精品推荐:应用基本不等式求最值解题模板
基本不等式求最值的题型及解题策略

ʏ喻 芳利用不等式求最值的实质是a b ɤa +b2ɤa 2+b 22(a ,b >0),a b ɤa +b 22ɤa 2+b22(a ,b ɪR )的灵活应用㊂题型一:简单的和或积为定值求最值例1 (1)已知x ,y ,z 都是正实数,若x y z =1,则(x +y )(y +z )(z +x )的最小值为( )㊂A.2 B .4C .6D .8(2)已知0<x <1,则函数f (x )=x 3(1-x 3)的最大值为㊂(1)由x >0,y >0,z >0,可知x +y ȡ2x y >0(当且仅当x =y 时等号成立),y +z ȡ2y z >0(当且仅当y =z 时等号成立),x +z ȡ2x z >0(当且仅当x =z 时等号成立)㊂以上三个不等式两边同时相乘得(x +y )(y +z )(z +x )ȡ8x 2y 2z 2=8(当且仅当x =y =z =1时等号成立)㊂应选D ㊂(2)由基本不等式得f (x )=x 3(1-x 3)ɤx 3+1-x322=14,当且仅当x 3=1-x 3,即x =312时等号成立㊂故所求的最大值为14㊂感悟:基本不等式a 2+b 2ȡ2a b (a ,b ɪR ),a +b ȡ2a b (a ,b ɪR +),当一端为定值时,另一端就可取到最值,且要注意两个不等式适应的范围和取等号的条件㊂题型二:配凑法构造和或积为定值求最值例2 (1)已知x <54,求y =4x -2+14x -5的最大值㊂(2)若x ȡ72,则f (x )=x 2-6x +10x -3有( )㊂A .最大值52B .最小值52C .最大值2D .最小值2(1)由x <54,可得5-4x >0,所以y =4x -2+14x -5=4x -5+14x -5+3=-5-4x +15-4x+3ɤ-2(5-4x )ˑ15-4x+3=1,当且仅当5-4x =15-4x ,即x =1时等号成立,所以y 的最大值为1㊂(2)由x ȡ72,可得x -3>0,所以f (x )=x 2-6x +10x -3=(x -3)2+1x -3=(x -3)+1x -3ȡ2(x -3)ˑ1x -3=2,当且仅当x -3=1x -3,即x =4时等号成立,所以f (x )有最小值2㊂应选D ㊂感悟:形如y =a x 2+b x +ck x +m的分式函数求最值,可化为y =m g (x )+Ag (x)+B (A >0,B >0),这里g (x )恒正或恒负,然后运用基本不等式求最值㊂题型三:常数代换法求最值例3 已知p ,q 为正实数,且p +q =3,81 知识结构与拓展 高一数学 2023年9月Copyright ©博看网. All Rights Reserved.则1p +2+1q +1的最小值为( )㊂A.23B .53C .74D .95由p ,q 为正实数,p +q =3,可知p +2+q +1=6㊂所以1p +2+1q +1=1p +2+1q +1 ㊃p +26+q +16 =13+16p +2q +1+q +1p +2 ȡ13+16ˑ2p +2q +1㊃q +1p +2=23,当且仅当p +2=q +1,即p =1,q =2时 = 成立㊂应选A ㊂感悟:常数代换法适用于求解条件最值问题㊂题型四:消元法求最值例4 若正实数x ,y ,z 满足x 2+4y 2=z +3x y ,则当x yz 取最大值时,1x +12y -1z 的最大值为㊂正实数x ,y ,z 满足x 2+4y 2=z +3x y ,则z =x 2-3x y+4y 2,所以x y z =x yx 2-3x y +4y2=1x y +4y x -3ɤ12x y ㊃4y x -3=1,当且仅当x =2y 时等号成立,所以x yzm a x=1,此时x =2y ,所以z =x 2-3x y +4y 2=2y 2㊂所以1x +12y -1z =12y +12y -12y 2=-121y -12+12ɤ12,所以1x +12y -1z的最大值为12㊂感悟:解决多元最值的方法是消元后利用基本不等式求解,但要注意所保留变量的取值范围㊂题型五:换元法求最值例5 若正数a ,b 满足2a +b =1,则a 2-2a +b2-b的最小值是㊂设u =2-2a ,v =2-b ,则a =2-u2,b =2-v ,所以u +v =3(u >0,v >0)㊂所以a 2-2a +b 2-b =1-12uu +2-vv=1u +2v -32=13(u +v )1u +2v-32=13㊃3+v u +2u v-32ȡ133+2v u ㊃2uv-32=1+223-32=223-12,当且仅当v 2=2u 2,u +v =3,即v =6-32,u =32-3时等号成立,所以所求的最小值为223-12㊂感悟:换元法求最值的关键是整体换元,利用构造的新元求最值㊂题型六:构建不等式求最值例6 (1)已知正实数x ,y 满足x y =x +y +8,则x +y 的最小值为㊂(2)已知x ,y ɪR +,若x +y +x y =8,则x y 的最大值为㊂(1)由正实数x ,y ,可得(x +y )2=x 2+y 2+2x y ȡ4x y(当且仅当x =y 时等号成立),所以x y ɤ(x +y )24,所以x y =x +y +8ɤ(x +y )24,即(x +y )2-4(x +y )-32ȡ0,解得x +y ɤ-4(舍去)或x +y ȡ8(当且仅当x =y =4时等号成立),所以x +y 的最小值为8㊂(2)因为正数x ,y 满足x +y +x y =8,所以8-x y =x +y ȡ2x y ,即x y +2x y-8ɤ0,解得0<x y ɤ2,所以x y ɤ4,当且仅当x =y =2时取等号㊂所以x y 的最大值为4㊂感悟:利用题设条件,借助基本不等式进行放缩,得到关于 和 或 积 的不等式,解此不等式可得 和 或 积 的最值㊂作者单位:湖北省宜昌市长阳土家族自治县职业教育中心(责任编辑 郭正华)91知识结构与拓展高一数学 2023年9月Copyright ©博看网. All Rights Reserved.。
用基本不等式求最值六种方法

用基本不等式求最值六种方法基本不等式是求解数学问题中常用的工具,可以通过基本不等式来求解最值问题。
下面将介绍六种使用基本不等式求解最值问题的方法。
方法一:两边平方法若要求一个式子的最大值或最小值,在不改变问题的本质情况下,可以通过平方的方式将问题转化为一个更容易处理的形式。
例如,我们要求a+b 的最小值,可以通过平方的方式将其转化为一个更易处理的问题,即(a+b)^2=a^2+b^2+2ab,然后应用基本不等式,得到(a+b)^2≥ 2ab。
由此可见,通过两边平方后,可使用基本不等式求得 a+b 的最小值。
方法二:四平方法四平方法指的是对式子的四个项分别平方,将一些复杂的问题转化为四个简单展开的项的和,然后再应用基本不等式进行推导。
例如,我们要求 a^2 + b^2 的最小值,可以采用四平方法将其转化为 a^2/2 + a^2/2 + b^2/2 + b^2/2 的和,即 (a^2/2 + b^2/2) + (a^2/2 + b^2/2),然后应用基本不等式,得到(a^2/2 + b^2/2) + (a^2/2 + b^2/2) ≥2√[(a^2/2)(b^2/2)] = ab。
方法三:绝对值法绝对值法是将问题中的绝对值项用不等式进行替代,然后使用基本不等式进行求解。
例如,我们要求,x-2,的最小值,可以将其转化为不等式形式,即x-2≥0或x-2≤0。
然后根据这两个不等式分别求解x的取值范围,得到最小值。
方法四:极值法极值法是将要求最值的式子看作一个函数,通过求函数的极值点来确定最值。
例如,我们要求 f(x) = x^2 的最小值,可以求函数的极值点。
对于二次函数 f(x) = ax^2 + bx + c,其极值点的横坐标是 -b/2a,通过求解方程 -b/2a = 0,可以得到 x = 0。
因此,f(x) = x^2 的最小值是 f(0) = 0。
方法五:辅助不等式法辅助不等式法是引入一个辅助不等式,通过该不等式来推导求解最值问题。
高考数学专题--基本不等式求最值的常用方法(解析版)

高考数学专题--基本不等式求最值的常用方法(解析版)直线ab经过点M可得1+a*log(m)=b,化简得a*log(m)=b-1将a*log(m)代入第一个式子得到11/b+log(m)的最小值令t=log(m),则有11/b+t的最小值,根据部分“1”代换可得11/b+t=(1+1/b)*b+(t-1)的最小值,当且仅当b=2时取“=”,此时a=log(2)即为最小值。
已知$x>0$,$y>0$,且$x+y=1$,求$\frac{y^4}{x^2y^2}$的最小值。
解析:$\frac{y^4}{x^2y^2}=y^2+\frac{y^4}{x^2}\geq2\sqrt{y^2\cdot\frac{y^4}{x^2}}=2y^2$,所以最小值为$2$,当且仅当$x=y=\frac{1}{2}$时取等号。
已知正数$x$,$y$,且$x+y=4$,求$\frac{4}{x+2y+1}$的最小值。
解析:令$m=x+2$,$n=y+1$,则$x+2+y+1=m+n=5$,$\frac{4}{x+2y+1}=\frac{4}{m+n-2}\geq\frac{4}{4}=1$,所以最小值为$1$,当且仅当$x=2$,$y=1$时取等号。
已知$x>y>0$,且$x+y\leq 3$,求$\frac{3x+y}{2x+by+1}$的最小值。
解析:令$m=2x+y$,$n=y+1$,则$x=\frac{m-2n}{3}$,$y=n-1$,$x>y$可得$\frac{m-2n}{3}>n-1$,即$m>5n-3$。
所以$\frac{3x+y}{2x+by+1}=\frac{3m-6n+n}{2m+bn+1}=\frac{3}{2}\cdot\frac{m}{m+\frac{bn+1}{2}-n}\geq\frac{3}{2}\cdot\frac{5}{3}=2.5$,所以最小值为$2.5$,当且仅当$m=5n-3$时取等号,即$x=2$,$y=1$。
利用基本不等式求最值(解析版)-高中数学

利用基本不等式求最值题型梳理【题型1直接法求最值】【题型2配凑法求最值】【题型3常数代换法求最值】【题型4消元法求最值】【题型5构造不等式法求最值】【题型6多次使用基本不等式求最值】【题型7实际应用中的最值问题】【题型8与其他知识交汇的最值问题】命题规律基本不等式是高考热点问题,是常考常新的内容,是高中数学中一个重要的知识点.题型通常为选择题或填空题,但它的应用范围很广,涉及到函数、三角函数、平面向量、立体几何、解析几何、导数等内容,它在高考中常用于大小判断、求最值、求最值范围等.在高考中经常考察运用基本不等式求函数或代数式的最值,具有灵活多变、应用广泛、技巧性强等特点.在复习中切忌生搬硬套,在应用时一定要紧扣“一正二定三相等”这三个条件灵活运用.知识梳理【知识点1利用基本不等式求最值的方法】1.利用基本不等式求最值的几种方法(1)直接法:条件和问题间存在基本不等式的关系,可直接利用基本不等式来求最值.(2)配凑法:利用配凑法求最值,主要是配凑成“和为常数”或“积为常数”的形式.(3)常数代换法:主要解决形如“已知x+y=t(t为常数),求的最值”的问题,先将转化为,再用基本不等式求最值.(4)消元法:当所求最值的代数式中的变量比较多时,通常考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”的形式,最后利用基本不等式求最值.(5)构造不等式法:构建目标式的不等式求最值,在既含有和式又含有积式的等式中,对和式或积式利用基本不等式,构造目标式的不等式求解.【知识点2基本不等式的实际应用】1.基本不等式的实际应用的解题策略(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值.(2)解应用题时,一定要注意变量的实际意义及其取值范围.(3)在应用基本不等式求函数的最值时,若等号取不到,则可利用函数的单调性求解.举一反三【题型1直接法求最值】1(2023上·北京·高一校考阶段练习)已知a>0,则a+1a+1的最小值为()A.2B.3C.4D.5【解题思路】用基本不等式求解即可.【解答过程】因为a>0,所以a+1a+1≥2a⋅1a+1=3,当且仅当a=1a即a=1时取等号;故选:B.【变式训练】1(2023·北京东城·统考一模)已知x>0,则x-4+4x的最小值为()A.-2B.0C.1D.22【解题思路】由基本不等式求得最小值.【解答过程】∵x>0,∴x+4x-4≥2x×4x-4=0,当且仅当x=4x即x=2时等号成立.故选:B.2(2023上·山东·高一统考期中)函数y=x2-x+9x(x>0)的最小值为()A.1B.3C.5D.9【解题思路】利用均值不等式求最小值即可.【解答过程】y=x2-x+9x=x+9x-1≥2x⋅9x-1=5,当且仅当x=9x,即x=3时等号成立,故选:C.3(2023下·江西·高三校联考阶段练习)3+1 x21+4x2的最小值为()A.93B.7+42C.83D.7+43【解题思路】依题意可得3+1 x21+4x2=7+1x2+12x2,再利用基本不等式计算可得.【解答过程】3+1 x21+4x2=7+1x2+12x2≥7+21x2⋅12x2=7+43,当且仅当1x2=12x2,即x4=112时,等号成立,故3+1 x21+4x2的最小值为7+4 3.故选:D.【题型2配凑法求最值】1(2023·浙江·校联考模拟预测)已知a>1,则a+16a-1的最小值为()A.8B.9C.10D.11【解题思路】运用基本不等式的性质进行求解即可.【解答过程】因为a>1,所以由a+16a-1=a-1+16a-1+1≥2a-1⋅16a-1+1=9,当且仅当a-1=16a-1时取等号,即a=5时取等号,故选:B.【变式训练】1(2023上·吉林·高一校考阶段练习)已知x>3,则y=2x-3+2x的最小值是()A.6B.8C.10D.12【解题思路】利用基本不等式求和的最小值,注意取值条件.【解答过程】由x-3>0,则y=2x-3+2(x-3)+6≥22x-3⋅2(x-3)+6=10,当且仅当x=4时等号成立,故最小值为10.故选:C.2(2023上·海南省直辖县级单位·高三校联考阶段练习)设x>2,则函数y=4x-1+4x-2,的最小值为()A.7B.8C.14D.15【解题思路】利用基本不等式求解.【解答过程】因为x>2,所以x-2>0,所以y=4x-1+4x-2=4x-2+4x-2+7≥24x-2⋅4x-2+7=15,当且仅当4x -2 =4x -2,即x =3时等号成立,所以函数y =4x -1+4x -2的最小值为15,故选:D .3(2023上·辽宁·高一校联考期中)若x >0,y >0且满足x +y =xy ,则2xx -1+4y y -1的最小值为()A.6+26B.4+62C.2+46D.6+42【解题思路】结合条件等式,利用基本不等式求和的最小值.【解答过程】若x >0,y >0且满足x +y =xy ,则有1x +1y=1,所以x >1,y >1,2x x -1+4y y -1=2x -1 +2x -1+4y -1 +4y -1=6+2x -1+4y -1≥6+22x -1⋅4y -1=6+28xy -x +y +1=6+42,当且仅当2x -1=4y -1,即x =1+22,y =1+2时等号成立.所以2x x -1+4y y -1的最小值为6+4 2.故选:D .【题型3 常数代换法求最值】1(2023上·内蒙古通辽·高三校考阶段练习)已知a >0,b >0,若2a +3b=1,则2a +b3的最小值是()A.8B.9C.10D.11【解题思路】利用基本不等式“1”的应用即可求解.【解答过程】由题意得a >0,b >0,2a +3b=1,所以2a +b 3=2a +b 3 2a +3b =4+1+2b 3a +6ab ≥5+22b 3a ×6a b=9,当且仅当2b 3a =6ab 时,即a =3,b =9,取等号,故B 项正确.故选:B .【变式训练】1(2023·河南·校联考模拟预测)已知正实数a ,b ,点M 1,4 在直线xa +y b=1上,则a +b 的最小值为()A.4B.6C.9D.12【解题思路】根据题意可得1a+4b=1,结合基本不等式运算求解.【解答过程】由题意得1a+4b=1,且a>0,b>0,故a+b=a+b⋅1a+4b=5+b a+4a b≥5+2b a×4a b=9,当且仅当ba=4ab,即a=3,b=6时,等号成立.故选:C.2(2023上·重庆·高一统考期末)若正实数x,y满足2x+8y-xy=0,则2x+y的最大值为()A.25B.16C.37D.19【解题思路】根据等式计算得出1,再结合常值代换求和的最值,计算可得最大值.【解答过程】∵x>0,y>0,2x+8y-xy=0,∴2y+8x=1,x+y=x+y2y+8x=2x y+8+2+8y x≥22x y×8y x+10=18,∴2 x+y ≤218=19.故选:D.3(2023·重庆·统考一模)已知a,b为非负实数,且2a+b=1,则2a2a+1+b2+1b的最小值为()A.1B.2C.3D.4【解题思路】首先根据题意求出0≤a<12,0<b≤1,然后将原式变形得2a2a+1+b2+1b=2a+1+1b-1,最后利用1的妙用即可求出其最值.【解答过程】∵2a+b=1,且a,b为非负实数,b≠0,则a≥0,b>0则b=1-2a>0,解得0≤a<12,2a=1-b≥0,解得0<b≤1,∴2a2 a+1+b2+1b=2(a+1)2-4(a+1)+2a+1+b2+1b=2(a+1)-4+2a+1+b+1b=(2a+b-2)+2a+1+1b=2a+1+1b-12 a+1+1b=42a+2+1b=13(2a+2)+b⋅42a+2+1b=135+4b2a+2+2a+2b≥135+24b2a+2⋅2a+2b=3,当且仅当4b2a+2=2a+2b即2a+2=2b,2a+b=1时,即b=1,a=0时等号成立,故2a+1+1b-1min=2,故选:B.【题型4消元法求最值】1(2023上·江苏·高一校联考阶段练习)已知正数x,y满足3x-4=9y,则x+8y的最小值为12.【解题思路】根据指数方程,得出x,y的关系式,运用消元法将所求式化成关于y的关系式,再利用基本不等式求解.【解答过程】由3x-4=9y,可得x-4=2y,即x=2y+4,代入x+8y中,可得2y+4+8y=2y+8y+4≥22y⋅8y+4=12,当且仅当y=2,x=8时,取等号,所以x+8y的最小值为12.故答案为:12.【变式训练】1(2023上·安徽池州·高一统考期中)已知x,y∈R+,若2x+y+xy=7,则x+2y的最小值为62-5.【解题思路】根据题意,化简得到x+2y=x2-3x+14x+1,设t=x+1,求得x2-3x+14x+1=t+18t-5,结合基本不等式,即可求解.【解答过程】由x,y∈R+,且2x+y+xy=7,可得y=7-2xx+1,则x+2y=x+2×7-2xx+1=x2-3x+14x+1,设t=x+1,可得x=t-1且t>1,可得x2-3x+14x+1=t2-5t+18t=t+18t-5≥2t⋅18t-5=62-5,当且仅当t=18t时,即t=32时,等号成立,所以x+2y的最小值为62-5.故答案为:62-5.2(2023上·山东淄博·高一校考阶段练习)已知正实数a,b,且2a+b+6=ab,则a+2b的最小值为13.【解题思路】根据基本不等式即可求解.【解答过程】由2a+b+6=ab可得a=b+6b-2>0,由于b>0,所以b>2,故a+2b=b+6b-2+2b=8b-2+2b-2+5,由于b>2,所以8b-2+2b-2≥216=8,当且仅当b=4时等号成立,故a+2b=8b-2+2b-2+5≥13,故a+2b的最小值为13,故答案为:13.3(2023·上海崇明·统考一模)已知正实数a, b, c, d满足a2-ab+1=0,c2+d2=1,则当(a-c)2+(b-d)2取得最小值时,ab=22+1.【解题思路】将(a-c)2+(b-d)2转化为a,b与c,d两点间距离的平方,进而转化为a,b与圆心0,0的距离,结合基本不等式求得最小值,进而分析求解即可.【解答过程】可将(a-c)2+(b-d)2转化为a,b与c,d两点间距离的平方,由a2-ab+1=0,得b=a+1 a,而c2+d2=1表示以0,0为圆心,1为半径的圆,c,d为圆上一点,则a,b与圆心0,0的距离为:a2+b2=a2+a+1 a2=2a2+1a2+2≥22a2⋅1a2+2= 22+2,当且仅当2a2=1a2,即a=±412时等号成立,此时a,b与圆心0,0的距离最小,即a,b与c,d两点间距离的平方最小,即(a-c)2+(b-d)2取得最小值.当a=412时,ab=a2+1=22+1,故答案为:22+1.【题型5构造不等式法求最值】1(2023下·河南·高三校联考阶段练习)已知2a+b=ab(a>0,b>0),下列说法正确的是()A.ab的最大值为8B.1a-1+2b-2的最小值为2C.a+b有最小值3+2D.a2-2a+b2-4b有最大值4【解题思路】根据基本不等式运用的三个条件“一正、二定、三相等”,可知ab≥8,所以A错误;将原式化成a-1b-2=2,即可得1a-1+2b-2=1a-1+a-1≥2,即B正确;不等式变形可得2b+1a=1,利用基本不等式中“1”的妙用可知a+b≥3+22,C错误;将式子配方可得a2-2a+b2 -4b=(a-1)2+(b-2)2-5,再利用基本不等式可得其有最小值-1,无最大值,D错误.【解答过程】对于A选项,ab=2a+b≥22ab,即ab≥22,故ab≥8,当且仅当a=2,b=4时等号成立,故ab的最小值为8,A错误;对于B选项,原式化为a-1b-2=2,b=2aa-1>0,故a-1>0;a=bb-2>0,故b-2>0;所以1a-1+2b-2=1a-1+a-1≥2,当且仅当a=2,b=4时等号成立,B正确;对于C选项,原式化为2b+1a=1,故a+b=a+b2b+1a=2a b+1+2+b a≥3+22,当且仅当a=2+1,b=2+2时等号成立,C错误;对于D选项,a2-2a+b2-4b=(a-1)2+(b-2)2-5≥2a-1b-2-5=-1,当且仅当a=1+2,b=2+2时等号成立,故有最小值-1,D错误.故选:B.【变式训练】1(2022上·山东青岛·高一青岛二中校考期中)已知x>0,y>0,且x+y+xy-3=0;则下列结论正确的是()A.xy的最小值是1B.x+y的最小值是2C.x+4y的最小值是8D.x+2y的最大值是42-3【解题思路】利用基本不等式得x+y+xy-3≥(xy+3)(xy-1)、x+y+xy-3≤(x+y)24+(x+y)-3分别求xy、x+y的最值,注意取等条件;由题设有x=3-yy+1且0<y<3代入x+4y、x+2y,结合基本不等式求最值,注意取等条件.【解答过程】由x+y+xy-3≥xy+2xy-3=(xy+3)(xy-1),当且仅当x=y=1时等号成立,即(xy+3)(xy-1)≤0,又x>0,y>0,故0<xy≤1,仅当x=y=1时等号成立,所以0<xy≤1,故xy的最大值是1,A错误;由x+y+xy-3≤(x+y)24+(x+y)-3,当且仅当x=y=1时等号成立,所以(x+y)24+(x+y)-3≥0,即(x+y+6)(x+y-2)≥0,又x>0,y>0,则x+y≥2,仅当x=y=1时等号成立,故x+y的最小值是2,B正确;由x+y+xy-3=0,x>0,y>0,可得x=3-yy+1,且0<y<3,所以x +4y =3-y y +1+4y =4y 2+3y +3y +1=4(y +1)2-5(y +1)+4y +1=4(y +1)+4y +1-5≥24(y +1)⋅4y +1-5=3,当且仅当y +1=1,即y =0、x =3时等号成立,故x +4y >3,C 错误;同上,x +2y =3-y y +1+2y =2y 2+y +3y +1=2(y +1)2-3(y +1)+4y +1=2(y +1)+4y +1-3≥22(y +1)⋅4y +1-3=42-3,当且仅当y +1=2,即y =2-1、x =22-1时等号成立,故x +2y ≥42-3,D 错误;故选:B .2(2023上·江苏·高一专题练习)下列说法正确的是()A.若x >2,则函数y =x +1x -1的最小值为3B.若x >0,y >0,3x +1y =5,则5x +4y 的最小值为5C.若x >0,y >0,x +y +xy =3,则xy 的最小值为1D.若x >1,y >0,x +y =2,则1x -1+2y的最小值为3+22【解题思路】选项A :将函数变形再利用基本不等式进行判断最值即可,选项B :由基本不等式进行判断即可,选项C :结合换元法与基本不等式求最值进行判断即可,选项D :对式子进行变形得到1+yx -1+2x -1 y+2,再利用基本不等式进行判断即可.【解答过程】解:选项A :y =x +1x -1=x -1+1x -1+1≥2x -1·1x -1+1=3,当且仅当x -12=1时可以取等号,但题设条件中x >2,故函数最小值取不到3,故A 错误;选项B :若x >0,y >0,3x +1y =5,则5x +4y =153x +1y 5x +4y =1519+5x y +12y x ≥1519+25x y ·12y x=19+4155,当且仅当5xy =12y x时不等式可取等号,故B 错误;选项C :3-xy =x +y ≥2xy ⇒xy +2xy -3≤0当且仅当x =y 时取等号,令xy =t t ≥0 ,t 2+2t -3≤0,解得-3≤t ≤1,即0<xy ≤1,故xy 的最大值为1,故C 错误;选项D :x +y =2,(x -1)+y =1,1x -1+2y =1x -1+2y·x -1 +y =1+y x -1+2x -1 y+2≥3+2y x -1·2x -1y=3+22,当且仅当y =2x -2时取等号,又因为x +y =2,故x =2y =2-2 时等号成立,即1x -1+2y最小值可取到3+22,故D 正确.故选:D .3(2023上·广东中山·高三校考阶段练习)设正实数x ,y 满足x +2y =3,则下列说法错误的是()A.y x +3y 的最小值为4 B.xy 的最大值为98C.x +2y 的最大值为2D.x 2+4y 2的最小值为92【解题思路】根据基本不等式以及“1”的妙用判断各选项.【解答过程】对于A ,y x +3y =y x +x +2y y =y x +x y +2≥2yxxy+2=4,当且仅当x =y =1时取等号,故A 正确;对于B ,xy =12⋅x ⋅2y ≤12×x +2y 2 2=12×94=98,当且仅当x =2y ,即x =32,y =34时取等号,故B 正确;对于C ,(x +2y )2=x +2y +22xy ≤3+22×98=3+3=6,则x +2y ≤6,当且仅当x =2y ,即x =32,y =34时,故C 错误;对于D ,x 2+4y 2=(x +2y )2-4xy ≥9-4×98=92,当且仅当x =32,y =34时取等号,故D 正确.故选:C .【题型6 多次使用基本不等式求最值】1(2023·河南·校联考模拟预测)已知正实数a ,b ,满足a +b ≥92a +2b,则a +b 的最小值为()A.5B.52C.52D.522【解题思路】先根据基本不等式求出92a +2ba +b ≥252.然后即可根据不等式的性质得出a +b2≥92a +2ba +b ≥252,列出两个等号同时成立的条件,即可得出答案.【解答过程】由已知可得,a >0,b >0,a +b >0.因为92a+2ba+b=92+2+9b2a+2ab≥29b2a×2ab+132=6+132=252,当且仅当9b2a=2ab,即2a=3b时等号成立.所以,a+b2≥92a+2ba+b≥252,当且仅当2a=3ba+b=92a+2b,即a=322b=2时,两个等号同时成立.所以,a+b≥322+2=522.故选:D.【变式训练】1(2023·山东菏泽·统考一模)设实数x,y满足x+y=1,y>0,x≠0,则1x+2xy的最小值为()A.22-1B.22+1C.2-1D.2+1【解题思路】分为x>0与x<0,去掉绝对值后,根据“1”的代换,化简后分别根据基本不等式,即可求解得出答案.【解答过程】当x>0时,1x+2xy=x+yx+2xy=yx+2xy+1≥2yx⋅2xy+1=22+1,当且仅当yx=2xy,即x=2-1,y=2-2时等号成立,此时有最小值22+1;当x<0时,1x+2xy=x+y-x+-2xy=y-x+-2xy-1≥2y-x⋅-2xy-1=22-1.当且仅当y-x=-2xy,即x=-1-2,y=2+2时等号成立,此时有最小值22-1.所以,1x+2xy的最小值为22-1.故选:A.2(2023·河北衡水·衡水市第二中学校考模拟预测)已知实数x,y,z>0,满足xy+zx=2,则当4y+1z取得最小值时,y+z的值为()A.1B.32C.2 D.52【解题思路】两次应用基本不等式,根据两次不等式等号成立的条件列方程求解即可.【解答过程】因为实数x,y,z>0,满足xy+zx=2,所以xy +zx=2≥2xy ×z x =2yz ⇒yz ≤1,当且仅当z =yx 2时,yz =1,所以4y +1z≥24y ×1z=24yz≥241=4,当且仅当4y =1z且yz =1时,等号成立;所以当yz =1且4y =1z 时,4y +1z取得最小值4,此时解得y =2z =12 ⇒y +z =52,故选:D .3(2023上·辽宁大连·高一期末)若a >0,b >0,a +b =1,则a 2+3ab a +2b +2b +1-1b 的最大值为()A.2B.2-2C.3-2D.3-22【解题思路】由已知可得a 2+3ab a +2b +1b +1=3-2b -1b +1,进而有a 2+3ab a +2b +2b +1-1b =3-2b -1b,结合基本不等式求最大值,注意取值条件.【解答过程】由题设,a 2+3ab a +2b +1b +1=a (a +3b )+1b +1=a (2b +1)+1b +1,而a =1-b >0,b >0,所以a (2b +1)+1b +1=2+b -2b 2b +1=1+1-2b 2b +1=1+2(1-b 2)-1b +1=3-2b -1b +1,所以a 2+3ab a +2b +2b +1-1b =3-2b -1b 且0<b <1,又2b +1b≥22b ⋅1b =22,当且仅当b =22时取等号,所以a 2+3ab a +2b +2b +1-1b ≤3-22,当且仅当a =1-22,b =22时取等号,即目标式最大值为3-2 2.故选:D .【题型7 实际应用中的最值问题】1(2023上·四川眉山·高一校联考期中)如图,高新区某居民小区要建一座八边形的休闲场所,它的主体造型平面图是由两个相同的矩形ABCD 和EFGH 构成的面积为400m 2的十字形地域.计划在正方形MNPQ 上建一座花坛,造价为8400元/m 2;在四个相同的矩形(图中阴影部分)上铺花岗岩地坪,造价为420元/m 2;再在四个空角(图中四个三角形)上铺草坪,造价为160元/m 2.设总造价为y (单位:元),AD 长为x (单位:m ).(1)用x表示AM的长度,并求x的取值范围;(2)当x为何值时,y最小?并求出这个最小值.【解题思路】(1)由题意可得矩形AMQD的面积,即可得出AM=400-x2 4x;(2)先表示出总造价y,再由基本不等式求解即可.【解答过程】(1)由题意可得,矩形AMQD的面积为S AMQD=400-x24,因此AM=400-x24x,∵AM>0,∴0<x<20.(2)y=8400x2+420×400-x2+160×4×12×400-x24x2=8000x2+3200000x2+152000,0<x<20,由基本不等式y≥28000x2×3200000x2+152000=472000,当且仅当8000x2=3200000x2,即x=25时,等号成立,故当x=25时,总造价y最小,最小值为472000元.【变式训练】1(2023上·山东·高一校联考期中)某校地势较低,一遇到雨水天气校园内会有大量积水,不但不方便师生出行,还存在严重安全问题.为此学校决定利用原水池改建一个深3米,底面面积16平方米的长方体蓄水池.不但能解决积水问题,同时还可以利用蓄水灌溉学校植被.改建及蓄水池盖儿固定费用800元,由招标公司承担.现对水池内部地面及四周墙面铺设公开招标.甲工程队给出的报价如下:四周墙面每平方米150元,地面每平方米400元.设泳池宽为x米.2≤x≤6(1)当宽为多少时,甲工程队报价最低,并求出最低报价.(2)现有乙工程队也要参与竞标,其给出的整体报价为900a x+2x元(a>0)(整体报价中含固定费用).若无论宽为多少米,乙工程队都能竞标成功,试求a的取值范围.【解题思路】(1)根据题意,列出函数关系式,结合基本不等式代入计算,即可得到结果;(2)根据题意,列出不等式,分离参数,再结合基本不等式代入计算,即可得到结果.【解答过程】(1)设甲工程队的总造价为y 元,则y =150×2x +16x×3+400×16+800=900x +16x+7200≥900×2x ⋅16x +7200=14400当且仅当x =16x时,即x =4时等号成立.即当宽为4m 时,甲工程队的报价最低,最低为14400元.(2)由题意可得900x +16x +7200>900a x +2 x.对∀x ∈2,6 恒成立.即a <x 2+8x +16x +12令y =x 2+8x +16x +2=x +2 +4x +2+4∵2≤x ≤6,∴4≤x +2≤8.令t =x +2,t ∈4,8 ,则y =t +4t+4在4,8 上单调递增.且t =4时,y min =9.∴0<a <9.即a 的取值范围为0,9 .2(2023上·江苏苏州·高一校考阶段练习)因新冠疫情零星散发,某实验中学为了保障师生安全,同时考虑到节省费用,拟借助校门口一侧原有墙体建造一间高为4米、底面积为24平方米、背面靠墙体的长方体形状的隔离室.隔离室的正面需开一扇安全门,此门高为2米,且此门高为此门底的13.因此室的后背面靠墙,故无需建墙费用,但需粉饰.现学校面向社会公开招标,甲工程队给出的报价:正面为每平方米360元,左右两侧面为每平方米300元,已有墙体粉饰为每平方米100元,屋顶和地面以及安全门报价共计12000元.设隔离室的左右两侧面的底边长度均为x 米(1≤x ≤5).(1)记y 为甲工程队整体报价,求y 关于x 的关系式;(2)现有乙工程队也要参与此隔离室建造的竞标,其给出的整体报价为4800t (x +1)x元,问是否存在实数t ,使得无论左右两侧底边长为多少,乙工程队都能竞标成功(注:整体报价小者竞标成功),若存在,求出t 满足的条件;若不存在,请说明理由.【解题思路】(1)根据题意分别计算正面和侧面以及其它各面的费用,相加,可得答案;(2)由题意可得不等关系240184x +10x-3120>4800t (x +1)x,对任意x ∈[1,5]都成立,进而转化t <10x 2-13x +18420(x +1)恒成立,采用换元法,结合基本不等式求得答案.【解答过程】(1)由题意,隔离室的左右两侧的长度均为x米(1≤x≤5),则底面长为24x米,正面费用为3604×24x-2×6,故y=3604×24x-2×6+4×24x×100+2×300×4x+1200=240184x +10x-3120,1≤x≤5.(2)由题意知, 240184x +10x-3120>4800t(x+1)x,对任意x∈[1,5]都成立,即t<10x2-13x+18420(x+1)对任意x∈[1,5]恒成立,令k=x+1,则x=k-1,k∈[2,6],则t<10(k-1)2-13(k-1)+18420k=10k2-33k+20720k=k2+20720k-3320,而k2+20720k≥2k2⋅20720k=20710,当且仅当k=20710∈[2,6]取等号,故0<t<20710-3320,即存在实数0<t<20710-3320,无论左右两侧长为多少,乙工程队都能竞标成功.3(2023上·重庆·高一校考阶段练习)为宜传2023年杭州亚运会,某公益广告公司拟在一张面积为36000cm2的矩形海报纸(记为矩形ABCD,如图)上设计四个等高的宣传栏(栏面分别为两个等腰三角形和两个全等的直角三角形),为了美观,要求海报上所有水平方向和竖直方向的留空宽度均为10cm,设DC=xcm.(1)将四个宣传栏的总面积y表示为x的表达式,并写出x的范围;(2)为充分利用海报纸空间,应如何选择海报纸的尺寸(AD和CD分别为多少时),可使用宣传栏总面积最大?并求出此时宣传栏的最大面积.【解题思路】(1)根据题意列出总面积y表示为x的表达式即可.(2)根据(1)利用基本不等式求可使用宣传栏总面积最大时AD和CD的值.【解答过程】(1)根据题意DC=xcm,矩形海报纸面积为36000cm2,所以AD=36000xcm,又因为海报上所有水平方向和竖直方向的留空宽度均为10cm,所以四个宣传栏的总面积y =CD -5×10 AD -2×10 =x -50 36000x-20 ,其中x -50>036000x -20>0 所以x ∈50,1800 .即y =x -50 36000x-20,x ∈50,1800 .(2)由(1)知y =x -50 36000x-20 ,x ∈50,1800 ,则y =x -50 36000x -20 =37000-20x +1800000x,x ∈50,1800 20x +1800000x≥220x ×1800000x =12000,当且仅当x =300时取等号,则y =37000-20x +1800000x≤25000,当且仅当x =300时取等号,即CD =300cm ,AD =36000300=120cm 时,可使用宣传栏总面积最大为25000cm 2.【题型8 与其他知识交汇的最值问题】1(2023上·安徽·高三校联考阶段练习)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足c +b cos2A =2a cos A cos B A ≤B .(1)求A ;(2)若角A 的平分线交BC 于D 点,且AD =1,求△ABC 面积的最小值.【解题思路】(1)由已知结合正弦定理边化角即可求解;(2)表示出所求面积后运用基本不等式即可求解.【解答过程】(1)由已知和正弦定理可得:sin C +sin B cos2A =2sin A cos A cos B ,所以sin C =sin2A cos B -sin B cos2A =sin (2A -B )>0.又因为C ∈(0,π),2A -B ∈(0,π),所以C =2A -B 或者C +2A -B =π.当C =2A -B 时,A +B +2A -B =π,A =π3;当C +2A -B =π时,A =2B 与题设A ≤B 不符.综上所述,A =π3.(2)△ABC 面积S =12bc sin π3=34bc ,由AD 是角平分线,∠BAD =∠CAD =π6,因为S △ABC =S △ABD +S △ADC ,得12bc sin π3=12b sin π6+12c sin π6,即b +c =3bc ,由基本不等式3bc ≥2bc ,bc ≥43,当且仅当b=c=233时等号成立.所以面积S=34bc≥34×43=33.故△ABC面积的最小值3 3.【变式训练】1(2023上·安徽铜陵·高二校联考期中)已知圆C的圆心在坐标原点,面积为9π.(1)求圆C的方程;(2)若直线l,l 都经过点(0,2),且l⊥l ,直线l交圆C于M,N两点,直线l 交圆C于P,Q两点,求四边形PMQN面积的最大值.【解题思路】(1)根据面积解出半径,再应用圆的标准方程即可;(2)根据几何法求出弦长,再应用面积公式计算,最后应用基本不等式求最值即可.【解答过程】(1)由题可知圆C的圆心为C(0,0),半径r=3.所以圆C的方程为x2+y2=9.(2)当直线l的斜率存在且不为0时,设直线l的方程为y=kx+2,圆心到直线l的距离为d,则d=2k2+1,|MN|=232-d2=29-4k2+1,同理可得|PQ|=29-41k2+1=29-4k2k2+1,则S PMQN=12|MN|⋅|PQ|=12×29-4k2+1×29-4k2k2+1=29-4k2+19-4k2k2+1≤9-4 k2+1+9-4k2k2+1=14,当且仅当9-4k2+1=9-4k2k2+1,即k2=1时等号成立.当直线l的斜率不存在时,|MN|=6,|PQ|=232-22=25,此时S PMQN=12|MN|⋅|PQ|=12×6×25=65.当直线l的斜率为0时,根据对称性可得S PMQN=65.综上所述,四边形PMQN面积的最大值为14.2(2023上·江苏盐城·高一校考阶段练习)已知在定义域内单调的函数f x 满足f f x +12x+1-ln x=23恒成立.(1)设f x +12x+1-ln x=k,求实数k的值;(2)解不等式f7+2x>-2x2x+1+ln-ex;(3)设g x =f x -ln x,若g x ≥mg2x对于任意的x∈1,2恒成立,求实数m的取值范围.【解题思路】(1)由题意列方程求解;(2)由函数的单调性转化后求解;(3)参变分离后转化为最值问题,由换元法结合基本不等式求解.【解答过程】(1)由题意得f x =ln x-12x+1+k,f k =ln k-12k+1+k,由于y=ln k-12k+1+k在k∈0,+∞上单调递增,观察ln k-12k+1+k=23,可得k=1;(2)由于f x 在定义域内单调,所以f x +12x+1-ln x为常数,由(1)得f x =ln x-12x+1+1,f x 在x∈0,+∞上单调递增,f-x=ln-x-12-x+1+1=ln-ex-2x2x+1,故原不等式可化为f7+2x>-2x2x+1+ln-ex=f-x,由2x+7>0-x>07+2x>-x,解得-73<x<0,故原不等式的解集为-7 3 ,0;(3)g x =f x -ln x=-12x+1+1=2x2x+1>0,g x ≥mg2x可化为m≤2x2x+1⋅4x+14x=4x+14x+2x=1+-2x+14x+2x对于任意的x∈1,2恒成立,设t=-2x+1∈-3,-1,则-2x+14x+2x=t1-t2+1-t=1t+2t-3,t∈-3,-1,由基本不等式得t+2t=--t+2-t≤-22,当且仅当-t=2-t即t=-2时等号成立,故当t=-2时1t+2t-3min=22-3,故m≤22-2,当且仅当x=log22+1等号成立.实数m的取值范围为-∞,22-2.3(2023下·湖南长沙·高三长沙一中校考阶段练习)如图,在长方体ABCD-A1B1C1D1中,点P是长方形A1B1C1D1内一点,∠APC是二面角A-PD1-C的平面角.(1)证明:点P 在A 1C 1上;(2)若AB =BC ,求直线PA 与平面PCD 所成角的正弦的最大值.【解题思路】(1)由二面角定义知AP ⊥PD 1,CP ⊥PD 1,利用线面垂直的判定及性质可证PD 1⊥面APC 、PD 1⊥面ACC 1A 1,结合面APC 与面ACC 1A 1有交线,确定它们同平面,进而证结论;(2)构建空间直角坐标系,令P 12,12,k且k >0,C (1,1,0),D (0,1,0),求直线方向向量、平面法向量,应用空间向量夹角坐标表示、基本不等式求线面角正弦值的最大值,注意取值条件.【解答过程】(1)由∠APC 是二面角A -PD 1-C 的平面角,则AP ⊥PD 1,CP ⊥PD 1,又AP ∩CP =P ,AP ,CP ⊂面APC ,则PD 1⊥面APC ,又AC ⊂面APC ,即PD 1⊥AC ,由长方体性质知A 1C 1⎳AC ,故PD 1⊥A 1C 1,由长方体性质:AA 1⊥面A 1B 1C 1D 1,又PD 1⊂面A 1B 1C 1D 1,则PD 1⊥AA 1,又A 1C 1∩AA 1=A 1,A 1C 1,AA 1⊂面ACC 1A 1,故PD 1⊥面ACC 1A 1,而面APC ∩面ACC 1A 1=AC ,且PD 1⊥面APC 、PD 1⊥面ACC 1A 1,根据过AC 作与PD 1垂直的平面有且仅有一个,所以面APC 与面ACC 1A 1为同一平面,又P ∈面A 1B 1C 1D 1,面ACC 1A 1∩面A 1B 1C 1D 1=A 1C 1,所以点P 在A 1C 1上;(2)构建如下图示的空间直角坐标系A -xyz ,令AB =BC =1,AA 1=k ,由题设,长方体上下底面都为正方形,由(1)知PD 1⊥A 1C 1,则P 为A 1C 1中点,所以P 12,12,k且k >0,C (1,1,0),D (0,1,0),则AP =12,12,k ,PC =12,12,-k ,PD =-12,12,-k ,若m =(x ,y ,z )是面PCD 的一个法向量,则m ⋅PC =12x +12y -kz =0m ⋅PD =-12x +12y -kz =0,令y =2,则m =0,2,1k,所以|cos ‹AP ,m ›|=|AP ⋅m||AP ||m |=212+k 2⋅4+1k 2=23+4k 2+12k 2≤23+22=2(2-1),仅当k =422时等号成立,故直线PA 与平面PCD 所成角的正弦的最大值为2(2-1).直击真题1(2022·全国·统考高考真题)若x ,y 满足x 2+y 2-xy =1,则()A.x +y ≤1B.x +y ≥-2C.x 2+y 2≤2D.x 2+y 2≥1【解题思路】根据基本不等式或者取特值即可判断各选项的真假.【解答过程】因为ab ≤a +b 2 2≤a 2+b 22(a ,b ∈R ),由x 2+y 2-xy =1可变形为,x +y 2-1=3xy ≤3x +y 2 2,解得-2≤x +y ≤2,当且仅当x =y =-1时,x +y =-2,当且仅当x =y =1时,x +y =2,所以A 错误,B 正确;由x 2+y 2-xy =1可变形为x 2+y 2-1=xy ≤x 2+y 22,解得x 2+y 2≤2,当且仅当x =y =±1时取等号,所以C 正确;因为x 2+y 2-xy =1变形可得x -y 2 2+34y 2=1,设x -y 2=cos θ,32y =sin θ,所以x =cos θ+1 3sinθ,y=23sinθ,因此x2+y2=cos2θ+53sin2θ+23sinθcosθ=1+13sin2θ-13cos2θ+13=43+23sin2θ-π6∈23,2,所以当x=33,y=-33时满足等式,但是x2+y2≥1不成立,所以D错误.故选:BC.2(2020·山东·统考高考真题)已知a>0,b>0,且a+b=1,则()A.a2+b2≥12B.2a-b>12C.log2a+log2b≥-2D.a+b≤2【解题思路】根据a+b=1,结合基本不等式及二次函数知识进行求解.【解答过程】对于A,a2+b2=a2+1-a2=2a2-2a+1=2a-1 22+12≥12,当且仅当a=b=12时,等号成立,故A正确;对于B,a-b=2a-1>-1,所以2a-b>2-1=12,故B正确;对于C,log2a+log2b=log2ab≤log2a+b22=log214=-2,当且仅当a=b=12时,等号成立,故C不正确;对于D,因为a+b2=1+2ab≤1+a+b=2,所以a+b≤2,当且仅当a=b=12时,等号成立,故D正确;故选:ABD.3(2020·全国·统考高考真题)设O为坐标原点,直线x=a与双曲线C:x2a2-y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点,若△ODE的面积为8,则C的焦距的最小值为() A.4 B.8 C.16 D.32【解题思路】因为C:x2a2-y2b2=1(a>0,b>0),可得双曲线的渐近线方程是y=±bax,与直线x=a联立方程求得D,E两点坐标,即可求得|ED|,根据△ODE的面积为8,可得ab值,根据2c=2a2+b2,结合均值不等式,即可求得答案.【解答过程】∵C:x2a2-y2b2=1(a>0,b>0)∴双曲线的渐近线方程是y=±bax∵直线x=a与双曲线C:x2a2-y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点不妨设D为在第一象限,E在第四象限联立{x=ay=bax,解得{x=ay=b故D(a,b)联立{x=ay=-bax,解得{x=ay=-b故E(a,-b)∴|ED|=2b∴△ODE面积为:S△ODE=12a×2b=ab=8∵双曲线C:x2a2-y2b2=1(a>0,b>0)∴其焦距为2c=2a2+b2≥22ab=216=8当且仅当a=b=22取等号∴C的焦距的最小值:8故选:B.4(2021·天津·统考高考真题)若a>0,b>0,则1a+ab2+b的最小值为22.【解题思路】两次利用基本不等式即可求出.【解答过程】∵a>0,b>0,∴1 a +ab2+b≥21a⋅ab2+b=2b+b≥22b⋅b=22,当且仅当1a=ab2且2b=b,即a=b=2时等号成立,所以1a+ab2+b的最小值为2 2.故答案为:2 2.5(2020·天津·统考高考真题)已知a>0, b>0,且ab=1,则12a+12b+8a+b的最小值为4【解题思路】根据已知条件,将所求的式子化为a+b2+8a+b,利用基本不等式即可求解.【解答过程】∵a>0,b>0,∴a+b>0,ab=1,∴12a+12b+8a+b=ab2a+ab2b+8a+b=a+b2+8a+b≥2a+b2×8a+b=4,当且仅当a+b=4时取等号,结合ab=1,解得a=2-3,b=2+3,或a=2+3,b=2-3时,等号成立.故答案为:4.6(2020·江苏·统考高考真题)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是45.【解题思路】根据题设条件可得x 2=1-y 45y 2,可得x 2+y 2=1-y 45y 2+y 2=15y 2+4y 25,利用基本不等式即可求解.【解答过程】∵5x 2y 2+y 4=1∴y ≠0且x 2=1-y 45y 2∴x 2+y 2=1-y 45y 2+y 2=15y2+4y 25≥215y 2⋅4y 25=45,当且仅当15y2=4y 25,即x 2=310,y 2=12时取等号.∴x 2+y 2的最小值为45.故答案为:45.7(2019·天津·高考真题)设x >0, y >0, x +2y =5,则(x +1)(2y +1)xy的最小值为43【解题思路】把分子展开化为2xy +6,再利用基本不等式求最值.【解答过程】∵(x +1)(2y +1)xy =2xy +x +2y +1xy,∵x >0, y >0, x +2y =5,xy >0,∴2xy +6xy ≥2⋅23xyxy =43,当且仅当xy =3,即x =3,y =1时成立,故所求的最小值为43.8(2017·江苏·高考真题)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是30.【解题思路】得到总费用为4x +600x ×6=4x +900x,再利用基本不等式求最值.【解答过程】总费用为4x +600x ×6=4x +900x≥4×2900=240,当且仅当x =900x,即x =30时等号成立.故答案为30.。
基本不等式的应用最值问题 课件

设 x、y 满足约束条件3x-x-y+y-26≥≤00 x≥0,y≥0
,若目标函数 z=ax
+by(a>0,b>0)的最大值为 12,则2a+3b的最小值为( )
25 A. 6 C.131
8 B.3 D.4
[答案] A
[解析] 作出平面区域,如图阴影部分所示,当直线 ax+ by=z(a>0,b>0)过直线 x-y+2=0 与直线 3x-y-6=0 的交 点(4,6)时,目标函数 z=ax+by(a>0,b>0)取得最大值 12,
[答案] (-∞,4]
[分析] 由 a>b>c 知:a-b>0,b-c>0,a-c>0.因此, 不等式等价于aa--bc+ab--cc≥m,要使原不等式恒成立,只需aa--bc +ab--cc的最小值不小于 m 即可.
[解析] ∵aa--bc+ab--cc =a-ba-+bb-c+a-bb-+cb-c =2+ab--bc+ab--bc≥2+2 ab--bc·ab--bc=4. 当且仅当ab--bc=ab--bc,即 2b=a+c 时,等号成立. ∴m≤4,即 m∈(-∞,4].
[解析] ∵x,y 为正数,且 x+2y=1. ∴1x+1y=(x+2y)(1x+1y)=3+2xy+xy≥3+2 2,当且仅当2xy =xy,即当 x= 2-1,y=1- 22时等号成立. ∴1x+1y的最小值为 3+2 2.
[点评] (1)本题若由 1=x+2y≥2 2xy,得 1xy≥2 2,
基本不等式的应用—最值问题
变形技巧:“1”的代换
已知正数 x,y 满足 x+2y=1,求1x+1y的最小值. [分析] 灵活应用“1”的代换.在不等式解题过程中,常 常将不等式“乘以 1”、“除以 1”或将不等式中的某个常数 用等于 1 的式子代替.本例中可将分子中的 1 用 x+2y 代替, 也可以将式子1x+1y乘以 x+2y.
利用基本不等式求最值

1.基本不等式:
a
2
b
ab (a 0,b 0)
(当且仅当a=b时取“ =”)
2.其他形式:
①a2 b2 2ab (a, b R) ②ab a2 b2 (a, b R) 2
③a b 2
ab
(a,b
R※)④ab
a b 2 2
(a, b R※)
探求方法:
1:求函数 y (10 x)(50 x) x [10, 50]的最大值
5 2
小结
练习:
1.已知函数y tan cos , (0, ),求函数y的最小值
s in
2
2.已知x 1, y 1,且lg x lg y 4, 求lg x lg y的最大值
3.若x (0, ],求函数y sin x 4 的最小值
2
sin x
小结
思考:
已知x, y为正实数,且x y 1, 求 2 1 的最小值
3.已知0 x 1 ,求函数y x(1 2x)的最大值 2
4:设0 x 2,求函数f (x) 3x(8 3x)的最大值, 并求相应的x值
活学活用
例3:若x > 3 ,求 y x 1 的最小值
x3
变:若x 5呢?
温馨提示:当运 用基本不等式求 最值,等号无法 成立时,一般地 改用函数的单调 性
(2)两个正数和为定值,积有最大值。
例1:求函数y x + 1(x > 0)的最小值, x
并求函数取最小值时的x 的值
变1:若x<0,求y = x + 1的最大值 x
变2:求y x 1 (x 0)的值域 x
例2:求函数y x(3 x) 0 x 3的最大值 并求函数取得最大值时的x的值
基本不等式求最值的类型及方法,经典大全

专题:基本不等式求最值的类型及方法解析:y x 1 2(x 1) (x2(x 1)1)2(xL 2LJ 21(x 1)2 22(x 1)、几个重要的基本不等式:①a 2b 2 2ababa 2b 2(a 、 x 1 x 133立; b R),当且仅当a = b 时,“=”号成立;22(x 1)③a 3 成立• 注: 二、函数 b 32 ab ab2(a 、当且仅当b R ),当且仅当a = b 时,“=”号成立;2(x2(x 1)21)即x 2时,“ 5”号成立,故此函数最小值是 -23c 33abc abc — b 3c3 3-(a 、 b、R ),当且仅当a = b = c 时,“=”号成评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。
通常 要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。
类型n :求几个正数积的最大值。
例2、求下列函数的最大值:33----- abc , b c 3v abcabc ---------------- (a 、3① 注意运用均值不等式求最值时的条件:② 熟悉一个重要的不等式链: abf(x) ax b (a 、 x 0)图象及性质 (1)函数 f (x) ax a 、 0图象如图: (2)函数 f(x) ax a 、0性质:①值域: ,2 ab] [2 ab,);R ),当且仅当a = b = c 时,“=”号定 、三 等 ;2 2a b J --------------2①yx 2解析:①Q 0•- y(3 2x)(0 xx - ,• 32 当且仅当 2. 42y sin x cos x当且仅当 故此函数最大值是(3 2x)(0②单调递增区间:( );单调递减区间::],(0,],,0).2xx 3 2x 即 x,•• sin x2sin 2x sin 2x .2sin x 2② y sin xcosx(0 x ) 23x x (3 2x) 3 )x x (3 2x) [ ]1 ,231时,“=”号成立,故此函数最大值是 1。
灵活运用基本不等式,快速求解双变量最值问题

双变量最值问题中往往含有两个变量,无法直接利用函数的图象和单调性来求最值,常常需要用基本不等式a+b≥2ab(a、b>0)及其变形式来求解.而运用基本不等式求最值,往往需将代数式进行适当的变形,以配凑出两式的和或积,并使其中之一为定值.那么如何进行配凑呢?一、整体代换若已知或可求出某个式子等于一个常数,就可将其化为“1”,然后把等于“1”的式子看作一个整体代入目标式中进行代换,以得到两个正数的和或积,且此时两式的和或积为定值,那么就可以直接运用基本不等式来求最值.例1.若m>0,n>0,且m+n=2,则4m+1n的最小值为________.解:因为m>0,n>0,m+n=2,所以4m+1n=(4m+1n)×1=(4m+1n)×12(m+n) =12(5+4n m+m n)≥12(5+)=92,当且仅当4n m=m n,即m=43,n=23时取等号.从而可知4m+1n的最小值为92.本题中m+n=2,可在其左右同除以“2”得12(m+ n)=1.然后将目标式乘以“1”,将“12(m+n)=1”进行代换,即可配凑出两式的和4n m+m n,而这两式的积为定值4,运用基本不等式即可求得目标式的最值.例2.若正数a,b满足1a+1b=1,则4a-1+16b-1的最小值是________.解:因为正数a,b满足1a+1b=1,所以1a=1-1b=b-1b,所以1b-1=a b.因为1a+1b=1,所以1b=1-1a=a-1a,所以1a-1=b a.可得4a-1+16b-1=4b a+16a b16,当且仅当4b a=16a b,即a=32,b=3时取等号.故4a-1+16b-1的最小值是16.本题中1a+1b=1,于是直接用“1a+1b”替换“1”,将目标式乘以“1”,将“1”进行代换,就可以得到4b a+16a b≥16.将任何一个代数式乘以“1”,其值不改变,但是可以改变代数式的形式结构,转换解题的思路.二、消元在求解双变量问题时,通常可先根据已知条件或关系式进行消元,即用其中一个变量表示另一个变量;然后将其代入目标式中,把问题转化为单变量最值问题;再用凑分子、分母,凑系数,添项,去项等方式,将目标式配凑为两式的和或积,以运用基本不等式求最值.例3.已知正数a,b满足ab+2a-2=0,则4a+b的最小值是________.解:因为ab+2a-2=0,所以b=2-2a a=2a-2,所以4a+b=4a+2a-22=42-2,当且仅当4a=2a,即a2可得4a+b的最小值是42-2.我们根据已知关系式ab+2a-2=0进行变形,将b 用关于a的式子表示出来,即可将目标式转化为关于a的式子.而该式中4a+2a为两式的和,且4a⋅2a=8,直接运用基本不等式即可解题.例4.已知a>0,b>0,ab-b+1=0,则1a+4b的最小值是________,此时b=________.解:因为ab-b+1=0,所以a=b-1b,由a>0,b>0可得b>1.可知1a+4b=b b-1+4b=1+1b-1+4b解题宝典42=1b-1+4(b-1)+55=9,当且仅当1b-1=4(b-1),即b=32时不等式取等号.故1a+4b的最小值是9,此时b=32.根据已知关系式消去a,将问题转化为求代数式bb-1+4b的最小值.但此时还不能直接运用基本不等式求解,需要给4b配上一个常数-4,将其变形为4(b-1),使得1b-1⋅4(b-1)=4为常数,才能运用基本不等式求最值.三、局部换元对于含有两个变量的最值问题,还可以通过局部换元,来配凑出基本不等式中的和式与积式.在进行局部换元时,需将已知关系式和目标式关联起来合理设元,可引入两个变量,也可引入一个变量,并用新变量将题目中式子的某一部分进行替换.有时可将已知关系式进行适当的拆分、拼凑,以将目标式化为两式的和或积,这样就可以直接运用基本不等式求最值.例5.若正数a,b满足2a+b=1,则a2-2a+b2-b的最小值是________;解:因为正数a,b满足2a+b=1,所以0<b<1,0<a<12.设2-2a=x,2-b=y,则a=1-12x,b=2-y,由2a+b=1得x+y=3.由2-2a=x,2-b=y可知1<x<2,1<y<2.所以a2-2a+b2-b=1-12xx+2-yy=1x+2y-32=13(x+y)(1x+2y)-32 =13(3+2x y+y x)-32≥13(3+)-32=223-12,当且仅当2xy=yx,即x=3(2-1),y=3(2-2)时不等式取等号.故a2-2a+b2-b的最小值是223-12.我们分别设2-2a=x,2-b=y,使得目标式的分母简化;再建立x、y之间的联系,并将目标式进行配凑,得到两式的和2xy+yx,而这两式的积为定值,这样运用基本不等式就能快速求得目标式的最值.例6.若x,y为正实数,且x+2y=1,则x2x+1+2y2y+2的最小值是________.解:因为x,y为正实数,且x+2y=1,所以0<x<1,0<y<12.设x+1=m,y+2=n,则x=m-1,y=n-2,由x+2y=1可得m+2n=6.由x+1=m,y+2=n可知1<m<2,2<n<52.则x2x+1+2y2y+2=(m-1)2m+2(n-2)2n=m2-2m+1m+2n2-8n+8n=m+2n+1m+8n-10=1m+8n-4=16(m+2n)(1m+8n)-4=16(17+2n m+8m n)-4≥16(17+)-4=16,当且仅当2n m=8m n,即m=65,n=125时不等式取等号,故x2x+1+2y2y+2的最小值是16.我们根据目标式的特征,引入两个新元,令x+1= m,y+2=n,即可将目标式转化为关于m、n的式子.再通过化简,将整式和分式分离,并进行常数代换,就能配凑出两式的和式,且使其积式为定值,运用基本不等式即可求得最值.总之,运用基本不等式求解双变量最值问题,需要注意以下几点:(1)将已知关系式和目标式关联起来;(2)通过常数代换、消元、局部换元,将已知关系式和目标式进行合理的变形;(3)进行合理的恒等变换,以配凑出基本不等式中的和式与积式.(作者单位:山东省郯城县美澳学校)解题宝典43。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用基本不等式求最值的解题模板【考点综述】基本不等式是《不等式》一章重要内容之一,是求函数最值的一个重要工具,也是高考常考的一个重要知识点。
应用基本不等式求最值时,要把握基本不等式成立的三个条件“一正二定三相等”,主要方法有配凑法、分离法、单调性法等,在解题中注意体会蕴含的函数与方程思想、等价转化思想及分类讨论思想。
在高考各种题型均有出现如选择题、填空题和解答题,其试题难度属中档题.【解题方法思维导图预览】【解题方法】解题方法模板一:配凑法使用情景:某一类函数的最值问题解题模板:第一步根据观察已知函数的表达式,通常不符合基本不等式成立的三个条件“一正二定三相等”,将其配凑(凑项、凑系数等)成符合其条件;第二步使用基本不等式对其进行求解即可;第三步得出结论.解题模板应用: 例1 已知54x <,求函数14245y x x =-+-的最大值。
【答案】1 【解析】 解题模板选择:本题中可配凑基本不等式成立的三个条件,故选取解题方法模板一配凑法进行解答. 解题模板应用:第一步 配凑(凑项、凑系数等)成符合条件的不等式;第二步 使用基本不等式对其进行求解;当且仅当1x =时取等号 第三步 得出结论: 函数14245y x x =-+-的最大值为1 练习1. 已知实数,x y 满足221x xy y -+=,则x y +的最大值为( ) A .1 B .2 C .3 D .4【答案】B 【解析】原式可化为:22()1313()2x y x y xy ++=+≤+,解得22x y -≤+≤,当且仅当1x y ==时成立.所以选B.2. 若正数a ,b 满足111a b +=,则41611a b +--的最小值为( ) A .16 B .25C .36D .49【答案】A 【解析】 由111a b +=得:(1,1)1a b a b a =>>-,代入41611a b +--得到:416416416(1)16111111a a ab a a a +=+=+-≥=------ 当且仅当:4=16(1)1a a --即32a =时取等号.故选:A3. 已知正实数,a b 满足1a b +=,则11b a b ⎛⎫+ ⎪⎝⎭的最小值是( ) A .112B .5C.2+D.3+【答案】C 【解析】解:22222111()22(222)()2b b a b b a ab abb ab ab ab abab+++++++====,当且仅当a =时取等号,即2a =-1b =-时等号成立,故选:C .4. 已知21(0,0)a b a b +=>>,则21b ab+的最小值等于________. 【答案】2 【解析】 解:由题意得2122222222b ba b b a b a a b a b a b a b++=+=++⋅+=+,当且仅当1a ==-时等号成立,所以21b a b+的最小值为2. 故答案为:2 5. 已知04x <<,则414x x+-的最小值为______. 【答案】94. 【解析】4144114(4)95444444x x x x x x x x x x +--⎛⎫⎛⎫⎛⎫+=+=++ ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭,当且仅当4(4)4x xx x-=-,解得1288,3x x ==,又因为04x <<,所以83x =时等号成立.故答案为:94.解题方法模板二:分离法使用情景:二次关系的分式函数的最值问题解题模板:第一步首先观察已知函数的表达式的特征,如分子(或分母)是二次形式且分母(或分子)是一次形式;把分母或分子的一次形式当成一个整体,并将分子或分母的二次形式配凑成一次形式的二次函数形式;第二步将其化简即可得到基本不等式的形式,第三步并运用基本不等式对其进行求解即可得出所求的结果.解题模板应用:例2 求2710(1)1x xy xx++=>-+的最小值。
【答案】9【解析】解题模板选择:本题中分子是二次形式且分母是一次形式,故选取解题方法模板二分离法进行解答.解题模板应用:第一步,把分母子的一次形式当成一个整体,并将分子的二次形式配凑成一次形式的二次函数形式;第二步,将其化简即可得到基本不等式的形式,第三步,运用基本不等式得出结论:当且仅当1x=时取等号所以最小值为9练习1. 实数x 、y ,1x >-,且满足3xy y x +=-+ ,则x y +的最小值是( ) A .1 BC .2D .3【答案】C 【解析】3xy y x +=-+,()41341111x x y x x x -+-∴===-+++,1x >-,10x ∴+>,()441122211x y x x x x ∴+=-+=++-≥=++, 当且仅当1x =时,等号成立,因此,x y +的最小值是2. 故选:C.2. 已知0x >,1y >-,且1x y +=,则2231x y x y +++最小值为__________. 【答案】2+ 【解析】22331111x y x y x y x y ⎛⎫+⎛⎫+=++-+ ⎪ ⎪++⎝⎭⎝⎭, 结合1x y +=可知原式311x y =++, 且()()13131311411221x y y x x y x y x y +++⎡⎤⎛⎫+=+⨯=++⎢⎥ ⎪+++⎝⎭⎣⎦1422⎡≥+=⎢⎢⎣当且仅当32x y ==-.即2231x y xy +++最小值为2. 3. 已知正实数,x y 满足211x x y y ⎛⎫-= ⎪⎝⎭,则1x y +的最小值为____________.【答案】2【解析】2222112141x x x x x x x x y y y y y y y y ⎡⎤⎛⎫⎛⎫⎛⎫-=+-=+-=⎢⎥ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,214x yx y y x ⎛⎫∴+=+ ⎪⎝⎭, 2144x y x y y x ⎛⎫∴+=+≥= ⎪⎝⎭(当且仅当4x y y x =,即2y x =时取等号), 12x y ∴+≥,即1x y+的最小值为2. 故答案为:2 4.已知()sin cos fx a x b x =+的最大值为ab ,则4422191a b a b+++的最小值为_______________.【答案】17 【解析】()sin cos f x a x b x =+)x ϕ=+(tan )baϕ=ab , 整理得22111a b +=, 则4422191a b a b +++22222222222211119(9)(9)()1111117ba ab a b a b a b a b =+++=+++=++=≥, 当且仅当22229b a a b=且22111a b +=,即2,a b =时,取等号 所以4422191a b a b+++的最小值为17故答案为:175. 已知2x y +=,2x >-,3y >-,则2223x y x y +++的最小值为_______,此时x y -_______. 【答案】4725-【解析】令2,3m x n y =+=+,则0,0,7m n m n >>+=,再化简2223x y x y +++493m n=+-, 又49m n +149()()7m n m n =++13149131225()77777n m m n =++≥+=, 当且仅当49n m m n =时取得最小值,又7m n +=,得1421,55m n ==,即当46,55x y ==时,2223x y x y +++有最小值254377-=,此时x y -=25-. 故答案为:47;25-.解题方法模板三:单调性法使用情景:在应用最值定理求最值时,若遇等号取不到的情况解题模板:第一步 运用凑项或换元法将所给的函数化简为满足基本不等式的形式;第二步 运用基本不等式并检验其等号成立的条件,等号取不到, 结合函数()af x x x=+的单调性,并运用其图像与性质求出其函数的最值即可;第三步 得出结论.解题模板应用: 例3求函数2y =的值域.【答案】5,2⎡⎫+∞⎪⎢⎣⎭【解析】 解题模板选择:本题中等号取不到,故选取解题方法模板三单调性法进行解答. 解题模板应用:第一步,运用凑项或换元法将所给的函数化简为满足基本不等式的形式;(2)t t =≥,则2y 1(2)t t t ==+≥,第二步,等号取不到, 结合函数()af x x x=+的单调性,并运用其图像与性质求出其函数的最值; 因为1y t t=+在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数, 第三步,得出结果. 故52y ≥,所以函数的值域为5,2⎡⎫+∞⎪⎢⎣⎭练习1. 已知数列{}n a 的前n 项和为n S ,22n n S a =-,若存在两项,n m a a ,使得64n m a a ⋅=,则12m n+的最小值为( ) A.123+B .1 C.3+D .75【答案】B 【解析】S n =2a n ﹣2,可得a 1=S 1=2a 1﹣2,即a 1=2, n ≥2时,S n ﹣1=2a n ﹣1﹣2,又S n =2a n ﹣2, 相减可得a n =S n ﹣S n ﹣1=2a n ﹣2a n ﹣1,即a n =2a n ﹣1, {a n }是首项为2,公比为2的等比数列. 所以a n =2n .a m a n =64,即2m •2n =64, 得m +n =6,所以1216m n +=(m +n )(12m n +)16=(32n mm n ++)16≥(), 当且仅当2n mm n=时取等号,即为m 6=,n 12=-因为m 、n 取整数,所以均值不等式等号条件取不到,则1216m n +>(),验证可得,当m =2,n =4,或m =3,n =3,,12m n+取得最小值为1.故选:B .2. 已知0x >,0y >,且11229x y x y+++=,则x y +的最大值为________. 【答案】4 【解析】 ∵0,0x y >>,21142292()2()2()()4x y x y x y x y x y x y x y x y xy x y +++++==++≥++=++++,当且仅当x y =时等号成立,22()9()40x y x y +-++≤,[2()1](4)0x y x y +-+-≤,142x y ≤+≤,所以x y +的最大值为4,此时2x y ==.3. 已知x ,y 是正数,121x y +=,则21x y xy ++的最小值为________.【答案】89【解析】 由121x y +=可得21x y xy+=,即2x y xy +=, 所以211111x y xy xy xy xy+==+++,由121x y =+≥, 得8xy ≥,当且仅当24x y ==时取等号,所以有1108xy <≤,19118xy <+≤,18191xy≥+, 所以21811191x y xy xy xy xy +==≥+++, 所以21x y xy ++的最小值为89,当且仅当24x y ==时取等号,故答案为:89. 4. 已知正实数a ,b ,c 满足2222a b c +=,则c ca b+的最小值为___________. 【答案】2 【解析】因为22222c a b ab =+≥,即2c ab ≥,所以2c c a b +≥=≥,当且仅当c c a b =即2c ab =时,等号成立,所以c ca b+的最小值为2. 故答案为:2.。