氯霉素合成

合集下载

氯霉素的合成路线

氯霉素的合成路线
旋光性完全消失。 (2)光、热、磁、放射性作用会使旋光物质转化成外消旋体。 (3)反应中经过烯醇化过程,发生消旋化。
2. 不对称分子与非对称分子
(1)不对称分子 不具有任何一种对称元素的分子(对称 轴、对称面、对称中心及交错对称轴)成为不对称分子。
CH3 HO
C6H5 H
D
Br
H
H
Cl
F
F
D
CCC
e.e.=[(E1-E2)/(E1+E2)]×100%
e.e.代表对映体过量百分率;E1和E2代表两个对映体,假定E1
的量大于E2,则对映体E1过量的百分数称为E1的对映体过量,以e.e. 来表示。
5. 比旋光度
α代表测定的旋光度数值;λ代表测定时单色光的波长;t代表测定时 的温度;L代表样品管的长度(dm);ρ代表测定时的样品浓度 (g.mL-1)。
6. 立体专一性和立体选择性
(1)立体专一性 不同立体异构体的底物,在相同条件下与同一种 试剂反应,分别得到不同立体异构体的产物,即每一种立体异构体只 给出相应的立体产物,成为立体专一性,该反应称为立体专一性反应。
(2)立体选择性 同一反应物在特定反应中能生成两种或两种以上 立体异构的产物,其中某一种异构体较多的生成称立体选择性,这一 反应称为立体选择性反应。
化工厂的管路为了便于安装、检修和操作管理 ,多数是明线敷设的。管路布置应考虑到减少 基建投资、保证生产操作安全,便于安装和检 修、节约动力消耗,美观整齐等。
二、必备知识
(一)基本概念
1.外消旋化 旋光物质转化成无旋光性的物质的过程称为外消旋化。 外消旋化途径: (1)长期放置,如(+)-α-溴代苯乙酸室温放置3年后,其
2.螺纹连接

以乙苯为原料合成氯霉素的工艺路线

以乙苯为原料合成氯霉素的工艺路线

以乙苯为原料合成氯霉素的工艺路线哎呀,今天咱们聊聊一个挺有意思的话题:以乙苯为原料合成氯霉素的工艺路线。

听起来好像很高大上的样子,其实呢,这个过程就像是做一道家常菜一样简单易懂。

咱们一步一步来吧!咱们要了解一下乙苯是什么。

乙苯是一种有机化合物,它的结构有点像一个长长的葫芦,里面有很多小分子。

这个葫芦里装的是什么呢?其实就是氯霉素的前体物质。

氯霉素是一种抗生素,可以用来治疗各种细菌感染。

那么,我们怎么把这个前体物质变成氯霉素呢?这就需要用到化学反应了。

接下来,咱们要说说合成氯霉素的过程。

这个过程可以分成两个步骤:第一步是把乙苯氧化成苯酚;第二步是把苯酚和一种叫做“邻氨基苯甲酸”的物质反应,生成氯霉素。

这两个步骤看起来好像很复杂,其实呢,就像是做家常菜一样简单。

第一步,咱们要把乙苯氧化成苯酚。

这个过程就像是给葫芦里的小分子加点调料一样。

具体怎么做呢?咱们要把乙苯和一种叫做“过氧化氢”的物质混合在一起。

过氧化氢就像是一把锋利的小刀,可以把乙苯切割成很多小分子。

然后,这些小分子会被一种叫做“羟基化剂”的物质带到另一个反应器里。

在那里,它们会和氧气发生反应,生成苯酚。

这个过程就像是给葫芦里的小分子加了点香料一样,让它变得更加美味可口。

第二步,咱们要把苯酚和邻氨基苯甲酸反应生成氯霉素。

这个过程就像是给做好的菜加上最后一道调味品一样。

具体怎么做呢?咱们要把苯酚和邻氨基苯甲酸混合在一起。

然后,它们会发生一个叫做“缩合”的反应,生成氯霉素。

这个过程就像是给做好的菜加上了最后一道美味的调味品,让它变得更加完美无缺。

好了,经过这么一番折腾,咱们终于把乙苯变成了氯霉素。

这个过程就像是做家常菜一样简单易懂。

当然啦,实际操作过程中可能会遇到一些困难和挑战,但是只要我们勇敢面对,努力学习,就一定能够成功地完成任务。

以乙苯为原料合成氯霉素的工艺路线虽然看起来很高大上,但是实际上呢,就像是做一道家常菜一样简单易懂。

只要我们用心去学,用心去做,就一定能够成功地完成任务。

以乙苯为原料合成氯霉素的工艺路线

以乙苯为原料合成氯霉素的工艺路线

以乙苯为原料合成氯霉素的工艺路线1. 引言嘿,大家好!今天咱们来聊聊一个听起来有点“高大上”的话题——用乙苯合成氯霉素。

别担心,我不会让你觉得这像是在看一部枯燥的化学教材,而是想让你轻松了解这门“化学魔法”。

大家都知道,氯霉素是一种重要的抗生素,而乙苯就像是它的“好朋友”,在合成过程中扮演了重要的角色。

走吧,跟着我一起探索这条神奇的工艺路线吧!2. 乙苯的基本信息2.1 乙苯的特点首先,咱们得了解一下乙苯。

它是一种无色液体,闻起来有点像汽油的味道,别小看了它,这玩意儿可是很多化学反应的“明星”。

它的分子式是C8H10,听起来是不是很酷?而且,它还在工业上被广泛用作溶剂和原料,真是个多才多艺的小家伙。

2.2 乙苯的来源说到乙苯的来源,大家可能会问:“它是从哪里来的呢?”其实,乙苯主要是通过苯和乙烯的反应合成的。

这就像你跟朋友一起做饭,得先准备好材料,才能做出美味的菜肴。

没有乙苯,就没法进行下一步的合成反应哦!3. 合成氯霉素的步骤3.1 步骤一:氯化反应好啦,接下来我们进入正题!首先,乙苯要经过氯化反应,这个过程就像给它穿上了一件“新衣服”。

在适当的温度和氯气的参与下,乙苯会转变成氯乙苯。

这个步骤是至关重要的,因为后面的反应都离不开这个“新朋友”。

3.2 步骤二:氨化反应紧接着,我们要进行氨化反应。

这个反应有点像“调味”——我们加入氨气,让氯乙苯转化为氨基苯乙醇。

这一步就像是给菜肴加盐,不然就少了点味道。

别小看氨基苯乙醇,它可是合成氯霉素的关键中间体,起到至关重要的作用。

3.3 步骤三:环化反应最后一步,咱们进入了环化反应。

这一步就像是把所有的材料都拌在一起,做成一个完整的“菜品”。

在适当的条件下,氨基苯乙醇会和其他的化合物发生反应,最终生成氯霉素。

啊!这就像是看着一道美味的佳肴从锅里冒出来,心里那个激动呀!4. 工艺路线的小贴士4.1 注意反应条件在整个合成过程中,反应条件非常重要。

温度、压力、催化剂的选择,都是不能忽视的细节。

广谱抗菌药氯霉素的合成

广谱抗菌药氯霉素的合成

氯霉素是一种抑菌类抗生素,由大卫·戈特利布(David Gottlieb)于1947年从南美洲委内瑞拉的土壤内的委内瑞拉链霉菌(Streptomyces venezuelae)成功分离,再于1949年合成并引入临床试验。

氯霉素是世界上首种完全由合成方法大量制造的广谱抗生素,对很多不同种类的微生物均起著作用。

它因价钱低廉的关系,现时仍然盛行于一些低收入国家;但在其他西方国家经已甚少使用,这是由于它的副作用的关系:会引致致命的再生不良性贫血。

现时,氯霉素主要是用在医治细菌性结膜炎的眼药水或药膏上用途氯霉素有着很广泛的活跃性,能有效对抗革兰氏阳性菌,包括大部份的抗药性金黄色葡萄球菌、革兰氏阴性菌及厌氧性生物。

它却不能对抗绿脓杆菌或肠杆菌属的品种。

而对于类鼻疽伯克氏菌,则只有一点效用,但经已由头孢他啶及美罗培南取代。

在西方,氯霉素的使用主要限制在外用上,这是因它有导致再生不良性贫血的风险。

最初氯霉素只用于治疗伤寒,但现时出现能对抗多种药物的伤寒杆菌,显示氯霉素只能抑制某些细菌。

氯霉素亦能用作耐四环素霍乱的第二线治疗。

由于氯霉素对脑脊液高渗透性(远比头孢菌素的高),它是治疗金黄色葡萄球菌引致脑脓疡的第一选择。

它亦可用在治疗由多种生物引致或不明原因的脑脓疡。

氯霉素能有效地抑制三种主要引致脑膜炎的细菌:脑膜炎双球菌、肺炎链球菌及流感嗜血杆菌。

在西方,氯霉素是用于治疗对青霉素或头孢菌素过敏的脑膜炎病人。

而有建议家庭医生须配备有氯霉素的静脉制剂,在一些低收入国家,世界卫生组织亦建议使用氯霉素油剂作为脑膜炎的第一线治疗。

氯霉素的化学名为1R,2R-(-)-1-对硝基苯基-2-二氯乙酰胺基-1,3-丙二醇。

分子中有两个手性碳原子,有四个光学异构体。

其中只有1R,2R-(-)有抗菌活性,即临床使用的氯霉素。

氯霉素为白色或微黄色的针状、长片状结晶或结晶性粉末,味苦。

mp.149~153℃。

本品易溶于甲醇、乙醇、丙酮或丙二醇中,微溶于水。

第七章 氯霉素的合成

第七章 氯霉素的合成

Delepinė反应
2. 工艺过程 将经脱水的氯苯或成盐反应的母液加入干燥的反应罐内,在搅拌下 加入干燥的六次甲基四胺(比理论量稍过量),用冰盐水冷至 5℃~15℃,将除净残渣的溴化液抽入,33℃~38℃反应1h,然后测定 反应终点。(14-27)无须过滤,冷却后即可直接用于下一步水解反应。 将盐酸加入搪玻璃罐内,降温至7℃~9℃搅拌下加入(14-27)。继 续搅拌至(14-27)转变为颗粒状后,停止搅拌,静置,分出氯苯。然 后加入甲醇和乙醇,搅拌升温,在32℃~34℃反应4h。3h后开始测酸 含量,并使其保持在2.5%左右(确保反应在强酸性下进行)。反应完 毕,降温,分去酸水,加入常水洗去酸后,加入温水分出二乙醇缩甲 醛。再加入适量水搅拌冷,至-3℃,离心分离,得到对硝基-α-氨基苯 乙酮盐酸盐(14-12)。 分出的氯苯用水洗去酸,经干燥后,循环用于溴化及成盐反应。
第二节合成路线及其选择
第三节对硝基苯乙酮的生产工艺原理及其过程
一、对硝基乙苯的制备
1. 工艺原理 在生产上,乙苯的硝化采用浓硫酸与硝酸配成的混酸作硝化剂。 混酸中硫酸的作用为:① 使硝酸产生硝基正离子NO2+,后者与 乙苯发生亲电取代反应;② 使硝酸的用量减少至近于理论量;③ 浓硫酸与硝酸混合后,对铁的腐蚀性很小,故硝化反应可以在铁 制反应器中进行。故反应产物以邻位和对位的硝基乙苯为主,同
局部溴素过多,则能产生二溴化物(14-26),它不能与六次甲基四 胺成盐。故在下一步成盐反应后二溴化物仍留于溶剂氯苯中。经研究 发现二溴化物(14-26)在溴化氢的催化下能与(14-10)进行反应, 生成2mol的对硝基-α-溴代苯乙酮(14-11)。
在生产上可反 复套用溶剂氯 苯。
当有大量溴化氢 产生且红棕色的 溴素消失时,表 示反应开始。

氯霉素合成

氯霉素合成

氯霉素(Chloramphenicol )的合成一、目的要求1.熟悉溴化、Delepine 反应、乙酰化、羟甲基化、Meerwein-Ponndorf-Verley 羰基还原、水解、拆分、二氯乙酰化等反应的原理。

2. 掌握各步反应的基本操作和终点的控制。

3. 熟悉氯霉素及其中间体的立体化学。

4. 了解播种结晶法拆分外消旋体的原理,熟悉操作过程。

5. 掌握利用旋光仪测定光学异构体质量的方法。

二、实验原理氯霉素的化学名为1R ,2-(-)-1-对硝基苯基-2-二氯乙酰胺基-1,3-丙二醇,(1R ,2R )-(-)-p-nitropHenyl-2-dichloroacetamido-1,3-propanediol 。

氯霉素分子中有两个手性碳原子,有四个旋光异构体。

化学结构式为:NO 2C HOH CCH 2OH HCl 2CHCOHNNO 2C HO H CCH 2OH HNHCOCHCl2NO 2C H OH CCH 2OH Cl 2CHCOHNHNO 2C OHH CCH 2OH NHCOCHCl2H上面四个异构体中仅1R ,2R (-)〔或D (-)苏阿糖型〕有抗菌活性,为临床使用的氯霉素。

氯霉素为白色或微黄色的针状、长片状结晶或结晶性粉末,味苦。

mp.149~153℃。

易溶于甲醇、乙醇、丙酮或丙二醇中,微溶于水。

比旋度〔α〕25-25.5°(乙酸乙酯);〔α〕D 25+18.5°~21.5°(无水乙醇)。

合成路线如下:O2N COCH3Br2, C6H5ClO2N COCH2Br(CH)N , C H ClO2N COCH2Br(CH2)6N4C2H5OH2O2N COCH2NH2. HCl(CH3CO)2O3O2N COCH2NHCOCH325O2N COCH CH2OHNHCOCH3Al[OCH(CH)]33O2N CHOHC CH2OHHNHCOCH3O2N CHOHC CH2OHHNH2.HClHCl , H OO2N CHOHC CH2OHHNH2O2N CHOHC CH2OHHNHCOCH3CHCl2COOCH3, CH3OHO2N CHOHC CH2OHHNHCOCHCl2三、实验方法(一)对硝基α-溴代苯乙酮的制备在装有搅拌器、温度计、冷凝管、滴液漏斗的250 mL四颈瓶中,加入对硝基苯乙酮10 g,氯苯75 mL,于25~28℃搅拌使溶解。

氯霉素的合成工艺

氯霉素的合成工艺

氯霉素的合成工艺11.1概述氯霉素(Chloramphenicol),化学名为D-苏*-(-)-N-((alpha-羟甲基)-beta-羟基-beta-对硝基苯乙基)-2,2-二氯乙酰胺(D-threo-(-)-N-((alpha-hydroxymethyl)-beta-hydroxy-beta-p- nitrophenethyl)-2,2-dichloroacetamide)。

*注:在Fischer投影式中,两个相邻的手性碳原子上如有相同的原子或基团,它们不在同一边的称为苏式,在同一边的称为赤式(邢其毅:基础有机化学,第二版(上),p173)。

氯霉素为白色或微带黄绿色的针状、长片状结晶或结晶性粉末。

味苦。

熔点149~153℃。

易溶于甲醇、乙醇和丙酮等有机溶剂,微溶于水。

比旋度[alpha]D25=+18.5~+2l.5度无水乙醇)。

氯毒素是广谱抗菌素,主要用于伤寒杆菌,痢疾杆菌、脑膜炎球菌、肺炎球菌的感染,亦可用于立克次体感染。

其主要副作用是抑制骨髓造血机能,引起粗细胞及血小板减少症或再生障碍性贫血。

但仍是治疗伤寒的首选药物。

11.2氯霉素的合成路线氯霉素的碳骨架具苯丙基结构,按碳骨架的构建方法,氯霉素主要有两类合成路线,即分别以具有苯甲基结构和苯乙基结构的化合物为原料的合成路线。

氯霉素分子含两个手性中心,可以考虑用以下方法解决:①使用含指定手性中心的原料;②利用空间效应;③利用立体选择性的反应方法。

11.2.1以具苯甲基结构的化合物为原料(1)以硝基苯甲醛为原料①与甘氨酸反应,再酯化,拆分和还原。

此法步骤少,而且产物几乎都为苏式,我国曾采用。

但对硝基苯甲醛用量大,硼氢化钙还存在供应问题。

②与乙醛缩合经对硝基肉桂醇合成氯霉素。

此法使用符合构型要求的反式对硝基肉桂醇为中间体经过澳水加成引入二个官能团,而且产物为苏式。

这条路线的合成步骤不长,而且各步收率不低,是有发展前途的合成方法。

硝化时需-20℃低温,限制了此法的应用。

药化实验氯霉素合成

药化实验氯霉素合成

药化实验 氯霉素(Chloramphenicol )的合成一、目的要求1.熟悉溴化、Delepine 反应、乙酰化、羟甲基化、Meerwein-Ponndorf-Verley 羰基还原、水解、拆分、二氯乙酰化等反应的原理。

2. 掌握各步反应的基本操作和终点的控制。

3. 熟悉氯霉素及其中间体的立体化学。

4. 了解播种结晶法拆分外消旋体的原理,熟悉操作过程。

5. 掌握利用旋光仪测定光学异构体质量的方法。

二、实验原理氯霉素的化学名为1R ,2-(-)-1-对硝基苯基-2-二氯乙酰胺基-1,3-丙二醇,(1R ,2R )-(-)-p-nitropHenyl-2-dichloroacetamido-1,3-propanediol 。

氯霉素分子中有两个手性碳原子,有四个旋光异构体。

化学结构式为:NO 2C HOH CCH 2OH HCl 2CHCOHNNO 2C HO H CCH 2OH HNHCOCHCl2NO 2C H OH CCH 2OH Cl 2CHCOHNHNO 2C OHH CCH 2OH NHCOCHCl2H上面四个异构体中仅1R ,2R (-)〔或D (-)苏阿糖型〕有抗菌活性,为临床使用的氯霉素。

氯霉素为白色或微黄色的针状、长片状结晶或结晶性粉末,味苦。

mp.149~153℃。

易溶于甲醇、乙醇、丙酮或丙二醇中,微溶于水。

比旋度〔α〕25-25.5°(乙酸乙酯);〔α〕D 25+18.5°~21.5°(无水乙醇)。

合成路线如下:O2N COCH265O2N COCH2Br(CH)N , C H ClO2N COCH2Br(CH2)6N4C H OH2O2N COCH2NH2. HCl(CH CO)O3O2N COCH2NHCOCH3HCHOC2H5OHO2N COCH CH2OHNHCOCH3Al[OCH(CH)]33O2N CHOHC CH2OHHNHCOCH3O2N CHOHC CH2OHHNH2.HClHCl , H OO2N CHOHC CH2OHNH2O2N CHC CH2OHHNHCOCH3CHCl2COOCH3, CH3OHO2N CHOHC CH2OHHNHCOCHCl2三、实验方法(一)对硝基α-溴代苯乙酮的制备在装有搅拌器、温度计、冷凝管、滴液漏斗的250 mL四颈瓶中,加入对硝基苯乙酮10 g,氯苯75 mL,于25~28℃搅拌使溶解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验十六 氯霉素(Chloramphenicol )的合成一、目的要求1.熟悉溴化、Delepine 反应、乙酰化、羟甲基化、Meerwein -Ponndorf -Verley 羰基还原、水解、拆分、二氯乙酰化等反应的原理。

2. 掌握各步反应的基本操作和终点的控制。

3. 熟悉氯霉素及其中间体的立体化学。

4. 了解播种结晶法拆分外消旋体的原理,熟悉操作过程。

5. 掌握利用旋光仪测定光学异构体质量的方法。

二、实验原理氯霉素的化学名为1R ,2-(-)-1-对硝基苯基-2-二氯乙酰胺基-1,3-丙二醇,(1R ,2R )-(-)-p -nitropHenyl -2-dichloroacetamido -1,3-propanediol 。

氯霉素分子中有两个手性碳原子,有四个旋光异构体。

化学结构式为:NO 2C HOH CCH 2OH HCl 2CHCOHNNO 2C HO H CCH 2OHHNHCOCHCl2NO 2C H OH CCH 2OH Cl 2CHCOHNHNO 2C OHH CCH 2OH NHCOCHCl2H上面四个异构体中仅1R ,2R (-)〔或D (-)苏阿糖型〕有抗菌活性,为临床使用的氯霉素。

氯霉素为白色或微黄色的针状、长片状结晶或结晶性粉末,味苦。

mp.149~153℃。

易溶于甲醇、乙醇、丙酮或丙二醇中,微溶于水。

比旋度〔α〕25-25.5°(乙酸乙酯);〔α〕D 25+18.5°~21.5°(无水乙醇)。

合成路线如下:O 2NCOCH Br 2 , C 6H 5ClO 2NCOCH 2Br(CH )N , C H ClO 2NCOCH 2Br(CH 2)6N 4C 2H 5OH HCl , H 2OO 2N COCH 2NH 2 . HCl(CH 3CO)2O 3O 2N COCH 2NHCOCH 325O 2NCOCHCH 2OHNHCOCH 3Al[OCH(CH )]33O 2NC HOHC CH 2OHH NHCOCH 3O 2NC HOH C CH 2OHHNH 2.HCl HCl , H OO2NC H OHC CH 2OH HNH 2O 2NC HOHC CH 2OH HNHCOCH 3CHCl 2COOCH 3 , CH 3OHO 2NC H OHC CH 2OHHNHCOCHCl 2三、实验方法(一)对硝基α-溴代苯乙酮的制备在装有搅拌器、温度计、冷凝管、滴液漏斗的 250 mL 四颈瓶中,加入对硝基苯乙酮10 g ,氯苯75 mL ,于25~28℃搅拌使溶解。

从滴液漏斗中滴加溴9.7 g 。

首先滴加溴2~3滴,反应液即呈棕红色,10 min 内褪成橙色表示反应开始;继续滴加剩余的溴,约1~1.5 h 加完,继续搅拌1.5 h ,反应温度保持在25~28℃。

反应完毕,水泵减压抽去溴化氢约30 min ,得对硝基α-溴代苯乙酮氯苯溶液,备用。

注释:1. 制备氯霉素的二、实验原理除以对硝基苯乙酮为原料的二、实验原理(对酮法)外,还有成肟法、苯乙烯法、肉桂醇法、溴苯乙烯法以及苯丝氨酸法等。

2. 冷凝管口上端装有气体吸收装置,吸收反应中生成的溴化氢。

3. 所用仪器应干燥,试剂均需无水。

少量水分将使反应诱导期延长,较多水分甚至导致反应不能进行。

4. 若滴加溴后较长时间不反应,可适当提高温度,但不能超过50℃,当反应开始后要立即降低到规定温度。

5. 滴加溴的速度不宜太快,滴加速度太快及反应温度过高,不仅使溴积聚易逸出,而且还导致二溴化合物的生成。

6. 溴化氢应尽可能除去,以免下步消耗六亚甲基四胺。

(二)对硝基α-溴化苯乙酮六亚甲基四胺盐的制备在装有搅拌器、温度计的250 mL三颈瓶中,依次加入上步制备好的对硝基α-溴代苯乙酮和氯苯20 mL,冷却至15℃以下,在搅拌下加入六亚甲基四胺(乌洛托品)粉末8.5 g,温度控制在28℃以下,加毕,加热至35~36℃,保温反应1 h,测定终点。

如反应已到终点,继续在35~36℃反应20 min,即得对硝基α-溴代苯乙酮六亚甲基四胺盐(简称成盐物),然后冷至16~18℃,备用。

注释:1. 此反应需无水条件,所用仪器及原料需经干燥,若有水分带入,易导致产物分解,生成胶状物。

2. 反应终点测定:取反应液少许,过滤,取滤液1 mL,加入等量4% 六亚甲基四胺氯仿溶液,温热片刻,如不呈混浊,表示反应已经完全。

3. 对硝基α-溴代苯乙酮六亚甲基四胺盐在空气中及干燥时极易分解,因此制成的复盐应立即进行下步反应,不宜超过12 h。

4. 复盐成品:mp.118~120℃(分解)。

(三)对硝基-α-氨基苯乙酮盐酸盐的制备在上步制备的成盐物氯苯溶液中加入精制食盐3 g,浓盐酸17.2 mL,冷至6~12℃,搅拌3~5 min,使成盐物呈颗粒状,待氯苯溶液澄清分层,分出氯苯。

立即加入乙醇37.7 mL,搅拌,加热,0.5 h后升温到32~35℃,保温反应5 h。

冷至5℃以下,过滤,滤饼转移到烧杯中加水19 mL,在32~36℃搅拌30 min,再冷至-2℃,过滤,用预冷到2~3℃的6 mL乙醇洗涤,抽干,得对硝基-α-氨基苯乙酮盐酸盐(简称水解物),mp.250℃(分解),备用。

注释:1. 对硝基-α-溴代苯乙酮与六亚甲基四胺(乌洛托品)反应生成季铵盐,然后在酸性条件下水解成对硝基-α-氨基苯乙酮盐酸盐。

该反应称Delepine反应。

2.加入精盐在于减小对硝基-α-氨基苯乙酮盐酸盐的溶解度。

3. 成盐物水解要保持足够的酸度,所以与盐酸的摩尔比应在3以上。

用量不仅导致生成醛等副反应(Sommolet反应),而且对硝基-α-氨基苯乙酮游离碱本身亦不稳定,可发生双分子缩合,然后在空气中氧化成紫红色吡嗪化合物。

此外,为保持水解液有足够酸度,应先加盐酸后加乙醇,以免生成醛等副反应。

4. 温度过高也易发生副反应,增加醛等副产物的生成。

(四) 对硝基-α-乙酰胺基苯乙酮的制备在装有搅拌器、回流冷凝器、温度计和滴液漏斗的250 mL四颈瓶中,放入上步制得的水解物及水20 mL,搅拌均匀后冷至0~5℃。

在搅拌下加入醋酐9 mL。

另取40% 的醋酸钠溶液29 mL,用滴液漏斗在30 min内滴入反应液中,滴加时反应温度不超过15℃。

滴毕,升温到14~15℃,搅拌1 h(反应液始终保持在pH 3.5~4.5),再补加醋酐1mL,搅拌10 min,测定终点。

如反应已完全,立即过滤,滤饼用冰水搅成糊状,过滤,用饱和碳酸氢钠溶液中和至pH 7.2~7.5,抽滤,再用冰水洗至中性,抽干,得淡黄色结晶(简称乙酰化物),mp.161~163℃。

注释:1. 该反应需在酸性条件下(pH 3.5~4.5)进行,因此必须先加醋酐,后加醋酸钠溶液,次序不能颠倒。

2. 反应终点测定:取反应液少许,加入NaHCO3中和至碱性,于40~45℃温热30 min,不应呈红色。

若反应未达终点,可补加适量的醋酐和醋酸钠继续酰化。

3.乙酰化物遇光易变红色,应避光保存。

(五) 对硝基-α-乙酰胺基-β-羟基苯丙酮的制备在装有搅拌器、回流冷凝管、温度计的250 mL三颈瓶中,投入乙酰化物及乙醇15 mL,甲醛4.3 mL,搅拌均匀后用少量NaHCO3饱和溶液调pH 7.2~7.5。

搅拌下缓慢升温,大约40 min 达到32~35℃,再继续升温至36~37℃,直到反应完全。

迅速冷却至0℃,过滤,用25 mL冰水分次洗涤,抽滤,干燥得对硝基-α-乙酰胺基-β-羟基苯丙酮(简称缩合物),mp.166~167℃。

注释:1. 本反应碱性催化的pH值不宜太高,pH 7.2~7.5较适宜。

pH过低反应不易进行,pH大于7.8时有可能与两分子甲醛形成双缩合物。

甲醛的用量对反应也有一定影响,如甲醛过量太多,亦有利于双缩合物的形成;用量过少,可导致一分子甲醛与两分子乙酰化物缩合。

O2N COCH2NHCOCHO2N COCNHCOCH3CH2OHCH2OHO2N COCH2NHCOCH O2N COCHNHCOCH3CH2O2N COCHNHCOCH3为了减少上述副反应,甲醛用量控制在过量40%左右(摩尔比约为1 :1.4)为宜。

2. 反应温度过高也有双缩合物生成,甚至导致产物脱水形成烯烃。

3. 反应终点测定:用玻棒蘸取少许反应液于载玻片上,加水1滴稀释后置显微镜下观察,如仅有羟甲基化合物的方晶而找不到乙酰化物的针晶,即为反应终点(约需3 h)。

(六)异丙醇铝的制备在装有搅拌器、回流冷凝管、温度计的三颈瓶中依次投入剪碎的铝片2.7 g,无水异丙醇63 mL和无水三氯化铝0.3 g。

在油浴上回流加热至铝片全部溶解,冷却到室温,备用。

注释:1. 所用仪器、试剂均应干燥无水。

2. 回流开始要密切注意反应情况,如反应太剧烈,需撤去油浴,必要时采取适当降温措施。

3. 如果无水异丙醇、无水三氯化铝质量好,铝片剪得较细,反应很快进行,约需1-2 h,即可完成。

(七) DL-苏阿糖型-1-对硝基苯基-2-氨基-1,3-丙二醇的制备在上步制备异丙醇铝的三颈瓶中加入无水三氯化铝1.35 g,加热到44~46℃,搅拌30 min。

降温到30℃,加入缩合物10 g。

然后缓慢加热,约30 min内升温到58~60℃,继续反应4 h。

冷却到10℃以下,滴加浓盐酸70 mL。

滴毕,加热到70~75℃,水解2 h(最后0.5 h加入活性炭脱色),趁热过滤,滤液冷至5℃以下,放置1 h。

过滤析出的固体,用少量20% 盐酸(预冷至5℃以下)8 mL洗涤。

然后将固体溶于12 mL水中,加热到45℃,滴加15% NaOH溶液到pH 6.5~7.6。

过滤,滤液再用15% NaOH调节到pH 8.4~9.3,冷却至5℃以下,放置1 h。

抽滤,用少量冰水洗涤,干燥,得DL-苏阿糖型-1-对硝基苯基-2-氨基-1,3-丙二醇(DL-氨基物),mp.143~145℃。

注释:1. 滴加浓盐酸时温度迅速上升,注意控制温度不超过50℃。

滴加浓盐酸促使乙酰化物水解,脱乙酰基,生成DL-氨基物盐酸盐,反应液中盐酸浓度大致在20%以上,此时AL(OH)3形成了可溶性的AlCl3-HCl复合物,而DL-氨基物盐酸盐在50℃以下溶解度小,过滤除去铝盐。

2. 用20% 盐酸洗涤的目的是除去附着在沉淀上的铝盐。

3. 用15% NaOH溶液调节反应液到pH 6.5~7.6,可以使残留的铝盐转变成AL(OH)3絮状沉淀过滤除去。

4. 还原后所得产物除DL-苏阿糖型异构体外,尚有少量DL-赤藓糖型异构体存在。

由于后者的碱性较前者强,且含量少,在pH 8.4~9.3时,DL-苏阿糖型异构体游离析出,而DL-赤藓糖型异构体仍留在母液中而分离。

相关文档
最新文档