基本不等式应用-解题技巧归纳
基本不等式的应用

第十七课时 基本不等式的应用【知识与技能】1.知识与技能巩固基本不等式的简单应用.2.过程与方法能灵活构造基本不等式求最值成立的三个条件.【重点难点】重点:利用基本不等式求最值时必须满足三个条件:一正二定三相等.难点:如何构造定值利用基本不等式求最值.【教学过程】一、问题与探究1.利用基本不等式求最值时,应注意什么问题?提示:在用基本不等式求函数的最大(小)值时,需要注意三个条件:一正、二定、三相等,所谓“正”是指各项或各因式为正值,所谓“定”是指和或积为定值,所谓“相等”是指各项或各因式能相等,即等号能取到.2.当x <0时,能用基本不等式求4x+x 的最值吗?怎样求? 提示:能.4x +x =-[4-x+(-x )]≤-2×2=-4. 3.如果给出的条件不满足基本不等式的应用条件时,怎样用基本不等式求最值? 提示:先变形,后应用.知识归纳:已知,x y 都是正数,(1)若x y s +=(和为定值),则当x y =时,积xy 取得最 值;(2)若xy p =(积为定值),则当x y =时,和x y +取得最 值.上述命题可归纳为口诀:积定和最小,和定积最大.二、合作与探究类型1 利用基本不等式求最值【例1】(1)已知x <54,求y =4x -2+14x -5的最大值;(2)已知0<x <12,求y =12x (1-2x )的最大值;(3)已知x >0,求f (x )=2x x 2+1的最大值.小结:1.本例题目都不能直接使用基本不等式求最值,需要先对其变形.2.应用基本不等式求最值,必须按照“一正,二定,三相等”的条件进行,若具备这些条件,可直接运用基本不等式,若不具备这些条件,则应进行适当的变形.3.利用基本不等式求最值的关键是获得定值条件,解题时应对照已知和欲求的式子运用适当的“拆项、添项、配凑、变形”等方法创设应用基本不等式的条件.具体可归纳为三句话:一不正,用其相反数,改变不等号方向;二不定应凑出定和或定积;三不等,一般用单调性.【练习】(1)已知x >3,求f (x )=x +4x -3的最小值;(2)已知x >0,y >0,且2x +3y =6,求xy 的最大值.类型2 两个变量的最值问题【例2】已知x >0,y >0,且满足8x +1y=1.求x +2y 的最小值.小结:1.本题给出的方法,用到了均值不等式,并且对式子进行了变形,配凑出满足基本不等式的条件,这是经常需要使用的方法,要学会观察、学会变形.2.常见的变形技巧有:(1)配凑系数;(2)变符号;(3)拆补项.常见形式有f (x )=ax +b x型和f (x )=ax (b -ax )型. 【练习】本例中,若把“8x +1y =1”改为“x +2y =1”,其他条件不变,求8x +1y的最小值.类型3 基本不等式的实际应用【例3】围建一个面积为360 m 2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2 m 的进出口,如图所示.已知旧墙的维修费用为45元/m ,新墙的造价为180元/m.设利用的旧墙长度为x (单位:m),修建此矩形场地围墙的总费用为y (单位:元).(1)将y 表示为x 的函数;(2)试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用.小结:应用基本不等式解决实际问题的方法:先理解题意,设出变量,一般把要求最值的量定为函数;建立相应的函数关系,把实际问题抽象成函数的最大值或最小值问题;在定义域内,求出函数的最大值或最小值;正确写出答案.【练习】如图所示,某畜牧基地要围成相同面积的羊圈4间,一面可利用原有的墙壁,其余各面用篱笆围成,篱笆总长为36 m .则每间羊圈的长和宽各为多少时,羊圈面积最大?类型4 基本不等式要注意等号成立的条件【例4】求f (x )=x 2+4x 2+3+1的最小值.思考:已知a >0,求函数y =x 2+a +1x 2+a的最小值.小结:在运用基本不等式时,要特别注意等号成立的条件,尤其是一个题目中多次使用基本不等式,等号成立的条件必须相同,否则会造成错误. 【练习】设x ,y 为正数,求(x +y )(1x +4y)的最小值.三、课时小结1.利用基本不等式求最值必须满足“一正、二定、三相等”三个条件,并且和为定值,积有最大值;积为定值,和有最小值.2.使用基本不等式求最值时,若等号取不到,则考虑用函数单调性求解.3.解决实际应用问题,关键在于弄清问题的各种数量关系,抽象出数学模型,利用基本不等式解应用题,既要注意条件是否具备,还要注意有关量的实际含义.四、课时作业1.下列函数中,最小值为4的函数是( )A .y =x +4xB .y =sin x +4sin xC .y =e x +4e -xD .y =log 3x +log x 81 2.(2013·长沙高二检测)已知a >0,b >0,a +b =2,则y =1a +4b的最小值是( ) A.72 B .4 C.92D .5 3.(2013·临沂高二检测)某工厂第一年产量为A ,第二年的增长率为a ,第三年的增长率为b ,这两年的平均增长率为x ,则( )A .x =a +b 2B .x ≤a +b 2C .x >a +b 2D .x ≥a +b 24.(2013·重庆高二检测)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =( ) A .1+ 2 B .1+3 C .3 D .45.若正数a ,b 满足ab =a +b +3,则ab 的取值范围是( )A .[6,+∞)B .[9,+∞)C .(0,9]D .(0,6]6.已知0<x <1,则f (x )=2+log 2x +5log 2x 的最大值是________. 7.(2013·苏州高二检测)函数y =a 1-x (a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx +ny-1=0(mn >0)上,则1m +1n的最小值为________. 8.某校要建造一个容积为8 m 3,深为2 m 的长方体无盖水池,池底和池壁的造价每平方米分别为240元和160元,那么水池的最低总造价为________元.9.函数y =3x +32-x 的最小值为________. 10.求函数f (x )=x x +1的最大值. 11.(2013·扶余高二检测)设x >-1,求y =(x +5)(x +2)x +1的最小值. 12.已知正常数a ,b 和正变数x ,y ,满足a +b =10,a x +b y=1,x +y 的最小值是18,求a ,b 的值.。
(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用一.基本不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。
专题2.1 基本不等式的应用技巧(解析版)

专题2.1 基本不等式的应用技巧 闯关技巧在解答基本不等式的问题时,常常会用加项、凑项、常数的代换、代换换元等技巧,而且在通常情况下往往会考查这些知识的嵌套使用.一、加项变换例1 已知关于x 的不等式x +1x -a≥7在x >a 上恒成立,则实数a 的最小值为________. 答案 5解析 ∵x >a ,∴x -a >0,∴x +1x -a =(x -a )+1x -a+a ≥2+a , 当且仅当x =a +1时,等号成立,∴2+a ≥7,即a ≥5.反思感悟 加上一个数或减去一个数使和(积)为定值,然后利用基本不等式求解.二、平方后使用基本不等式例2 若x >0,y >0,且2x 2+y 23=8,则x 6+2y 2的最大值为________. 答案 923 解析 (x 6+2y 2)2=x 2(6+2y 2)=3·2x 2⎝⎛⎭⎫1+y 23 ≤3·⎝ ⎛⎭⎪⎫2x 2+1+y 2322=3×⎝⎛⎭⎫922. 当且仅当2x 2=1+y 23,即x =32,y =422时,等号成立. 故x 6+2y 2的最大值为923. 三、展开后求最值例3 若a ,b 是正数,则⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4a b 的最小值为( ) A .7 B .8 C .9 D .10答案 C解析 ∵a ,b 是正数,∴⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4a b =1+4a b +b a +4=5+4a b +b a≥5+24a b ·b a=5+4=9, 当且仅当b =2a 时取“=”.四、常数代换法求最值例4 已知x ,y 是正数且x +y =1,则4x +2+1y +1的最小值为( ) A.1315 B.94C .2D .3 答案 B解析 由x +y =1得(x +2)+(y +1)=4,即14[(x +2)+(y +1)]=1, ∴4x +2+1y +1=⎝⎛⎭⎫4x +2+1y +1·14[(x +2)+(y +1)] =14⎣⎢⎡⎦⎥⎤4+1+4(y +1)x +2+x +2y +1 ≥14(5+4)=94, 当且仅当x =23,y =13时“=”成立,故选B. 反思感悟 通过常数“1”的代换,把求解目标化为可以使用基本不等式求最值的式子,达到解题的目的.五、代换减元求最值例5 若实数x ,y 满足xy +3x =3⎝⎛⎭⎫0<x <12,则3x +1y -3的最小值为________. 答案 8解析 ∵实数x ,y 满足xy +3x =3⎝⎛⎭⎫0<x <12, ∴x =3y +3,∴0<3y +3<12,解得y >3. 则3x +1y -3=y +3+1y -3=y -3+1y -3+6≥2(y -3)·1y -3+6=8,当且仅当y =4,x =37时取等号.反思感悟 在解含有两个以上变元的最值问题时,通过代换的方法减少变元,把问题化为两个或一个变元的问题,再使用基本不等式求解.六、建立求解目标不等式求最值例6 已知a ,b 是正数,且(a +b )(a +2b )+a +b =9,则3a +4b 的最小值等于________. 答案 62-1解析 a ,b 是正数,且(a +b )(a +2b )+a +b =9,即有(a +b )(a +2b +1)=9,即(2a +2b )(a +2b +1)=18,可得3a +4b +1=(2a +2b )+(a +2b +1)≥2(2a +2b )(a +2b +1)=62,当且仅当2a +2b =a +2b +1时,上式取得等号,即有3a +4b 的最小值为62-1.例7 已知a >0,b >0,且a +b +1a +1b=5,则a +b 的取值范围是( ) A .1≤a +b ≤4B .a +b ≥2C .1<a +b <4D .a +b >4答案 A解析 ∵a +b +1a +1b=5, ∴a +b +a +b ab=5. ∵a >0,b >0,ab ≤⎝⎛⎭⎫a +b 22, ∴1ab ≥4(a +b )2, ∴a +b +a +b ab ≥a +b +4a +b, ∴a +b +4a +b≤5, 即(a +b )2-5(a +b )+4≤0,∴(a +b -4)(a +b -1)≤0,即1≤a +b ≤4,当a =b =12时,左边等号成立, 当a =b =2时,右边等号成立,故选A.反思感悟 利用基本不等式与已知条件建立求解目标的不等式,求出不等式的解集即得求解目标的最值. 闯关训练一、单选题1.已知实数a 、b 满足1)28()(a b ++=,有结论:①存在0a >,0b >,使得ab 取到最大值;②存在0a <,0b <,使得a+b 取到最小值;正确的判断是( )A .①成立,②成立B .①不成立,②不成立C .①成立,②不成立D .①不成立,②成立【答案】C【分析】 由已知结合基本不等式及其应用条件分别检验①②即可判断.【详解】解:因为1)28()(a b ++=,所以(2)6ab a b =-+,①0a >,0b >,22224()()44a b a b +=+++-≥=,当且22b =时取等号,所以64ab -≥,解得2ab ≤,即ab 取到最大值2;①正确;②0a <,0b <,当20a +>时,881233322a b a a a a +=+-=++-≥=++,当且仅当822a a +=+时取等号,此时2a =不符合0a <,不满足题意;当20a +<时,888123(2)33222a b a a a a a a ⎡⎤+=+-=++-=--+--≤--⎢⎥+++⎣⎦当且仅当()822a a -+=-+时取等号,此时2a =- 此时取得最大值,没有最小值,②错误.故选:C .【点睛】方法点睛:在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.2.已知1,0x y ,且1211x y +=-,则21x y +-的最小值为( )A .9B .10C .11D .7+【答案】A【分析】 利用“乘1法”将问题转化为求[]12(1)21x y x y ⎛⎫-++ ⎪-⎝⎭的最小值,然后展开利用基本不等式求解.【详解】1x >,10x ∴->,又0y >,且1211x y+=-,[]1222(1)21(1)25511y x x y x y x y x y ⎛⎫-∴+-=-++=++≥+ ⎪--⎝⎭9=, 当且仅当22(1)1y x x y-=-,解得4x =,3y =时等号成立, 故21x y +-的最小值为9.故选:A .【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.已知a ,b ∈R ,a +b =2.则221111a b +++的最大值为( )A .1B .65CD .2 【答案】C【分析】 化简配方可得211a ++211b +=242(1)(1)4ab ab ---+,令t =ab ﹣1=a (2﹣a )﹣1=﹣(a ﹣1)2≤0,则242(1)(1)4ab ab ---+=2424t t -+,令4﹣2t =s (s ≥4),即t =42s -,再由基本不等式计算可得最大值. 【详解】解:a ,b ∈R ,a +b =2. 则211a ++211b +=2222221()a b a b ab +++++ =222()221()2()a b ab a b ab ab +-+++-+=26252()ab ab ab --+=242(1)(1)4ab ab ---+, 令t =ab ﹣1=a (2﹣a )﹣1=﹣(a ﹣1)2≤0, 则242(1)(1)4ab ab ---+=2424t t -+, 令4﹣2t =s (s ≥4),即t =42s -,可得2424t t -+=2(4)44s s -+=4328s s +-, 由s +32s, 当且仅当s =t =2﹣可得4328s s+-≤12, 则211a ++211b +故选:C.【点睛】本题考查基本不等式的运用,注意化简变形和换元,以及等号成立的条件,考查运算能力,属于较难题.4.已知正实数,a b 满足1a b +=,则222124a b a b +++的最小值为( ) A .10B .11C .13D .21【答案】B【分析】利用“乘1法”与基本不等式的性质即可得出.【详解】解:正实数,a b 满足1a b +=, 则2221241422a b a b a b a b+++=+++, ()142a b a b ⎛⎫=+++ ⎪⎝⎭4777411b a a b =++≥++=, 即:22212411a b a b+++≥, 当且仅当4b a a b =且1a b +=,即21,33b a ==时取等号, 所以222124a b a b+++的最小值为11. 故选:B.【点睛】本题考查了“乘1法”与基本不等式的性质的应用,同时考查转化思想和计算能力. 5.已知ab 14=,a ,b ∈(0,1),则1211a b +--的最小值为 A .4B ..6 C.3D.4【答案】D【分析】 根据14b a =代入1211a b +--,变形为2244414a a ++--,等价处理成()()()2444123444121a a a a ⎛⎫+-+-+ ⎪--⎝⎭,利用基本不等式求最值. 【详解】由题:ab 14=,a ,b ∈(0,1),14b a=, 12121111114112482a b a a a aa +=+=+---+----212141a a =++-- 2424441a a =++-- ()()()2444123411442a a a a ⎛⎫=+-+-+ ⎪--⎝⎭ ()(412442212323444123a a a a ⎛⎫--=++++≥++ ⎪--⎝⎭, 当且仅当()414444124a a a a --=--时,取得最小值,解得当a =4+故选:D【点睛】 此题考查利用基本不等式求最小值,关键在于根据题目所给条件准确变形,根据积为定值求最值,注意考虑等号成立的条件.6.正数a ,b 满足9a b ab +=,若不等式2218a b x x m +≥-++-对任意实数x 恒成立,则实数m 的取值范围是A .[)3,+∞B .(]3,-∞C .(],6-∞D .[)6,+∞【答案】A利用基本不等式求得a b +的最小值,把问题转化为()m f x ≥恒成立的类型,求解()f x 的最大值即可.【详解】9a b ab +=,191a b∴+=,且a ,b 为正数, 199()()1010216b a b a b a b a b a b a ∴+=++=+++, 当且仅当9b a a b=,即4,12a b ==时,()16min a b +=, 若不等式2218a b x x m +≥-++-对任意实数x 恒成立,则216218x x m ≥-++-对任意实数x 恒成立,即222m x x ≥-++对任意实数x 恒成立,2222(1)33x x x -++=--+,3m ∴≥,故选:A【点睛】本题主要考查了恒成立问题,基本不等式求最值,二次函数求最值,属于中档题.二、填空题 7.设1x >-则231x x y x ++=+的最小值为________【答案】1##【分析】利用换元法,令1t x =+将所给的代数式进行变形,然后利用均值不等式即可求得最小值.【详解】由1x >-,可得10x +>.可令()10t x t =+>,即1x t =-,则()()22113331111t t x x t x t t -+-+++==+-=+≥,当且仅当t =,1x =时,等号成立.故答案为:1.8.若不等式()x a x y ++对一切正实数,x y 恒成立,则实数a 的最小值为______.【答案】2的最大值即可. 【详解】因,0x y >,则()x a x y a +≤+⇔,()222222x y x x y x yx y ++⋅+=≤==++,当且仅当2x y =时取“=”,则2a ≥, 所以实数a 的最小值为2.故答案为:2 9.,,a b c 是不同时为0的实数,则2222ab bc a b c +++的最大值为________. 【答案】12【分析】 先变形得22222222ab bc ab bc a b c a b b c ++=+++++,再利用重要不等式得到222a b ab +≥,222b c bc +≥,代入即可求解.【详解】22222222ab bc ab bc a b c a b b c ++=+++++, 222a b ab +≥,222b c bc +≥当且仅当a b c ==时取等号,所以222222212222ab bc ab bc ab bc a b c a b b c ab bc +++=≤=++++++ ∴2222ab bc a b c +++的最大值为12. 故答案为:12.10.已知1m ,0n >,且223m n m +=,则214m m n +-的最小值为_______. 【答案】94【分析】首先变量替换为223n m m =-,变形后得()22114123m m n m m +=+---,再利用换元,结合基本不等式求最值.【详解】因为223m n m +=,所以223n m m =-,因为0n >,1m ,所以2230n m m =->,得13m <<, 所以()()2222114112323m m m n m m m m m +=+=+-----, 记1,3a m b m =-=-,所以132a b m m +=-+-=, 所以12a b +=,且0,0a b >>, 所以()221215141232444m a b a b b a m n m m a b a b a b +++=+=+=+=++---5944≥+,当且仅当4a b b a =即24,33b a ==等号成立, 此时73m =,4977929n -==. 故答案为:9411.若0,0,2,a b a b >>+=则下列不等式对一切满足条件的a ,b 恒成立的是___________.(写出所有正确命题的序号)①1ab ≤;≤③222a b +≥;④333a b +≥;⑤112a b+≥. 【答案】①③⑤【分析】根据基本不等式逐序号分析即可.【详解】 ①212a b ab +⎛⎫≤= ⎪⎝⎭,取等号时1a b ==,故正确;②224a b =++=+,2≤,取等号时1a b ==,故错误;③()222242422a b a b ab ab +≥+-=-≥-=,取等号时1a b ==,故正确;④()()()()()23322232432432a b a b a b ab a b ab ab ⎡⎤+=++-=+-=-≥⨯-=⎣⎦,取等号时1a b ==,故错误; ⑤112221a b a b ab ab ++==≥=,取等号时1a b ==,故正确; 故答案为:①③⑤12.若,0x y >,24x y +=,则()()2112x y xy++的最小值为___________. 【答案】9【分析】将所求代数式展开,将24x y +=代入化简,由基本不等式求出xy 的最大值,即可求所求代数式的最小值. 【详解】 因为24x y +=, 所以()()()()21122122252104x y x y xy xy xy xy xy xy++++++===+,因为42x y =+≥≤=2xy ≤,当且仅当242x y x y +=⎧⎨=⎩即21x y =⎧⎨=⎩时等号成立,xy 取得最大值为2,所以()()211210104492x y xy xy ++=+≥+=,所以()()2112x y xy++的最小值为9,故答案为:9.13.若3a b +=,0b >,则13a a b+的最小值为__________. 【答案】59【分析】结合基本不等式的应用条件对a 进行讨论,利用基本不等式求最值,计算即可得结果. 【详解】 因为13a a b+有意义,所以0a ≠, 而3a b +=,0b >,因此3a <且0.a ≠ (1)当0<<3a 时,因此111173399999a a ab a b a a b a b a b a b ++=+=+=++≥+=, 当且仅当3b a =,即34a =,94b =时,等号成立, 所以13a a b +的最小值为79. (2)当0a <时,则0ab <,0b a<, 因此11133999a a a b a b a a b a b a b a b +⎛⎫+=--=--=-+-- ⎪⎝⎭1599≥-+=,当且仅当3b a =-,即32a =-,92b =时,等号成立,所以13a a b +的最小值为59. 综上所述,13a a b +的最小值为59. 故答案为:59.14.正数,a b 满足912a b+=,若22a b x x +≥+对任意正数,a b 恒成立,则实数x 的取值范围是___________【答案】{}42x x -≤≤ 【分析】先利用基本不等式求解出a b +的最小值,然后解一元二次不等式可求得结果. 【详解】因为()191191022b a a b a b a b a b ⎛⎫⎛⎫+=⋅+⋅+=++ ⎪ ⎪⎝⎭⎝⎭,所以()1110=106822a b ⎛+≥++= ⎝, 取等号时3912a ba b =⎧⎪⎨+=⎪⎩,即62a b =⎧⎨=⎩,所以228x x +≤,解得{}42x x -≤≤, 故答案为:{}42x x -≤≤.15.已知正实数a ,b 满足1a b +=,则11a ab+的最小值是______.【答案】3+【分析】利用“1”的代换,转化为()211a b a b a ab a ab+++=+23b a a b =++,利用基本不等式求解. 【详解】()2221121a b a b b a b ab a ab a ab a ab+++++=+=++,2333b a a b =++≥=+2a =1b =时取等号.所以则11a ab+的最小值是3+故答案为:3+16.若正实数x 、y 满足2610x y x y +++=,则52y x-的最大值是______. 【答案】4 【分析】分析可得出254110x y x y x y -=+++-,利用基本不等式可得出25x y-的最小值,即可得出52y x -的最大值. 【详解】 由题意可得26100x y x y+++-=,所以,254110104x y x y x y -=+++-≥=-,所以,524y x -≤,当且仅当21x y =⎧⎨=⎩时,等号成立,此时有524y x -=.因此,52y x-的最大值是4. 故答案为:4.17.已知0x >,0y >,22x y +=,则22524x y x yxy+++的最小值为___________.【答案】4 【分析】利用22x y +=代入,将式子进行齐次化处理,变为()22252x y x y xy+++,进一步使用均值不等式即可. 【详解】()222222222225252454544x y x y x y x y x y x y x xy y xy xy xy xy++++++++++++===2229294444x y x yxy y x+=+=++≥= 当且仅当222922x y x y ⎧=⎨+=⎩时,等号成立.所以22524x y x y xy+++的最小值为4.故答案为:4. 【点睛】易错点睛:值得注意的是,如果直接将式子拆分化简,变成两个式子分别求最值的话,会发现等号是取不到的,所以我们采用“齐次化”的方法,将()224x y +=代入处理.18.已知正实数,x y 满足()24,xy x y +=则2x y +的最小值为_______________.【答案】【分析】根据22340x y xy -=+,利用一元二次方程的解法结合0x >,0,y >得到2y x =-2x y +=. 【详解】因为正实数,x y 满足()24xy x y +=,所以22340x y xy -=+,解得2y x ==-±因为0x >,0,y >所以2y x =-所以2x y +=当且仅当12x y =-=,取等号,所以2x y +的最小值为故答案为:【点睛】关键点点睛:本题关键是利用方程思想,由条件解得x ,将问题转化为2x y +=决.三、解答题19.有一种变压器铁芯的截面是如图所示的正十字形,为保证磁通量的稳定性,要求十字形铁芯的面积为2.为节约成本,需使用来绕铁芯的铜线最省,即正十字形外接圆周长最短.问当正十字形的长()CD 和宽()AB 为多少厘米时,正十字形外接圆周长最短,最短是多少厘米?【答案】,宽为3cm时,正十字形外接圆周长最短,最短是.【分析】设AB a,CD b=,由十字形铁芯的面积22ab a-=b半径的平方可表示为22222a bR⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭,代入b化简可得22258116R aa⎛⎫=+⎪⎝⎭,利用均值不等式可得minR【详解】设正十字形的宽AB a厘米,长CD b=厘米,且0,0a b>>,则由题意得:十字形铁芯的面积22ab a-=所以2ab=,正十字形外接圆周长最短,则圆半径最短,圆半径()22222221224142a bR a baa⎛⎫⎛⎫=+=+⎪ ⎪⎝⎭⎝⎭⎡⎤⎛⎢⎥=+⎢⎥⎝⎭⎣⎦2258116aa⎛⎫=+⎪⎝⎭20,0a a>>,228118aa∴+≥2225815181616R aa⨯⎛⎫∴=+⎪⎝⎭当且仅当2281aa=时即3cma=时,2minR,此时,32b =,min R =,正十字形外接圆周长最短为:22l R ππ==.答:,宽为3cm 时,. 20.某天数学课上,老师介绍了基本不等式的推广:()12212,,0nn n a a a a a a a n+++≤≥.小明由此得到启发,在求33x x -,[)0,x ∈+∞的最小值时,小明给出的解法是:3331132323322x x x x x x x -=++--≥-=--=-,当且仅当1x =时,取到最小值-2.(1)请你模仿小明的解法,研究44x x -,[)0,x ∈+∞上的最小值; (2)求出当0a >时,3x ax -,[)0,x ∈+∞的最小值.【答案】(1)-3;(2)【分析】(1)根据小明解法44411143x x x x -=+++--,利用均值不等式求解;(2)转化条件33x ax x ax -=,应用均值不等式求解.【详解】(1)由0x ≥,知44411143434433x x x x x x x -=+++--≥-=--=-, 当且仅当1x =时,取到最小值-3; (2)由0a >,0x ≥,知33x ax x ax ax -=ax ax =-=当且仅当3x =21.生命在于运动,运动在于锻炼.其中,游泳就是一个非常好的锻炼方式.游泳有众多好处:强.身健体;保障生命安全;增强心肺功能;锻炼意志,培养勇敢顽强精神;休闲娱乐,促进身心健康.近几年,游泳池成了新小区建设的标配.家门口的“游泳池”,成了市民休闲娱乐的好去处.如图,某小区规划一个深度为2m ,底面积为21000m 的矩形游泳池,按规划要求:在游泳池的四周安排4m 宽的休闲区,休闲区造价为200元2/m ,游泳池的底面与墙面铺设瓷砖,瓷砖造价为100元2/m .其他设施等支出大约为1万元,设游泳池的长为m x .(1)试将总造价y (元)表示为长度x 的函数; (2)当x 取何值时,总造价最低,并求出最低总造价.【答案】(1)()100020001128000y x x x ⎛⎫=++> ⎪⎝⎭;(2)当x =时,总造价最低,且最低总造价为()112800元. 【分析】(1)求出游泳池的宽,分别计算出铺游泳池的花费和休闲区的花费,即可得出总造价y (元)关于x 的函数;(2)利用基本不等式可求得y 的最小值,利用等号成立可得出结论. 【详解】(1)因为游泳池的长为m x ,所以游泳池的宽为1000m x, 铺游泳池的花费为1000100010010002222400250x x x x ⎛⎫⎛⎫⨯+⨯+⨯⨯=++ ⎪ ⎪⎝⎭⎝⎭, 休闲区的花费为()1000100020088100016008x x x x ⎡⎤⎛⎫⎛⎫⨯++-=++⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 所以,总造价为100010001000400250160082000112800y x x x x x x ⎛⎫⎛⎫⎛⎫=+++++=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中0x >;(2)由基本不等式可得100020001128002000112800112800y x x ⎛⎫=++≥⨯= ⎪⎝⎭(元),当且仅当x =.因此,当x =时,总造价最低,且最低总造价为()112800元.22.为持续推进“改善农村人居环境,建设宜居美丽乡村”,某村委计划在该村广场旁一矩形空地进行绿化.如图所示,两块完全相同的长方形种植绿草坪,草坪周围(斜线部分)均摆满宽度相同的花,已知两块绿草坪的面积均为400平方米.(1)若矩形草坪的长比宽至少多9米,求草坪宽的最大值;(2)若草坪四周及中间的花坛宽度均为2米,求整个绿化面积的最小值.【答案】(1)最大值为16米;(2)最小值为(824+平方米. 【分析】(1)设草坪的宽为x 米,长为y 米,依题意列出不等关系,求解即可; (2)表示400(26)(4)(26)(4)S x y x x=++=++,利用均值不等式,即得最小值. 【详解】(1)设草坪的宽为x 米,长为y 米,由面积均为400平方米,得400y x=. 因为矩形草坪的长比宽至少大9米,所以4009x x+,所以294000x x +-,解得2516x -. 又0x >,所以016x <. 所以宽的最大值为16米.(2)记整个的绿化面积为S 平方米,由题意可得400300(26)(4)(26)(4)8248()(824S x y x x x x=++=++=+++(平方米)当且仅当x =.所以整个绿化面积的最小值为(824+平方米.23.一个圆心为O 的半圆形如图所示,C 、D 在半圆弧AB 上,AC BD =,AD 与BC 交于点P ,且10AC BC +=.(1)设AC x =,CP y =,求y 关于x 的函数关系式; (2)求APC △面积的最大值:【答案】(1)501010xy x-=-()05x <<;(2)最大值为75-【分析】(1)在直角 APC △中222AP AC CP =+,得501010xy x-=-,再由边长大于零得定义域可得解析式;(2)250575APC S t t ⎛⎫=-+- ⎪⎝⎭△,由基本不等式求最值可得答案. 【详解】(1)因为10AC BC +=,所以10BC x =-,又CP y =,AC BD =,所以AC BD =,90ACP BDP ∠=∠=, 又APC BPD ∠=∠,所以CAP DBP ∠=∠ 所以ACP BDP ≅, 所以10PB PA x y ==--. 依题意可得CA CB ⊥,在直角 APC △中,222AP AC CP =+, 即222(10)x y x y --=+,整理可得501010xy x-=-,由010********x x x x ⎧⎪>⎪->⎨⎪-⎪>-⎩得05x <<, 所以501010xy x-=-()05x <<.(2)115010(255)221010APC x x x S xy x x x--==⋅=--△, 令10x t -=,则10x t =-,因为05x <<,所以510t <<,所以(10)(255)25025057575275APC t t S t t t---⎛⎫==-+--=- ⎪⎝⎭△当且仅当2505t t=,即t =10x =-. 故APC △面积的最大值为75-24.如图所示,某市现有自市中心O 通往正西和东北方向的两条主要公路,为了解决该交通拥挤问题,市政府决定修建一条环城公路,分别在通往正西和东北方向的公路上选取A 、B 两点,使环城公路在A 、B 间为直线,要求AB 路段与市中心O 的距离为10km ,且使A 、B 间的距离||AB 最小,请你确定A 、B 两点的最佳位置(不要求作近似计算).【答案】A 、B 两点的最佳位置是离市中心O 均为处. 【分析】先以O 为原点,正东方向为x 轴的正半轴,正北方向为y 轴的正半轴,建立直角坐标系.设(,0)A a -、(,)B b b ,则可得直线AB 的方程,再根据点到直线的距离公式可得2222100(22)a b a b ab =++,进而求得ab 的范围,再根据两点间的距离求得10abAB =,进而可得||AB 的范围及最小值.当||AB 取最小值时可求得a ,b 的值,进而求出||OA 和||OB ,确定A ,B 的位置. 【详解】以O 为原点,正东方向为x 轴的正半轴,正北方向为y 轴的正半轴,建立如下图所示的直角坐标系设(,0)A a -、(,)B b b (其中0a >,0)b >,则AB 的方程为b ab y x a b a b=⋅+++, 即()0bx a b y ab -++=.2222100(22)100(22)a b a b ab a ab ∴=++200(1ab =.0ab >,200(21)ab ∴+.当且仅当“222a b =”时等号成立,而10ab AB ==, 20(21)AB ∴+.当222a b =,ab =||AB 取最小值,即a =b =此时OA a ==,OB =A ∴、B 两点的最佳位置是离市中心O 均为处.25.全国文明城市,简称文明城市,是指在全面建设小康社会中市民整体素质和城市文明程度较高的城市.全国文明城市称号是反映中国大陆城市整体文明水平的最高荣誉称号.连云港市黄海路社区响应号召,在全面开展“创文”的基础上,对一块空闲地进行改造,计划建一面积为4000 m 2矩形市民休闲广场.全国文明城市是中国大陆所有城市品牌中含金量最高、创建难度最大的一个,是反映城市整体文明水平的综合性荣誉称号,是目前国内城市综合类评比中的最高荣誉,也是最具有价值的城市品牌.为此社区党委开会讨论确定方针:既要占地最少,又要美观实用.初步决定在休闲广场的东西边缘都留有宽为2m 的草坪,南北边缘都留有5m 的空地栽植花木.(1)设占用空地的面积为S (单位:m 2), 矩形休闲广场东西距离为x (单位:m ,0x >),试用x 表示为S 的函数;(2)当x 为多少时,用占用空地的面积最少?并求最小值.【答案】(1)()()40004100S x x x ⎛⎫=++> ⎪⎝⎭;(2)当休闲广场东西距离为40m 时,用地最小值为4880 m 2.【分析】(1)由广场面积可得矩形广场的南北距离为4000xm ,进而可求得结果;(2)根据基本不等式可求得结果.【详解】(1)因为广场面积须为40002m ,所以矩形广场的南北距离为4000xm , 所以()()40004100S x x x ⎛⎫=++> ⎪⎝⎭;(2)由(1)知1600040401040404040800=4840S x x =++≥++,当且仅当40x =时,等号成立.答:当休闲广场东西距离为40m 时,用地最小值为48802m .26.某旅游公司在相距为100km 的两个景点间开设了一个游船观光项目.已知游船最大时速为50/km h ,游船每小时使用的燃料费用与速度的平方成正比例,当游船速度为20/km h 时,燃料费用为每小时60元.其它费用为每小时240元,且单程的收入为6000元.(1)当游船以30/km h 航行时,旅游公司单程获得的利润是多少?(利润=收入-成本) (2)游船的航速为何值时,旅游公司单程获得的利润最大,最大利润是多少?【答案】(1)4750元;(2)游轮的航速应为40/km h ,最大利润是4800元.【分析】(1)设游船的速度为(/)v km h ,旅游公司单程获得的利润为y (元),根据利润=收入-成本建立函数关系式,所以24000600015(050)y v v v=--<,代入30/v km h =即可求得; (2)利用基本不等式求出最大利润即可.【详解】解:(1)设游船的速度为(/)v km h ,旅游公司单程获得的利润为y (元),因为游船的燃料费用为每小时2·k v 元,依题意2·2060k =,则320k =. 所以23100100240006000(?240?)600015(050)20y v v v v v v=-+=--<. 30/v km h =时,4750y =元;(2)2400060001560004800y v v =---=, 当且仅当2400015v v=,即40v =时,取等号. 所以,旅游公司获得最大利润,游轮的航速应为40/km h ,最大利润是4800元.27.某人准备租一辆车从孝感出发去武汉,已知从出发点到目的地的距离为100km ,按交通法规定:这段公路车速限制在40~100(单位:km/h)之间.假设目前油价为7.2元/L ,汽车的耗油率为2(3)360x +L /h ,其中x (单位:km/h)为汽车的行驶速度,耗油率指汽车每小时的耗油量.租车需付给司机每小时的工资为76.4元,不考虑其他费用,这次租车的总费用最少是多少?此时的车速x 是多少?(注:租车总费用=耗油费+司机的工资)【答案】租车的总费用最少是280元,车速为70km/h .【分析】设总费用为y 元,再根据题意求出y 与x 的关系式,再利用基本不等式求解即可【详解】解设总费用为y 元.由题意,得()2100100980076.47.23240100360x y x x x x x⎛⎫=⨯+⨯⨯+=+≤≤ ⎪⎝⎭.因为98002280y x x =+≥=. 当且仅当98002x x=,即x =70时取等号. 所以这次租车的总费用最少是280元,此时的车速为70km/h .28.为应对疫情需要,某医院需要临时搭建一处占地面积为2300m 的矩形隔离病区,拟划分6个工作区域,布局示意图如下.根据防疫要求,所有内部通道(示意图中细线部分)的宽度为2m ,整个隔离病区内部四周还要预留宽度为3m 的半污染缓冲区(示意图中粗线部分),设隔离病区南北长x m .(1)在满足防疫要求的前提下,将工作区域的面积表示为南北长x 的函数()f x ,并写出x 的取值范围;(2)应该如何设计该隔离病区的边长,才能使工作区域的总占地面积最大?(结果精确到0.1m )【答案】(1) ()f x =30003808x x ⎛⎫-+ ⎪⎝⎭,7562x ⎛⎫<< ⎪⎝⎭;(2) 隔离病区的边长为19.4m 时,工作区域的总占地面积最大值.【分析】(1)根据长方形面积计算公式,求出各边边长,然后用总面积减去内部通过到面积和半污染缓冲区面积即可;(2)根据第一问表达式,结合基本不等式求最值即可.【详解】(1)南北长x ,则东西长300x , 300300()300[32(6)32][(6)2822]f x x x x x ⎛⎫=-⨯+-⨯⨯--⨯+-⨯⨯ ⎪⎝⎭=30003808x x ⎛⎫-+ ⎪⎝⎭ ,7562x ⎛⎫<< ⎪⎝⎭ .(2)由(1)可得: 753000682x x x <<+≥, 当且仅当30008,x x x==.此时工作区域面积达到最大,故隔离病区的边长为19.4m 时,工作区域的总占地面积最大值.29.某水库堤坝因年久失修,发生了渗水现象,当发现时已有2200m 的坝面渗水.经测算知渗水现象正在以每天24m 的速度扩散.当地政府积极组织工人进行抢修.已知每个工人平均每天可抢修渗水面积22m ,每人每天所消耗的维修材料费75元,劳务费50元,给每人发放50元的服装补贴,每渗水21m 的损失为250元.现在共派去x 名工人,抢修完成共用n 天. (1)写出n 关于x 的函数关系式;(2)要使总损失最小,应派去多少名工人去抢修(总损失=渗水损失+政府支出).【答案】(1)1002n x =-,3x ≥,x N +∈;(2)52名工人. 【分析】(1)根据已经渗水的面积和扩散的面积之和等于x 名维修工人抢修n 天所抢修的面积列方程即可;(2)设总损失为y ,则125502502y nx x nx =++⨯,将其整理为关于x 的函数,再利用基本不等式即可求最值.【详解】(1)由题意知:抢修n 天时,维修工人抢修的面积之和为2nx ,而渗水的面积为2004n + 所以有22004nx n =+,可得:1002n x =-,3x ≥,x N +∈. (2)设总损失为y ,则125502502y nx x nx =++⨯62550nx x =+100625502x x x =⋅+-()1250225001250505022x x x x x x -+⎛⎫⎛⎫=+=+ ⎪ ⎪--⎝⎭⎝⎭ 25005012502x x ⎛⎫=++ ⎪-⎝⎭250050212522x x ⎛⎫=+-+ ⎪-⎝⎭()50125250250125267600⎛⎫≥=⨯+= ⎪ ⎪⎝⎭,当且仅当250022x x =--时,即52x =时,等号成立. 所以应派52名工人去抢修,总损失最小.30.设002a b a b >>+=,,.(1)证明:(1)(1)4a b ab++≥; (2)证明:332a b +≥.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)把(1)(1)a b ab++展开化简,利用基本不等式即可得证;(2)结合已知条件,利用两数和的立方公式展开,再用基本不等式即可得证.【详解】(1)证明:因为0a >,0b >,2a b +=.()()13111ab a b ab a a bb ab +++++==+. 且()214a b ab +≤=(当且仅当a b =时取等号), 故331141ab +≥+=. 所以()()114a b ab++≥ (2)证明:()3322333a b a a b ab b +=+++()333a b ab a b =+++336a b ab =++()23333664a b a b a b +++⋅=++≤当且仅当1a b ==时取等号,又()3328a b +==,故332a b +≥.31.若实数x ,y ,m 满足||||x m y m -<-,则称x 比y 接近m ,(1)若231x +比3接近1,求x 的取值范围;(2)证明:“x 比y 接近m ”是“231x y m x y+-<--”的必要不充分条件; (3)证明:对于任意两个不相等的正数a 、b ,必有22a b ab +比33+a b接近2【答案】(1)x -<<(2)见解析;(3)见解析.【分析】(1)根据定义可得232x <,从而可求x 的取值范围.(2)通过反例可得“x 比y 接近m ”是“231x y m x y +-<--”不充分条件.利用不等式的性质可证明“x 比y 接近m ”是“231x y m x y+-<--”的必要条件,故可得所证结论. (3)利用基本不等式结合分析法可证结论成立.【详解】(1)因为231x +比3接近1,故231131x +-<-, 故232x <,故28x <,所以x -<(2)取1,2,02x y m =-==, 则1||2||2x m y m -=<=-,故x 比y 接近m . 但23120215922x y m x y +--++==->----, 故“x 比y 接近m ”推不出“231x y m x y +-<--”. 所以“x 比y 接近m ”是“231x y m x y +-<--”不充分条件. 若231x y m x y +-<--,则330x m x y-<-,故()()0x m x y --<, 所以00x m x y -<⎧⎨->⎩或00x m x y ->⎧⎨-<⎩, 若00x m x y -<⎧⎨->⎩,则y x <且x m <,故2x y m x m +<+<, 所以()()20x y m x y +--<, 故()()2220x m y m x y m x y ---=+--<,所以x m y m -<-,也就是“x 比y 接近m ”.若00x m x y ->⎧⎨-<⎩,则x y <且m x <,故2x y m x m +>+>, 所以()()20x y m x y +--<, 故()()2220x m y m x y m x y ---=+--<,所以x m y m -<-,故“x 比y 接近m ”是“31x y m x y+-<--”必要不充分条件.(3)对于任意两个不相等的正数a 、b ,要证22a b ab +比33+a b 接近2即证:223322-++<-a b ab a b ,即证:332ab a b a b -<+-+即证:22a b b aa b ++-<-,因为2222a b b a a b b a +++≥=+,因为a b ,故22a b a b b a +>+>220a b a b b a+-+-,所以22a b b aa b ++-<-成立,故22a b ab +比33+a b 接近2【点睛】关键点点睛:本题属于新定义背景下的不等式的求解与证明问题,其中必要不充分条件的证明应依据充分条件和必要条件的定义来展开,证明不等式恒成立要结合不等式的性质,也要结合基本不等式.32.若对任意的[]1,5x ∈,对任意的[)4,a ∈+∞,不等式2a x b x≤++恒成立,求-a b 的最大值.【答案】33【分析】设(),15a f x x b x x =++≤≤,对a 讨论,分45a ≤≤,525a <≤,25a >,判断()f x 的单调性,求得最值,由不等式的性质和不等式的解法,可得所求最大值.【详解】设()a f x x b x=++,当45a ≤≤时,()()15f f ≤,可得()f x 的最小值为f b = ,最大值为55a b ++,由题意可得2b ≥,即为2b ≥-23a b a -≤+≤+ ;当525a <≤时,()()15f f >,可得()f x 的最小值为f b =,最大值为1a b ++,由题意可得2b ≥,即为2b ≥-22510233a b a -≤+≤+-=.5>即25a >时,()f x 在[]1,5递减,可得()f x 的最大值为()11f a b =++,最小值为55a b ++, 由题意可得525a b ++≥,即为35a b ≥--,则63355a a a b a -≤++=+, 由25a >,可得-a b 无最大值.综上可得-a b 的最大值为33.【点睛】思路点睛:本题考查了对勾函数的单调性,利用单调性求函数的最值,考查了分类讨论的思想,属于难题。
基本不等式的几种应用技巧

即
一不正, a 0, b 0常用a b 2 ab
二不定, 需变形
三不等, 常用单调性
Company Logo
基本不等式的几种应用技巧
练一练
4 1. 已知 x 2, 求函数 y x 的最大值 . x2
2 .若0 x 2, 则函数 y x 8 2 x 2 有最
x 1
x 1
5 5 x 1 5 2 x 1 5 x 1 x 1
2 5 5
当且仅当x 1 5,即x 5 1时等号
2
成立,故原函数的值域 为2 55,
Company Logo
基本不等式的几种应用技巧
题型四:“1”的整体代换
1 1 例4.已知 x, y R , 若2 x y 1,求 的最小值 x y 解 x 0,y 0 错因:解答中两次 : 1 2 x y 2 2 xy
1 xy 即 2 2 号过渡,而这两次取 xy 2 2
1 1 1 2 2 2 2 4 2 x y xy
1
运用基本不等式取“=” “=”号的条件是不同 的,故结果错.
1 1 即 的最小值为4 2. x y
Company Logo
1 1 例4. 已知 x, y R , 若2 x y 1,求 的最小值 x y
基本不等式
当且仅当 a b时等号成立
ab ab ( a 0, b 0) 2
ab a b 2 2
2 2
常用不等式串
2 ab ab
当且仅当
Company Logo
ab
a b 时等号成立
基本不等式的几种应用技巧
不等式的解题方法与技巧

不等式的解题方法与技巧不等式是数学中的一个重要概念,解不等式不仅是中学阶段数学学习的一部分,也是高中阶段进一步学习函数与分析的基础。
下面将介绍一些解不等式的常用方法和技巧。
1.基本不等式性质对于两个不等式a<b和c<d,可以根据其性质进行合并或分拆:-合并:a+b<c+d-分拆:a-b>c-d2.不等式化简对于复杂的不等式,可以通过一系列的等价变形将其化简为简单的形式。
常用的等价变形方法有:- 同乘或同除以一个正数:如果a<b,则对于正数x,有ax<bx;如果a<b且x>0,则有ax<bx;如果a<b且x<0,则有ax>bx。
-同加或同减一个具体数:如果a<b,则对于任意实数x,有a+x<b+x,即a+c<b+c;同理,a-c<b-c。
-综合运用:通过多次变换,将不等式化为更简洁的形式。
3.不等式乘法法则不等式乘法法则用于解决乘法不等式的问题。
对于两个正数a和b,以及一个不等式c<d,有以下结论:- 如果a<b且c<d,则ac<bd。
- 如果a<b且c>d,则ac>bd。
- 如果a<b且c=d,则ac=bd。
注意:当a和b中至少一个为负数时,上述法则不适用。
4.不等式绝对值性质当不等式中含有绝对值时,可以利用绝对值的性质进行求解。
对于实数a和b,可以根据绝对值性质得到以下结果:-如果,a,<,b,则a^2<b^2-如果,a,>,b,则a^2>b^2-如果,a,=,b,则a^2=b^25.不等式取正负号问题当不等式的系数为负数时,可以通过取正负号的方式,将其转化为求解不等式的问题。
具体方法如下:-如果a<0,则对不等式两边同时取负号,得到-a>-b。
-如果a>0,则对不等式两边同时取正号,得到a<b。
6.解多项式不等式对于多项式不等式,可以通过求解其零点,确定其正负性。
基本不等式的解题技巧

基本不等式的解题技巧
解基本不等式的关键是要确定不等号的方向,并对变量进行适当的操作以便得到解。
以下是解基本不等式的一些常用技巧:
1. 如果不等式的形式是 "ax + b > 0" 或 "ax + b < 0",则可以通
过将方程两边同时减去 b,再除以 a 来得到 x 的解。
例如:对于不等式 3x + 4 > 0,可以将其转化为 3x > -4,然后
将两边都除以 3,得到 x > -4/3。
2. 如果不等式的形式是"ax + b ≥ 0" 或"ax + b ≤ 0",则需要考
虑等号的情况。
当不等号加上一个等号时,解的范围会发生改变。
例如:对于不等式 2x - 5 ≥ 3,可以通过将其转化为2x ≥ 8,然后将两边都除以 2,得到x ≥ 4。
3. 如果不等式中包含绝对值表达式 |ax + b|,则需要分别讨论 x + b ≥ 0 和 x + b < 0 两种情况。
例如:对于不等式 |2x - 3| < 5,可以将其分解为两个不等式 2x - 3 < 5 和 2x - 3 > -5,然后求解这两个不等式得到的解的交集。
4. 如果不等式中有多个变量,则可以尝试通过移项和因式分解的方法来化简不等式。
例如:对于不等式 x^2 + 4x - 12 > 0,可以将其转化为 (x + 6)(x - 2) > 0,然后使用符号代表法来求解。
这些是解基本不等式常用的技巧,具体问题需要根据具体情况进行分析和求解。
高中数学《基本不等式》知识点归纳

例1.已知不等式 ,(1)求该不等式中x的集合;(2)若1不是不等式的解,0是不等式的解,求k的取值范围。
解:(1)
当k>1时,解集为
当时 ,解集为
当k<1时,解集为
(2)
所以
小结:当一次项系数为0时,,不等式的解集为R(不等式成立时)或 (不等式不成立时)。
典型例题精选
题型一 对公式的简单运用
题型二:条件最值问题
【小结】条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数“1”代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.
【小结】看好形式上的特点,分子分母同时除以自变量x,或通过其他变形出现基本不等式的可用情况,如积为定值的形式.需要注意的是等号成立的条件,如果不成立,则需转化为对勾函数的知识,运用求导并结合其图像解题.
即
∴
解得
从而
即
∴不等式的解集是
4、数形结合思想
例4.设a<0为常数,解不等式 。
解:不等式转化为
令函数 和
其图象如图所示
由
解得 (舍去)
∴两个函数图象的交点为
由图知,当 时,函数 的图象位于函数 的图象的上方
∴不等式的解集是
小结:在不等式的求解过程中,换元法和图象法是常用的技巧。
通过换元,可将较复杂的不等式化归为较简单的不等式或基本不等式,
例6. 解不等式
分析:本题若直接将左边通分采用解高次不等式的思维来做,运算较繁杂。
但注意到 ,且题中出现 ,
启示我们构造函数 去投石问路。
解:将原不等式化为
令
题型01 不等式相关解题技巧(基本不等式链、权方和不等式、两类糖水不等式)(解析版)

题型01不等式相关解题技巧(基本不等式链、权方和不等式、两类糖水不等式)技法01基本不等式链的应用及解题技巧例1.(2022·全国·统考高考真题)若x ,y 满足221+-=x yxy ,则( )A .1x y +≤B.2x y +≥-【高考数学】答题技巧与模板构建C .222x y +≤D .221x y +≥由基本不等式链:2(0,0)112a b a b a b+≥≥≥>>+, 可得22222a b a b ab ++⎛⎫≤≤ ⎪⎝⎭(,a b R ),对于AB由221+-=x y xy 可变形为,()221332x y x y xy +⎛⎫+-=≤ ⎪⎝⎭,解得22x y -≤+≤,当且仅当1x y ==-时,2x y +=-,当且仅当1x y ==时,2x y +=,所以A 错误,B 正确;对于C【法一】由221+-=x y xy 可变形为()222212x y x y xy ++-=≤,解得222x y +≤,当且仅当1x y ==±时取等号,所以C 正确【法二】由 22222,22x y x y x y xy ++⎛⎫⎛⎫+≥≤ ⎪ ⎪⎝⎭⎝⎭,得 2222222x y x y x xy y ++⎛⎫⎛⎫-+≥- ⎪ ⎪⎝⎭⎝⎭,又因为 221x xy y -+=,所以 222122x y x y ++⎛⎫⎛⎫-≤ ⎪ ⎪⎝⎭⎝⎭,即 21()1,24x y x y +≤+≤.【法三】 2222221()3()3()24x y x xy y x y xy x y x y +⎛⎫-+=+-≥+-=+ ⎪⎝⎭,又因为 221x xy y -+=,所以 21()1,24x y x y +≤+≤.【答案】:BC .1.(2023·湖北·模拟预测)(多选)若【答案】ABC【分析】利用基本不等式及其变形公式和“1”的灵活运用即可求解.【详解】解:对A 选项: 0a >,0b >,2a b +=,∴2a b =+≥,即1ab ≤(当且仅当a b =时等号成立),故A 选项正确;对B 选项:2a b += ,而22≤成立,∴2a b +≤成立,故B 选项正确;对C 选项:222221222a b a b ++⎛⎫⎛⎫≥== ⎪ ⎪⎝⎭⎝⎭,222a b ∴+≥(当且仅当a b =时等号成立),故C 选项正确;对D 选项:132********b a a b a b a a b b ⎛⎫+++⎛⎫+ ⎪⎝⨯+ ⎝⎭⎪⎭==≥2b a a b=时等号成立),2132a b ∴+≥D 选项错误.故选:ABC.【答案】ACD【分析】对于A ,B ,D ,利用基本不等式即可求得答案;对于C ,利用4b a =-,求出2224(3)433a b a -==++,结合a 的范围,利用二次函数的性质即可求得.【详解】对于A ,0,0,a b a b >>+≥22a b+≤=,当且仅当2a b ==时等号成立,所以A 正确;对于B ,0,0a b >> ,2a b =++44228=+≤+⨯=,0>≤,当且仅当2a b ==时等号成立,所以B 错误;对于C ,4a b +=,40b a =->,所以04a <<,则2222(4)33a a b a +=+-248163a a -+=24(3)443a +=-≥,并且3a =时等号成立.,所以C 正确;对于D ,0,0,4a b a b >>+=,所以14a b+=,则1111(4a b a b a b ++=+⋅1(2)4b a a b =⨯++1(214≥⨯+=,当且仅当ba ab=,即2a b ==时等号成立, 所以D 正确.故选:ACD.【答案】BCD【分析】根据基本不等式可判断ABC ;将题设配方可得2283533y y x ⎛⎫-+= ⎪⎝⎭,结合2803y ≥进行求解即可判断D.【详解】对于A ,由2253323224x y xy xy xy xy =+-≥⋅-=当且仅当==x y 54xy ≤,故A 错误;对于B ,由223325x y xy +-=,得()2385x y xy +-=,即()22385852x y x y xy +⎛⎫+=+≤⋅+ ⎪⎝⎭,当且仅当==x y x y ≤+≤B 正确;对于C ,由223325x y xy +-=,得()2222253xy x y x y -=-+≤+,当且仅当=-=x y 2254x y +≥,故C 正确;对于D ,由223325x y xy +-=,得2283533y y x ⎛⎫-+= ⎪⎝⎭,即22853033y y x ⎛⎫=--≥ ⎪⎝⎭,即3y x ≤-≤D 正确.故选:BCD.技法02 权方和不等式的应用及解题技巧因为23a b +=,所以426a b +=由权方和不等式 222()a b a b x y x y++≥+可得()222211111914221442144214421a b a b abab ++=+=+≥=-------+-当且仅当214421a b =--,即72,63a b ==时,等号成立.【答案】C【答案】49【分析】将5x y +=转化为()()12219x y ⎡⎤+++=⎣⎦,然后利用基本不等式求解.【详解】因为5x y +=,所以229x y +++=,即()()12219x y ⎡⎤+++=⎣⎦,因为正实数,x y ,所以20x +>,20y +>,所以()111111222222292249922y x x y x y x y x y ⎛⎫⎛⎫+++=++++=++≥ ⎪ ⎪++++++⎝⎭⎝⎭,当且仅当52x y ==等号成立.故答案为:49.【答案】32+【分析】结合已知条件并由乘“1”法将212a b +-变形为()2232b aa b -++-,再由基本不等式即可求解.【详解】因为4a b +=,所以()22a b +-=,()1212a b ⎡⎤+-=⎣⎦,所以()()222112112322222b a a b a b a b a b ⎡⎤-⎛⎫⎡⎤+=+-+=++⎢⎥ ⎪⎣⎦---⎝⎭⎣⎦,因为0,2a b >>,所以由基本不等式得()22211133322222b a a b a b ⎡⎡⎤-⎢+=++≥+=⎢⎥--⎢⎣⎦⎣,当且仅当()2224b a a b a b ⎧-=⎪⎨-⎪+=⎩即4a b ⎧=-⎪⎨=⎪⎩综上所述:212a b +-的最小值是32.故答案为:32.【答案】67,1⎛⎤-∞ ⎥⎝⎦【分析】首先对关系式进行恒等变换, 进一步整理得22(11)(22)12x y x y +-+-+=++22(1)2(1)1(2)4(2)412x x y y x y +-+++-+++++, 最后利用基本不等式的应用求出结果.【详解】已知正数, x y 满足 4x y +=,所以 (1)(2)7x y +++=,所以:12177x y +++=则:2212x y x y +=++22(11)(22)12x y x y +-+-+++22(1)2(1)1(2)4(2)412x x y y x y +-+++-++=+++14122412x y x y =+-+++-+++14112x y =++++121417712x y x y ⎛⎫++⎛⎫=+⋅++⎪ ⎪++⎝⎭⎝⎭14(1)24177(2)7(1)7x y y x ++=++++++121677≥+=,当且仅当4(1)27(2)7(1)x y y x ++=++时,取等号;要使 2212x y a x y ≤+++ 恒成立, 只需满足 22min 12x y a x y ⎛⎫≤+ ⎪++⎝⎭ 即可,故 167a ≤.故答案为: 67,1⎛⎤-∞ ⎥⎝⎦.技法03 普通型糖水不等式的应用及解题技巧【法一】由糖水不等式的倒数形式, 0,0b a c >>>, 则有: cb b a a c+>+ 【法二】()()b b c bac ab c bc ac b a a a c+>⇔+>+⇔>⇔>+,故B 正确;因为0a b c <<<,所以有110,c a b a c a b a->-><--,故A 错误;()()1111b a ac a b c a a b>⇔>⇔>--,故C 正确;()()()()200ab c ac bc c c b a c b c a c b +>+⇔--->⇔-->,故D 正确.【答案】BCD例3-2.(2020·全国·统考高考真题)已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( )A .a <b <cB .b <a <cC .b <c <aD .c <a <b【法一】824ln 3lnlnln 3ln 5558ln 5ln 8ln 8ln 5ln 5a b +=<=<=+,又 1339ln 3ln ln ln 3ln 85513ln 5ln13ln13ln 5ln 5a c +=<=<=+ ,用排除法, 选 A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本不等式应用解题技巧归纳
应用一:求最值
例1:求下列函数的值域
(1)y=3x 2+12x 2 (2)y=x+1x
技巧一:凑项
例1:已知54x,求函数14245yxx的最大值。
技巧二:凑系数
例1. 当时,求(82)yxx的最大值。
技巧三
: 分离
例3. 求2710(1)1xxyxx的值域。
技巧四
:换元
技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()afxxx的单调性。
例:求函数2254xyx的值域。
练习.求下列函数的最小值,并求取得最小值时,x 的值.
(1)231,(0)xxyxx (2)12,33yxxx (3)12sin,(0,)sinyxxx
2.已知01x,求函数(1)yxx的最大值.;3.203x,求函数(23)yxx的最大值.
条件求最值
1.若实数满足2ba,则ba33的最小值是 .
变式:若44loglog2xy,求11xy的最小值.并求x,y的值
技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。
2:已知0,0xy,且191xy,求xy的最小值。
变式: (1)若Ryx,且12yx,求yx11的最小值
(2)已知Ryxba,,,且1ybxa,求yx的最小值
技巧七、已知x,y为正实数,且x 2+y 22 =1,求x1+y 2 的最大值.
技巧八:已知a,b为正实数,2b+ab+a=30,求函数y=1ab 的最小值.
变式:1.已知a>0,b>0,ab-(a+b)=1,求a+b的最小值。
2.若直角三角形周长为1,求它的面积最大值。
技巧九、取平方
5、已知x,y为正实数,3x+2y=10,求函数W=3x +2y 的最值.
变式: 求函数152152()22yxxx的最大值。
应用二:利用基本不等式证明不等式
1.已知cba,,为两两不相等的实数,求证:cabcabcba222
1) 正数a,b,c满足a+b+c=1,求证:(1-a)(1-b)(1-c)≥8abc
2) 例6:已知a、b、cR,且1abc。求证:1111118abc
应用三:基本不等式与恒成立问题
例:已知0,0xy且191xy,求使不等式xym恒成立的实数m的取值范围。
应用四:均值定理在比较大小中的应用:
例:若)2lg(),lg(lg21,lglg,1baRbaQbaPba,则RQP,,的大小关系是 .