 3 或 4 或 5先修课程:高等数学、线性代数一、课程简述本课程是以经济活动方面的问题以及解决这类问题的原理和方法作为研究的对象,把经济活动中的问题归结为对应的某种数学模型,运用数学知识等工具求得最合理的工作方案。
第五节 线性规划建模举例

第五节线性规划建模举例线性规划是一种操作研究的数学方法,广泛应用于商业、经济、工程领域中的优化问题。
线性规划建模是将实际问题描述为线性规划模型的过程。
本节将介绍几个线性规划建模的典型例子。
例1:混合饲料配方问题某饲料厂要生产一种混合饲料,需包括以下六种饲料成分:大豆粉、面粉、玉米、鱼粉、鸡粉、牛粉,并且要求这种混合饲料包含不少于25%的蛋白质和不多于15%的纤维素。
每吨饲料的生产成本和含量如下:| 饲料成分 | 成本(元/吨) | 蛋白质含量(%) | 纤维素含量(%) || -------- | ------------- | -------------- | -------------- || 大豆粉 | 200 | 45 | 10 || 面粉 | 100 | 10 | 2 || 玉米 | 150 | 8 | 5 || 鱼粉 | 300 | 60 | 0 || 鸡粉 | 280 | 50 | 2 || 牛粉 | 320 | 70 | 5 |问如何使得生产的混合饲料成本最小,同时满足蛋白质含量不少于25%和纤维素含量不超过15%的要求。
自变量:混合饲料中每种成分的含量。
目标函数:最小化混合饲料的成本。
约束条件:1. 蛋白质含量不少于25%:0.45×x1 + 0.1×x2 + 0.08×x3 + 0.6×x4 + 0.5×x5 + 0.7×x6 ≥ 0.25。
2. 纤维素含量不超过15%:0.1×x1 + 0.02×x2 + 0.05×x3 + 0×x4 + 0.02×x5 + 0.05×x6 ≤ 0.15。
3. 非负性:x1, x2, x3, x4, x5, x6 ≥ 0。
其中,x1,x2,x3,x4,x5,x6 分别表示大豆粉、面粉、玉米、鱼粉、鸡粉和牛粉的含量,单位为吨。
物流运筹学教案

物流运筹学教案课程名称:物流运筹学适用专业:物流管理规定学时:32学时,2学分开课学期:三年级上学期任课教师:***物流运筹学教案一、课程说明物流运筹学运筹学是经管类专业本、专科生的主干课、学位课.通过本书学习要求学生掌握线性规划、整数规划、目标规划、图与网络分析、动态规划、存储论、排队论、决策论、博弈论的基本理论及方法,通过案例分析,要求学生学会建模的方法,能用各类模型的建立解决在经济管理中出现的各类问题.二、教学内容物流运筹学是物流管理专业的专业方向课程,教材涵盖了线性规划、整数规划、目标规划、图与网络分析、动态规划、存储论、排队论、决策论、博弈论的基本理论及方法,讨论了目标规划、图与网络分析在物流中的主要应用领域,探讨了利用线性规划、整数规划、目标规划、图与网络分析、动态规划、存储论、排队论、决策论、博弈论的基本理论及方法解决物流活动中的问题,并对物流运输路线安排、物资调配等专题进行了剖析.三、本课程的教案主要包括下列教学活动形式1、本章的教学目标及基本要求2、本章各节教学内容3、教学重点与难点4、本章教学内容的深化和拓宽5、本章教学方式手段及教学过程中应注意的问题6、本章的主要参考书目7、本章的思考题和习题8、教学进程四、课程教学的基本要求本课程的教学环节包括:课堂讲授、习题课、课外作业.通过本课程各个教学环节的教学,重点培养学生的学习能力、分析问题解决问题的能力.一课堂讲授主要教学方法:主要采用教师课堂讲授为主,增加讨论课和习题课,调动学生学习的主观能动性.二习题习题是本课程的重要教学环节,通过习题巩固讲授过的基本理论知识,培养学生自学能力和分析问题解决问题的能力.习题课:安排每章后.三考试环节学生成绩评定:平时成绩20%+期末考试80%平时成绩包括:学习态度、小测验、作业等.期末考试主要采用笔试闭卷形式,题型主要分为:判断题、选择题、计算分析题、简述题和案例分析题等.五、建议使用教材及教学参考书运筹学:运筹学教材编写组主编,清华大学出版社,2012年01出版.运筹学教程:胡运权主编,清华大学出版社,2012年02月出版.第一章线性规划及单纯形法本章的教学目标及基本要求了解运筹学的概念掌握线性规划问题的数学模型掌握图解法和单纯形法的计算学会用单纯形法解决现实问题本章各节教学内容本章共分四节,4学时第1章线性规划及单纯形法第一节一般线性规划问题的教学模型第二节图解法第三节单纯形法原理第四节单纯形法的计算步骤习题一教学重点与难点掌握线性规划问题的数学模型掌握图解法和单纯形法的计算本章教学内容的深化和拓宽线性规划在日常中的应用本章教学方式手段及教学过程中应注意的问题本章以课堂讲解为主,并采用对比和案例教学的分析方法.每次课课前用5分钟提问,对提问内容精心设计.讲授结束时用3分钟总结,包括本节课需要掌握的知识点,重点和难点等.本章的主要参考书目运筹学:运筹学教材编写组主编,清华大学出版社,2012年01出版.运筹学教程:胡运权主编,清华大学出版社,2012年02月出版.本章的思考题和习题课后习题一教学进程:具体每次课的教学内容设计第一次课 2课时90分钟第二次课 2课时90分钟第三章运输问题本章的教学目标及基本要求熟悉运输问题的典例和数学模型掌握表上作业法掌握产销不平衡的运输问题及其应用本章各节教学内容本章共分三节,4学时第一节运输问题的典例和数学模型第二节表上作业法第三节产销不平衡的运输问题及应用习题三教学重点与难点表上作业法产销不平衡的运输问题及应用本章教学内容的深化和拓宽适当补充各种国内的运输现状,使学生掌握表上作业法.本章教学方式手段及教学过程中应注意的问题本章以课堂讲解为主,并采用对比和案例教学的分析方法.每次课课前用5分钟提问,对提问内容精心设计.讲授结束时用3分钟总结,包括本节课需要掌握的知识点,重点和难点等.本章的主要参考书目运筹学:运筹学教材编写组主编,清华大学出版社,2012年01出版.运筹学教程:胡运权主编,清华大学出版社,2012年02月出版.本章的思考题和习题课后习题三教学进程:具体每次课的教学内容设计第一次课 2课时90分钟教学进程:具体每次课的教学内容设计第二次课 2课时90分钟第六章图与网络分析本章的教学目标及基本要求熟悉图的基本概念与模型掌握树图和图的最小部分树概念掌握最短路问题掌握网络的最大流掌握最小费用流本章各节教学内容本章共分五节,4学时第一节图的基本概念与模型第二节树图和图的最小部分树第三节最短路问题第四节网络的最大流第五节最小费用流习题六教学重点与难点树图和图的最小部分树概念最短路问题网络的最大流最小费用流本章教学内容的深化和拓宽运用最短路和网络最大流,最小费用流解决物流问题.本章教学方式手段及教学过程中应注意的问题本章以课堂讲解为主,并采用对比和案例教学的分析方法.每次课课前用5分钟提问,对提问内容精心设计.讲授结束时用3分钟总结,包括本节课需要掌握的知识点,重点和难点等.本章的主要参考书目运筹学:运筹学教材编写组主编,清华大学出版社,2012年01出版.运筹学教程:胡运权主编,清华大学出版社,2012年02月出版.本章的思考题和习题习题六教学进程:具体每次课的教学内容设计第一次课 2课时90分钟教学进程:具体每次课的教学内容设计第二次课 2课时90分钟第7章计划评审方法和关键路线法本章的教学目标及基本要求了解PERT网络图的概念掌握PERT网络图的计算掌握关键路线和网络计划的优化了解完成作业的期望时间和在规定时间内实现事件的概率本章各节教学内容本章共分四节,4学时第一节 PERT网络图第二节 PERT网络图的计算第三节关键路线和网络计划的优化第四节完成作业的期望时间和在规定时间内实现事件的概率教学重点与难点PERT网络图的计算关键路线和网络计划的优化本章教学内容的深化和拓宽适当补充运用PERT图解决问题的方法.本章教学方式手段及教学过程中应注意的问题本章以课堂讲解为主,并采用对比和案例教学的分析方法.每次课课前用5分钟提问,对提问内容精心设计.讲授结束时用3分钟总结,包括本节课需要掌握的知识点,重点和难点等.本章的主要参考书目运筹学:运筹学教材编写组主编,清华大学出版社,2012年01出版.运筹学教程:胡运权主编,清华大学出版社,2012年02月出版.本章的思考题和习题课后习题七教学进程:具体每次课的教学内容设计第一次课 2课时90分钟教学进程:具体每次课的教学内容设计第一次课 2课时90分钟第九章存储论本章的教学目标及基本要求掌握经济批量的存储模型掌握具有价格折扣优惠的存储模型掌握动态的存储模型了解单时期的随机存储模型了解多时期的随机存储模型本章各节教学内容本章共分六节,4学时第一节引言第二节经济批量的存储模型第三节具有价格折扣优惠的存储模型第四节动态的存储模型第五节单时期的随机存储模型第六节多时期的随机存储模型习题九教学重点与难点掌握经济批量的存储模型掌握具有价格折扣优惠的存储模型掌握动态的存储模型本章教学内容的深化和拓宽适当订货策略的内容本章教学方式手段及教学过程中应注意的问题本章以课堂讲解为主,并采用对比和案例教学的分析方法.每次课课前用5分钟提问,对提问内容精心设计.讲授结束时用3分钟总结,包括本节课需要掌握的知识点,重点和难点等.本章的主要参考书目运筹学:运筹学教材编写组主编,清华大学出版社,2012年01出版.运筹学教程:胡运权主编,清华大学出版社,2012年02月出版.本章的思考题和习题课后习题九教学进程:具体每次课的教学内容设计第一次课 2课时90分钟()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤++=<≤++=<≤++=Q Q k Q c c R QQ C Q Q Q k Q c c R QQ C Q Q k Q c c R QQ C 2331)3(21231)2(1131)1( ,21 ,210 ,21 1周期内需求量订购量:Qt = Rt ; 2周期内订购费用:Bt = c3 + KRt ; 3周期内平均订购费用:bt = c3/t + KR ; 4周期内平均存储量:qt = Qt/2 = Rt/2; 5周期内平均存储费用:At = c1Rt/2;6周期内总平均费用:Ct = c3/t + KR + c1Rt/2.例某钢厂月计划角钢产量为3000吨,每吨每月存储费元,每次生产的设备调试费用为2500元.试确定该厂角钢的经济生产批量和生产间隔时间,并比较按月计划生产与按经济批量生产两种方案的年费用情况.解 1 月计划生产方案:每月产量为3000吨,每月费用为×3000×+2500 = 10450元全年总费用为10450×12 = 125400元2 经济批量生产方案:16823.53000250022130≈⨯⨯==c Rc Q第三节 具有价格折扣优惠的存储模型40分钟设货物单价函数为KQ, 假定其价格分三级处理:(),, ,0 ,⎪⎩⎪⎨⎧≤<≤<≤=Q Q k Q Q Q k Q Q k Q K平均每单位货物所需费用为第十一章决策分析本章的教学目标及基本要求熟知不确定型的决策分析、风险情况下的决策熟知贝叶斯决策掌握决策分析中的效用度量掌握层次分析法和多目标分析法本章各节教学内容本章共分8节,2学时第一节引言第二节不确定型的决策分析第三节风险情况下的决策第四节贝叶斯决策第五节决策分析中的效用度量第六节层次分析法第七节多目标决策习题十一教学重点与难点不确定型的决策分析风险情况下的决策贝叶斯决策层次分析法多目标决策本章教学内容的深化和拓宽适当决策在物流中的应用本章教学方式手段及教学过程中应注意的问题本章以课堂讲解为主,并采用对比和案例教学的分析方法.每次课课前用5分钟提问,对提问内容精心设计.讲授结束时用3分钟总结,包括本节课需要掌握的知识点,重点和难点等.本章的主要参考书目运筹学:运筹学教材编写组主编,清华大学出版社,2012年01出版.运筹学教程:胡运权主编,清华大学出版社,2012年02月出版.本章的思考题和习题习题十一教学进程:具体每次课的教学内容设计第一次课 2课时90分钟第七章销售物流本章的教学目标及基本要求了解销售物流在企业市场营销中的作用掌握不同类型的产品与不同类型的销售物流的匹配关系掌握功能性产品的ECR策略及ECR战略对销售物流的要求掌握创新性产品的QR战略及QR战略对销售物流的要求本章各节教学内容本章共分三节,2学时引例箭牌的分销物流管理第1节物流与市场营销的关系第2节ECR战略与销售物流优化第3节QR战略与销售物流优化课后讨论案例可口可乐的销售物流模式教学重点与难点1、基于需求特点的产品分类2、ECR战略的基本内涵3、QR战略的基本内涵本章教学内容的深化和拓宽适当补充QR战略对厂商及零售商的优点本章教学方式手段及教学过程中应注意的问题本章以课堂讲解为主,并采用对比和案例教学的分析方法.每次课课前用5分钟提问,对提问内容精心设计.讲授结束时用3分钟总结,包括本节课需要掌握的知识点,重点和难点等.本章的主要参考书目销售物流,安久意,2013-10-01 /销售物流管理,刘同利,2011-09-01 /本章的思考题和习题1、物流在企业市场营销中的作用是什么2、ECR战略和QR战略的不同之处和共同之处分别是什么教学进程:具体每次课的教学内容设计第一次课 2课时90分钟第八章生产物流本章的教学目标及基本要求掌握生产物流优化的基本内容熟知ERP在生产物流优化中的作用了解均衡化生产、同步化生产与生产物流的关系掌握精益生产的内涵、基本框架及精益生产对生产物流优化的贡献掌握大规模定制的概念、基本框架及大规模定制对生产物流优化的贡献本章各节教学内容本章共分三节,4学时引例法布劳格:生产物理规划领域的先行者第1节生产物流优化的内容与技术第2节精益生产与生产物流优化第3节大规模定制与生产物流优化课后讨论案例上海通用汽车的柔性化精益制造生产线教学重点与难点1、ERP的原理2、精益生产的内涵3、大规模定制的基本框架本章教学内容的深化和拓宽适当补充生产物流的类型、大规模定制可以实施的各个阶段本章教学方式手段及教学过程中应注意的问题本章以课堂讲解为主,并采用对比和案例教学的分析方法.每次课课前用5分钟提问,对提问内容精心设计.讲授结束时用3分钟总结,包括本节课需要掌握的知识点,重点和难点等.本章的主要参考书目企业生产物流流程,陈璐,2014-11-01 /生产物流管理,宋栎楠,2012-02-01 /本章的思考题和习题1、ERP对于企业的生产物流优化有哪些影响企业在实施ERP的过程中需要注意哪些问题2、精益生产的基本概念是什么它对于生产物流优化有哪些影响3、大规模定制的基本框架是什么它对于生产物流优化有哪些影响教学进程:具体每次课的教学内容设计第一次课 2课时90分钟提问:洋ERP水土不服的原因:国外软件设计的环境与目前国内大环境不同其数据库结构不能体现中国“准信用制社会”的特殊形态.在欧美国家,信用机制构成了市场运营的基础框架.国外专家开发的是以信用制社会为基础模型的系统,因此在业务流程、结算模式、财务指标……等等诸多关键环节上与国内企业的实际情况严重脱节.目前中国处于计划经济向市场经济的转型期,处于“准信用制社会”,经营风险灵活多变是主要特征.系统设计中不考虑这一关键因素,必然出现南辕北辙的局面.第二次课 2课时90分钟。
10.2_最小树问题

+50+60 = 290(米)
所以,排污管道最小建设
3
30
成本 = 290×500 = 145000 元 60
1
4
40
5
30 30
7 处理中心A
50
30 20
6
8
12
OR:SM
本章小结
树是图论中应用比较活跃的领域,在各个学科中都有广 泛的应用。
例如在一些地区之间架设电话线路或铺设铁路线,修公 路等施工方案的确定,都可以采用最小树的方法求得最 佳施工方案。
60
100
70
50
2栋
40
30
0
80
30
60
120
3栋
100
60
0
60
180
90
120
4栋
80
60
0
40
80
100
5栋
60
100
30
180
40
0
30
80
6栋
150
60
90
80
0
50
70
7栋
70
120
30
50
0
8栋
20
50
120
100
80
70
0
表中空格表示由于特殊原因无法铺设管道。
10
OR:SM
三、最小树问题应用案例
树图:无圈的连通图称为树。
4
OR:SM
二、树及性质
性质1 如果树T的点数不小于2,那么至少有两个悬挂点。
性质2 如果一个图G具有n个顶点,那么图G是一个树的 充分必要条件是图G不含圈且恰有n-1条边。
运筹学课程教学大纲

教学基本文件模板课程教学大纲:《运筹学》课程教学大纲课程编号:课程名称:运筹学/Operational Research课程总学时/学分:72/4 (其中理论60学时,实验12学时)适用专业:适用本科四年制信息管理与信息系统专业一、课程简介本课程的授课对象是信息管理与信息系统专业本科生,属管理类专业专业基础必修课。
《运筹学》是以定量分析为主来研究经济管理问题,将工程思想和管理思想相结合,应用系统的、科学的、数学分析的方法,通过建模、检验和求解数学模型获得最优决策方案。
本课程的主要内容包括线性规划、运输问题、整数规划、目标规划、动态规划、网络分析等与经济、管理和工程领域密切相关的运筹学分支的基本模型、方法和应用。
运用科学的模型化方法来描述、求解和分析问题,从而支持决策。
二、教学目的和任务本课程旨在使同学们正确、全面地掌握各级管理工作中已被广泛应用、发展比较成熟的最优化理论与方法,并能运用所学理论和方法解决管理工作中出现的各种优化问题,为后续课程奠定定量分析基础。
在已学过高等数学、微积分、线性代数等课程基础上学习本课程,通过教授、自学、复习、作业练习、辅导、上机等教学环节达到上述目的。
学习中要注意到学科系统性,数学概念和逻辑的严密性、准确性和完整性,但不偏重纯数学方法论证。
注重基本概念、基本思路、基本方法、算法步骤的掌握,了解各种方法特点和实用价值,提高建立模型、分析求解能力和技巧。
应注重实际应用中建立模型,选择可行求解的理论方法,运用计算机工具求解这三方面训练的有机结合。
三、教学基本要求信息管理与信息系统专业的学生应系统地学习《运筹学》的全部内容。
系统掌握线性规划、运输问题、目标规划、整数规划、动态规划、图与网络分析的理论和方法;能借助Excel、Lingo等电子计算手段,运用所学理论和方法解决实际问题。
通过该课程的学习,进一步培养学生的分析问题和解决问题的能力。
四、教学内容与学时分配绪论(2学时)第一节运筹学的定义与发展简史1、运筹学名称的来历;2、运筹学的发展简史。
运筹学:第2章 图与网络分析 第4节 最大流

v2
13 (5)
6(3)
v5
9 (5)
5 (2)
v1
4 (1) 5 (2)
v4
9 (3)
v3
5 (0)
4 (2) 4 (1)
v6
v7
10 (1)
设 V1 v1 , v2 , v5 ,V2 v3 , v4 , v6 , v7 则截集为
(V1,V2 ) (v1v3 ), (v2 , v4 ), (v5 , v7 ) 截量为24
凡与u方向相同的称为正向弧; 凡与u方向相反的称为反向弧; 其集合分别用u+和u-表示。 f 是一个可行流,如果满足:
0 fi j ci j 0 fi j ci j
(vi , vj ) 即μ+中的每一条弧都是非饱和弧 (vi , vj ) 即μ-中的每一条弧都是非零流弧
则称 u为从vs到vt 的关于f 的一条增广链。
是一个(V,A,C),vs为始点,vt为终点。如 果把V分成两个非空集合V1 ,V2(V1 V2 ,V1 V2 V )
使vs V1 ,vt V2 ,则所有始点属于V1 ,而终点属于 V2的 弧的集合,称为D的截集,记作 (V1 ,V2。) 截集(V1 ,V2)中所有弧的 容量之和,称为这个截集的截量,记为C(V1,V2) 。
2 .把节点集V分成VA :已标号点集
VB :未标号点集
3.考虑所有这样的弧(vi ,vj) 或(vj,vi ) ,其中vi VA,v j VB
若该弧为
(1)流出未饱弧,那么给vj标号(θj, vi) ,其中: θj=cij-fij
(2)流入非零弧,那么给vj标号(θj, -vi) ,其中: θj=fij 4.重复步骤2,3,直到vt被标号或标号过程无法进行下去 ,则标号结束。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
网络中存在流量限制时,求解一条线路使 得从起点与终点之间可通过的流量最大。
10 5 v1 8 3
v2 3 4 1 v3
5 2 2
v4 11 6 3 3 v5 17
5
1
6 3
v6
2
一、一般提法:
设有网络D=(V, A, C),其中C={cij}, cij为弧(vi,vj) 上的容量,现在D上要通过一个流f={fij}, fij为弧
[-v1 , 1]
v2
(4,3)
v4
Vs [0 , +∞] (2,2)
Vt v1 v3
[vs , 4]
(3)考虑所有弧(vi , vj)或(vj , vi) ,其中vi∈ VA, vj∈ VB,若该弧为
流出未饱弧,则给vj标号[vi , θj],其中θj=min{θi, cij- fij}
流入非零弧,则给vj标号[-vi , θj] ,其中θj= min{θi, fij}
Vs
Vt
[0, +∞]
[vs, 4]
v1
(2,2)
v3
(4) 重复(2),(3),依次进行的结局可能为 vt已标号,得到一条增广链u(反向追踪),转(5); vt未标号,且无法再标号,此时的流为最大流,此时的截集为最小截。
[-v1, 1]
v2
(4,3)
v4
[v2 , 1] [v4 , 1]
Vs
Vt
[0, +∞]
[vs, 4]
v1
(2,2)
v3
(4) 重复(2),(3),依次进行的结局可能为 vt已标号,得到一条增广链u(反向追踪),转(5); vt未标号,且无法再标号,此时的流为最大流,此时的截集为最小截。
[-v1, 1]
v2
(4,3)
v4
[v2, 1] [v4 , 1]
Vt
Vs
[0, +∞]
10 5
v2
3 4 3
5 2
v4
11 6
v1
8 3
0 1 3 3
v6
2 17
5
6 5
v3
v5
3. 截集与截量
把V分成两部分:VA和VB(VA ∩VB= φ, VA ∪VB= V) 且vs∈ VA、 vt∈ VB,则弧集(VA,VB)称为D的截集。
截集上的容量和称为截量,记为C(VA,VB) 。
例 若VA={vs,v1},则 截集为:{(vs,v2), (v1,v2), (v1,v3), (v1,v4)}; 截量为: C(VA,VB) =8+4+5+3=20
v2
(4,4)
v4
Vs
Vt
[0, +∞]
v1
(2,2)
v3
[vs , 3] 此时标号无法进行,当前流为最大流,最大流量为5; 最小截为{(vs,v2), (v1,v3)},截量为:5
课堂练习
有三个发电站v1,v2,v3,发电能力分别为15、10和 40兆瓦,经输电网可把电力送到8号地区,电网能力如 图所示。求三个发电站输到该地区的最大电力。
[vs, 4]
v1
(2,2)
v3
(5) 调整。取 l (vt ) min{,令 j}
v j u
[-v2, 1]
f ij ' f ij f ij f ij
(v i , v j ) u
{ f ij' },转(1)。 (v i , v j ) u ,得新流
②VA={vs ,v1},截集为{(vs,v2), (v1,vt)},截量为:7
③VA={vs ,v2},截集为{……},截量为:7
v1
vs
v2 (2,2) v3
vt
(1)所有的截集:
① VA={vs},截集为{(vs,v1), (vs,v2)},截量为:6
②VA={vs ,v1},截集为{(vs,v2), (v1,vt)},截量为:7 ③VA={vs ,v2},截集为{……},截量为:7
Vi 所有点
未标号 未检查
Vi
标号 未检查
标号 考查 (Vi, Vj) 检查 Vj 标号 未检查
所有
标号点 检查
注: 给发点Vs标上(0,+∞),则Vs成为标号未检查
网络最大流问题—标号法
1.标号过程 给vs标上(0,+∞),这时vs是标号而未检查点,其余为 未标号点。 若在弧(vi,vj)上,fij<cij,则给vj标(vi,l(vj)), 其中 l v j min l vi , cij fij 若在弧(vj,vi)上,fji>0,则给vj标(-vi,l(vj)), 其中l v j min l vi , f ji vi成为标号而已检查过的点,重复上述步骤,
(vi,vj)上的流量。
问题:如何安排fij,可使网络D上的总流量最大?
二、最大流问题的模型
10 5 Vs v2 3 5 2 2 v4 116
8
4 1
3 v3
5
1
6 3
3 3
v5 17
Vt 2
max v=v(f)
0 f ij cij
s.t.
容量约束
f
ij j j
v( f ) i s f ji v( f ) i t 0 i s, t
④Va={vs ,v3},截集为{……},截量为:12
v1
vs
v2 (2,2) v3
vt
(1)所有的截集:
①VA={vs},截集为{(vs,v1), (vs,v2)},截量为:6
②VA={vs ,v1},截集为{(vs,v2), (v1,vt)},截量为:7
③VA={vs ,v2},截集为{……},截量为:7
v4
[v2 , 1]
Vs [0 , +∞] (2,2)
Vt
[vs, 4]
v1
v3
V3
(4) 重复(2),(3),依次进行的结局可能为 vt已标号,得到一条增广链u(反向追踪),转(5); vt未标号,且无法再标号,此时的流为最大流,此时的截集为最小截。
[-v1, 1]
v2
(4,3)
v4
[v2, 1] [v4, 1]
v , v v , v
i j i j
,
l vt
去掉所有的标号,对新的可行流f*重新进行标号过程。
例. 图中网络弧旁数字为(cij ,fij),用标号法求最大流。
v2
(4,3)
v4
Vs
Vt v1 (2,2) v3
[0,+∞] [vs, 4]
步骤: (1)给vs标号为[0,+∞], 选与vs关联的
vt
v2
(2,2)
v3
(1)所有的截集:
① VA={vs},截集为{(vs,v1), (vs,v2)},截量为:6
②VA={vs ,v1},截集为{(vs,v2), (v1,vt)},截量为:7
v1
vs
v2 (2,2) v3
vt
(1)所有的截集:
① VA={vs},截集为{(vs,v1), (vs,v2)},截量为:6
平衡约束
注:满足两约束条件的流f称为可行流,v(f)称为该可行流的流量
试分析下图是否是可行流?
v2
3 1 4 1 8 1 5 6 3 5 2
10
5
v4
11 6
v1
3
3 3
v6
2 17
v3
v5
三、基本概念与定理
饱和弧 fij=cij
1. 弧按流量分为
非饱和弧 fij<cij 零流弧 fij=0
10
一旦vt被标号,表明得到一条从vs到vt的增广链,转入
2.调整过程 如果所有标号已检查过,而标号不能进行下去,则算法 结束,这时可行流为最大流。
网络最大流问题—标号法
1.标号过程 2.调整过程 利用反向追踪法找出增广链。调整量为 θ= l(vt)
* fij * * fij fij f* ij vi , v j
④VA={vs ,v3},截集为{……},截量为:12
⑤VA={vs ,v1,v2},截集为{……},截量为:5
v1
vs
v2 (2,2) v3
vt
(1)所有的截集: ①VA={vs},截集为{(vs,v1), (vs,v2)},截量为:6
②VA={vs ,v1},截集为{(vs,v2), (v1,vt)},截量为:7
10
0
1515
10
v2
40 10
v5
v4
10 10 10 20
v0
10 15 15 40 10
v1 15
15
v6
15 15 45
v8
25
v3 30
10
v7
实际应用
例1、图中A、B、C、D、E、F分别表示陆地和岛屿,① ②……⒁表示桥梁及其编号。河两岸分别互为敌对的双方 部队占领,问至少应切断几座桥梁(具体指出编号)才能 达到阻止对方部队过河的目的。试用图论方法进行分析。 ② ① ④ B C ⑥ A ⑿
图与网络优化
周荣喜 北京化工大学经济管理学院
§4 网络最大流问题
公路系统中的车辆流
供水系统中的水流
控制系统中的信息流
问题背景
金融系统中的现金流
网络最大流问题—问题的提出
v2
10 5
v4
11 3
3
4 5
v1