4网络最大流问题

合集下载

网络最大流

网络最大流

容量为20 容量为
• 最小截集: • 容量最小截集的称为网络G的最小截集。 • 最大流-最小截集定理: • 在任一个网络D中,从vs到vt的最大流的 流量等于分离的最小截集的容量。
(二)、 求最大流的标号法
标号过程: 1. 给发点vs 标号(0,+∞)。 2. 取一个已标号的点vi,对于vi一切未标号的邻 接点vj 按下列规则处理: (1)如果边 (v j , vi ) ∈ E ,且 f j i > 0 ,那么给vj 标 号 (−vi , δ j ) ,其中: δ j = min( f j i , δ i ) (2)如果边 (vi , v j ) ∈ E ,且 f ij < cij,那么给vj 标号 ( +vi , δ δ j = min(ci j − f i j , δ i ) ,其中:j ) 3.重复步骤2,直到vt被标号或标号过程无法进 行下去,则标号结束。若vt被标号,则存在一条增广 链,转调整过程;若vt未被标号,而标号过程无法进 行下去,这时的可行流就是最大流。
2.去掉所有标号,回到第一步,对可行流 重新标号。
求下图所示网络中的最大流,弧旁数为
v2 (3 , 3) vs (5 , 1) (1 , 1) v1 (-v1, 1) ) v2 (3 , 3) (0,+∞) , ) vs (5 , 1) v1 (+ vs , 4) ) (2 , 2) (1 ,1) (1 , 1) (3 ,0) (2 ,1) v3 (-v2 ,1) ) (2 , 2) (4 ,3) (1 ,1) (3 ,0) (2 ,1) v3 (+v2,1) ) v4 (5 ,3) v4 (5 ,3) vt
f = f (v i , v j ) = { f i j }

最大流问题的求解方法及应用

最大流问题的求解方法及应用

最大流问题的求解方法及应用
最大流问题,是指在一个有向图中,从源点 s 到汇点 t 的最大
流量。

在实际应用中,最大流问题往往用于描述网络传输、油管输送等流量分配问题。

求解最大流问题的方法包括以下几种:
1. 网络流算法:这是一种基于图论和线性规划的算法。

通过构建网络流图,将最大流问题转化为最小割问题,再利用线性规划求解最小割问题的对偶问题来求解最大流问题。

2. 增广路算法:这是一种经典的最大流算法,其基本思想是不断找到增广路径,即从源点 s 到汇点 t 的一条路径,沿途边权
均有剩余容量,使得该路径上的边的剩余容量中的最小值最大化,最终得到最大流。

3. 矩阵树定理:这是一种基于图论和矩阵运算的算法,适用于有向图和无向图。

通过计算图的拉普拉斯矩阵的行列式等方法,求得图的生成树个数,从而计算最大流。

4. Dinic算法:是对增广路算法的改进。

在增广路算法中,每
次查找增广路径的过程需要遍历整个图,为了提高效率,
Dinic算法引入了分层图的概念,将图分层之后只在图的一层
中查找增广路径,最终求得最大流。

这些方法在实际应用中常常被用来解决路由选择、网络流量优化、模拟电路分析等问题。

例如,最大流可以被用来优化数据传输、流水线设计、流量管道的运营和管理,提高资源利用率和数据传输速度。

最大流问题解题步骤

最大流问题解题步骤

最大流问题解题步骤一、什么是最大流问题?最大流问题是指在一个有向图中,给定源点和汇点,每条边都有一个容量限制,求从源点到汇点的最大流量。

该问题可以用于网络传输、电力调度等实际应用中。

二、最大流问题的解法1. 增广路算法增广路算法是最基本的解决最大流问题的方法。

其基本思想是不断地寻找增广路,并将其上的流量加入到原来的流中,直到不存在增广路为止。

具体步骤如下:(1)初始化网络中各边上的流量均为0;(2)在残留网络中寻找增广路;(3)如果存在增广路,则将其上的最小剩余容量作为增量加入到原来的流中;(4)重复步骤2和步骤3,直到不存在增广路。

2. Dinic算法Dinic算法是一种改进型的增广路算法,其核心思想是通过层次分析和分层图来减少搜索次数,进而提高效率。

具体步骤如下:(1)构建分层图;(2)在分层图上进行BFS搜索寻找增广路径;(3)计算路径上可行流量并更新残留网络;(4)重复步骤2和步骤3,直到不存在增广路。

3. Ford-Fulkerson算法Ford-Fulkerson算法是一种基于增广路的算法,其核心思想是不断地寻找增广路,并将其上的流量加入到原来的流中,直到不存在增广路为止。

具体步骤如下:(1)初始化网络中各边上的流量均为0;(2)在残留网络中寻找增广路;(3)如果存在增广路,则将其上的最小剩余容量作为增量加入到原来的流中;(4)重复步骤2和步骤3,直到不存在增广路。

三、最大流问题解题步骤1. 确定源点和汇点首先需要确定问题中的源点和汇点,这是解决最大流问题的前提条件。

2. 构建残留网络在有向图中,每条边都有一个容量限制。

我们可以将这些边看作管道,容量看作管道的宽度。

在实际传输过程中,某些管道可能已经被占用了一部分宽度。

因此,在求解最大流问题时,需要构建一个残留网络来表示哪些管道还能够继续传输数据。

具体方法是:对于每条边(u,v),分别构造两条边(u,v)和(v,u),容量分别为c(u,v)-f(u,v)和f(u,v),其中c(u,v)表示边的容量,f(u,v)表示当前流量。

5-4 最 大 流 问题

5-4 最 大 流 问题

(2)标号过程 标号过程
给起点v 标上标号( , 1给起点 s标上标号(-,+∞); ); (表示 s是源点(起点),能够得到任意多的量。 表示v 是源点(起点),能够得到任意多的量。 ),能够得到任意多的量 表示 vs称为已标记的点。让S表示已标记点的集合 S 表示 称为已标记的点。 表示已标记点的集合, 表示已标记点的集合 未标记点的集合, 未标记点的集合 VS ∈ S ) 2考察起点的所有相邻未标号点: 考察起点的所有相邻未标号 所有相邻未标号点 若存在以S中的点为起点, 若存在以 中的点为起点,以 S 中的点为终点的非饱 中的点为起点 [vi+ , ε j ] ,否则不加标记。 和弧( 否则不加标记。 和弧(vi,vj)则vj可标记为
从S出发到 S 终止的所有边的集合即割集。 终止的所有边的集合即割集。
v2
e1
e3 e6
v4
e8
v1
e2
e4 e7
v6
e5
v3
v5
e9
不包括从 S 出发到S终 止的边!
4、弧的分类
(1)在可行流X={xij}中,按流量的特征 在可行流X 分有: 分有: ①饱和弧——xij=bij 饱和弧 ②非饱和弧——xij<bij 非饱和弧 ③零流弧——xij=0 零流弧 ④非零流弧——xij>0 非零流弧
顶点3的标记化 顶点 的标记化: 的标记化 ∵ x s 3 = bs 3 , 但
正向饱和 弧 ∴不能从v 不能从
得到标记; 标记 s得到标记;
x
32
得到标记 标记。 > 0,故可从v2得到标记。
反向非零流
于是
ε ε3 = min { 2 , x 32 } = min {6 , 4 } = 4

8.4 网络最大流问题

8.4 网络最大流问题

所有指向为vs→vt的弧,称为前向弧,记作μ +;
所有指向为vt →vs的弧,称为后向弧,记做μ
-,
增广链:设 f 是一个可行流,μ是从vs 到 vt 的一条链,若μ满 足下列条件,称之为(关于可行流 f 的)增广链。
1)在(vi , vj)∈μ+上,0≤fij<cij,即μ+中的弧都是非饱和弧。
2)在(vi,vj)∈μ-上,0<fij≤cij,即μ-中的弧都是非零流弧。
§8.4 网络最大流问题
Page 22
(3) 检查与v3点相邻的未标号的点,因f3t<c3t,故对vt 标 l(vt)=min{l(v3), c3t-f3t } =min{1, 1}= 1 找到一条增广链 vs→v1→v2 →v3 →vt ( v , 1) 2 (-v v12, 1) (4,3) v4 (3,3) (5,3) (1,1) (1,1) (3,0)
v ( f ) f s1 f s 2 f 4 t f 3 t 5
§8.4 网络最大流问题
Page 25
例8.10 用标号算法求下图中vs→vt的最大流量,并找出最小 截。 v1 9(3) v3 8(7)
5(4) 5(4)
2(0)
vs
7(5)
6(1)

vt
10(8) v2 9(9) v4
§8.4 网络最大流问题
基本方法: (1)找出第一个可行流(例如所有弧的流量fij =0);
Page 14
(2)用标号的方法找一条增广链:
首先给发点vs标号(0,+∞),第一个数字表示标号从哪一点得到;
第二个数字表示允许的最大调整量。
选择一个点 vi 已标号且另一端未标号的弧沿着某条链向收

道路交通运输网络分析技术-道路运输系统工程

道路交通运输网络分析技术-道路运输系统工程

§ 6.1
如图6-2 a和图6-2 b
引言
§ 6.1
在生产实际中,我们要了 解某地区的公路交通状况, 要了解公路分布状况和公 路长度,还有与节点或枝 线(弧)相关的数量指标。
引言
§ 6.1
引言
网络,网络理论,网络分析技术
我们带有某种数量指 标的图称为网络图或 称网络
网络
撇开各种图的具体 内容来讨论这种由 点、线段构成的抽 象形式的图,从中 研究其一般规律。
( vi , v j )A


f ij
( vi ,v j ) A
f
ji
0
对于发点vs,记 对于收点vt,记
( vs ,v j )A

f sj
( v j ,vs )A
f
js
V( f )
( vt , v j )A

f tj
( v j ,vt )A
f
jt
V ( f )
11
• 定义每条边与顶点的顺序无关,边都没有方向的 图称为无向图
在无向图中,有(vi , v j ) (v j , vi ). • 如果边是用顶点的有序对来定义,即令其一个 顶点是始点,另一个顶点是终点,那么称该边 为有向边,全部由有向边构成的图称为有向图。 • 有向图中的边称为弧。 • 从有向图中 D (V , A)去掉所有弧上的箭头,就成为无向 图,称为D的基础图. • 图中既有边又有弧, 称为混合图.
水取暖点相互连通,但总的线路长度最短。试求
最短的管道铺设方案。这类问题在网络分析中称 为最小生成树问题。
1、树的定义 无圈的连通图称为树。我们用了T表示树,树中 的边称为树枝
2、树的性质

网络流——求网络最大流


4 1 4 8
4 2 2 6
7
9
(1,4) V2 (0,+∞) V1
(2,4) V4 (4,4) V6
(1,8)
V3
V5 (2,1)
4 1 4 8
4 2 2 6
7
9
(-4,2) V2 (0,+∞) V1 4 4
(3,2) V4 4
(4,2) V6
(1,8)
V3
V5 (3,2)
4 1 4 8
4 2 2 6
7
9
(5,2) V2 (0,+∞) V1 2 4 4 V4 6
(5,2) V6
2
(1,6)
V3
V5 (3,2)
4 1 4 8
4 2 2 6
7
9
V2 (0,+∞) V1 4 4
4
V4
6 V6 2
2 2
(1,4)
V3
V5
存储结构
const maxn=100; type nodetype=record{可改进路顶点类型 可改进路顶点类型} 可改进路顶点类型 l,p:integer;{标号、检查标志 标号、 标号 检查标志} end; arctype=record{网顶点类型 网顶点类型} 网顶点类型 c,f:integer;{容量、流量 容量、 容量 流量} end; gtype=array[0..maxn,0..maxn] of arctype; ltype=array[0..maxn] of nodetype; var lt:ltype; g:gtype; n,s,t:integer;{顶点数、源点、汇点 顶点数、 顶点数 源点、汇点} f:text;
增广后的F

数学建模 四大模型总结

四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。

1.2 微分方程组模型阻滞增长模型、SARS 传播模型。

1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。

1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。

1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。

如何将尽可能多的物品装入背包。

多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。

如何选取物品装入背包,是背包中物品的总价值最大。

多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。

该问题属于NP 难问题。

● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。

工人i 完成工作j 的时间为ij d 。

如何安排使总工作时间最小。

二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。

二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。

● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。

● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。

TSP 问题是VRP 问题的特例。

● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。

运筹学最大流问题

最小割是这些路中的咽喉部分, 其容量最小,
它决定了整个网络的最大通过能力。
四、最大匹配问题
|M |表示集合M中M的边数。
一个图的最大匹配中所含边数是确定的, 但匹配方案可以不同。
定义23 二部图G=(X,Y,E), M是边集E的子集, 若M中的任意
若不存在另一匹配M1, 使得|M1|>|M|, 则称M为最大匹配.
x5
y1x3y2x2y3x1
y4
x4
y5
x5
y1
x3
y2
x2
y3
x1
y4
x4
y5
vs
vt
1
1
1
1
1
1
1
1
1
1
1
1
如图,要求设计一个方案,使量多的人能就业。
(1,3)
(2,4)
(4,3)
(1,2)
(3,2)
(3,t)
(2,4)
(3,t)
(4,3)
(4,t)
(1,3)
(3,t)
15
(4,t)
21
17
18
19
24
14
25
15

容量
4-3、最大流-最小割定理
定理
定理2 (最大流-最小割定理) 任一网络G中, 从vs 到 vt 的
定义
设 f 为网络G=(V, E, C)的任一可行流, 流量为W ,
未标号点集合为 S = {v1, v2, v4, v5, v6, v7}
割集(S, S )= {(vs, v1), (vs, v2), (v3, v6)}
割集容量
可得到一个最小割. 见图中虚线.

16.网络最大流问题


l(vj)=min[l(vi),cij-fij],
l(vj)=min[l(vi),fji]
重复上述步骤,一旦vt被标号,则得到一条vs到vt的 增广链。若所有标号都已检查过,而vt尚未标号,结束, 这时可行流,即最大流。 (二)调整过程
从vt 开始,反向追踪,找出增广链 µ ,并在µ 上进 行流量调整。 (1)找增广链 如vt 的第一个标号为k(或-k),则弧(vk,vt) ∈µ(或弧(vt,vk) ∈µ)。检查vk 的第一个标号,若为i (或-i),则(vi,vk) ∈µ (或(vk,vi) ∈µ )。再检查vi 的第一 个标号,依此下去,直到vs 。被找出的弧构成了增广链 µ 。
5. 增广链 对可行流 f ={ fij }: 非饱和弧:fij < cij 非零流弧:fij >0 饱和弧:fij =cij 零流弧:fij =0
链的方向:若µ 是联结vs和vt的一条链,定义链的方 向是从vs到vt 。 v2 v4 5.2
10.5 3.2 4.1 5.1 3.3 11.6
v1
8.3
已检查 标号点 网络中的点 未检查 未标号点
标号:(前点标记,前点到该点的弧流量可调整量) 开始,vs 标上(0,∞),vs 是标号未检查的点, 其余点都是未标号点,一般地,取一个标号未检查 的点vi ,对一切未标号的点vj 。 (1)若弧(vi,vj)上,fij<cij,则给vj 标号(vi ,l(vj)), l(vj)=min[l (vi), cij-fij], vj 成为标号而未检查的点。 (2)若弧(vj,vi)上,fji>0,则给vj 标号(- vi, l (vj)), l (vj)=min[l (vi), fji], vj 成为标号而未检查的点。 vj vj (i , l(vj)) vi (-i , l(vj)) vi fij<cij f ji>0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Back
一、基本概念
(一)、网络与流
一个有向图D=(V,A,C)称为一个网络.其中, V 是D的顶点集;A是弧集;C是各弧上容量集 {cij:cij=c(vi,vj)} .在V中指定了两个顶点vs,vt,分别 称为发点和收点,其余的顶点称为中间点.
定义弧集A上的一个函数
f:(vi,vj)→f(vi,vj) 简为记网为络f的ij. (一10个,5)流v,并2 称((3f5,(,2v2)i,)vj)为弧v 5((1v1i,,6v)j)上v 6的流量,
2 、若μ是网络中联结发点vs和收点vt 的一条链,定 义链的方向是从vs到vt,则链上的弧被分为两类:一 类是弧的方向与链的方向一致,称为前向弧,前向弧 的全体记为μ+ ,另一类弧与链的方向相反,称为后 向弧,后向弧的全体记为 μ-。
3 、设f是一个可行流,μ是从vs到vt的一条链,称μ 为一条增广链,如果满足
对于发点vs,
fsj fjsv(f);
(vs,vj)A (vj,vs)A
对于收点vt,
ftj fj tv(f).
(vt,vj) A (vj,vt) A
式中 v(f) 称为一个可行流的流量,即发
点的净输出量(或收点的净输入量)
2、最大流问题
maxv( f ) f
0fijcij,(vi,vj)A
c(V1,V2)
cij
(vi,vj)(V1,V2)
定理 1 可行流 f 是最大流的充要条件是不存 在关于f的增广链. 定理2 任一个网络D=(V,A,C)中,从vs到vt的 最大流的流量等于分离vs与vt的最小截集的容 量.
Back
二、求最大流的标号法(Ford,Fulkerson) 1 、标号过程
(在 v5,v4) 是 链 (v 1 ,v 饱 2,v 3 ,v 和 4,fv 55 4, v 弧 6 c)中 54 v 1 (10,5)
(3,2) (4,1)
v5 (11,6) v 6
(3,3)
前向弧集合
(8,3)
(5,1)
{v(1,v2)(,v2,v3)(,v3,v4)(,v5,v6)}
(6,3) v3
(1)(vi,vj ) 0 fij cij,
即正向弧集中每一 是条 非弧 饱和; 弧
(2)(vi,vj ) 0 fij cij,
是一条增广链
即反向弧集中每一是条非弧零流后 弧 向弧 集 {合 v(5,v4
c 1 21,c 0 2 43 ,c 1 38 ,c 3 45 容量
f12 5 ,f24 2 ,f1 33 ,f34 1 流v 2量 (5,2)
2 、调整过程
(1)寻找以vt为终点的增广链----(反向追踪法):
若vt的第一个标vk号 (或为 vk),则弧(vk,vt )
(相应地 (vt ,vk ))是链 上的弧 。接下来检 vk的 查 第一个标 ,若 号为 vi (或vi ),则找(出 vi ,vk )(相应 地(vk ,vi ))。再检v查 i的第一个标 ,依 号此下,去 直到 vs为止 。此时被找的弧就增 构广 成链 了 。
Contents
图的基本概念 最小支撑树问题 最短路问题 最小费用最大流问题 中国邮递员问题 旅行售货员问题 匹配问题
To be continued
网络最大流问题
引例 基本概念 最大流算法 算例
Back
continued
引 例 假设某公路网的每条公路只允许单向行驶,
这样的公路网称为单行公路网.为了保证道路畅
(2)调整量:θ=l(vt),即vt的第二个标号;
(3)流的调整。令
fij fij
, ,
若(vi 若(vi
, ,
v v
j j
) )
,
fij,若(vi ,vj ).
去掉所有的标号,对新的可行流f’={fij’} 重新进入 标号过程。
v1
(4,1)(3,ຫໍສະໝຸດ )(8,3)(5,1)
(17,2)
(二)、可行流与最大流
1、可行流
一个流称为一个可行流,如果满足以下条件:
(1) 容量限制条件.
a ij (v i,v j) A 0 fij c i;j
(2) 平衡条件.
对中间点:流出量=流入量,即
i(is,t) fij fji0; (vi,vj) A (vj,vi) A
(17,2) v4
(四)、截集 1 、设S,T是V的真子集,S∩T= Ф,把始点在S,终 点在T中的所有弧构成的集合,记为(S,T).
2 、给定网络D=(V,A,C) ,若点集V被剖分为两个 非空集合V1,V2,使vs∈V1,vt∈V2,则弧集(V1,V2)称 为分离vs和vt的截集.
3 、截集(V1,V2)中所有弧的容量之和称为此截 集的容量,记为c(V1,V2),即
开始:先给vs标上(0,+∞),此时vs是标号而未检查 的顶点,其余都是未标号顶点。一般地,取一个标 号而未检查的点vi,对一切未标号点vj: (1)若在弧(vi,vj)上fij<cij,则给vj标号(vi,l(vj)) ,这里 l(vj)=min(l(vi),cij-fij)。此时,点vj成为标号而未检 查的点。
(2)若在弧(vj,vi)上fji>0,则给vj标号(-vi,l(vj))。这 里l(vj)=min(l(vi),fji)。此时,点vj成为标号而未检 查的点。
于是,vi成为标号且已检查过的点。重复上述 步骤,一旦vt被标上号,表明得到一条从vs到vt 的增广链μ,转入调整过程。
若所有标号都已经检查过,而标号过程进行 不下去时,则算法结束。此时的可行流就是最 大流。
通,交管部门对每条公路在单位时间内通过的车辆
数目要作一个限制.如图为一单行公路网.
问:单位时间内最多能有多少辆车从甲地(v1)出发 经过该公路网到达乙地(v6)?
v 2 (5,2)
(10,5)
(3,2)
v5 (11,6) v 6
v1
(4,1)
(3,3)
(8,3) v3
(5,1) (6,3)
(17,2) v4
s.t.
v(f ),(i s)
fij fji 0,(is,t)
(vi,vj)A (vj,vi)A v(f),(i t)
(三)、增广链
1 、给定一个可行流f={fij},
fij cij的弧称为非饱和;弧fij cij的弧称为饱和弧 ; fij 0的弧称为非零流;弧fij 0的弧称为零流弧 .
相关文档
最新文档