江苏省无锡市滨湖区2020-2021学年九年级上学期期末数学试题
2020-2021学年江苏省无锡市滨湖区二年级上册数学期中试题及答案

2020-2021学年江苏省无锡市滨湖区二年级上册数学期中试题及答案一、计算题。
1.(10分)直接写出得数。
4×4=2×5=4×5=8÷8=24÷6=20÷5=20÷4=5×6=30﹣6=30÷5=18﹣3=36÷6=16÷4=5+18=4×3=12÷3=2×3+4=74﹣33﹣5=56+28+8=16+35=2.(12分)用竖式计算。
32+29+8=81﹣68﹣7=65﹣11﹣23=99﹣63+54=二、填一填(25分)3.(3分)在横线里填上合适的数。
﹣36=3954+=6178﹣=274.(3分)在〇里填上“+”、“﹣”、“×”或“÷”。
6〇4=247〇1=76〇3=35.(1分)爸爸今年39岁,小华今年12岁,爸爸比小华大岁。
6.(1分)如图,长方形剪去一个角后,剩下的图形是边形。
7.(2分)明明:乐乐:乐乐添上朵花后就与明明一样多。
明明拿朵花给乐乐,明明和乐乐就同样多。
8.(3分)在〇里填上“>”“<”或“=”。
2×6〇4×42×3〇25÷56×4〇20+49.(2分)3个4比2个4多,比4个4少。
10.(4分)根据“四六二十四”写出四道算式:×=×=÷=÷=11.(2分)笑笑有34块糖,她先吃了8块,还剩块,又吃了4块,还剩块。
12.(2分)2个桔子可以榨(zhà)一杯桔子汁,8个桔子可以榨杯桔子汁。
要榨6杯桔子汁,需要个桔子。
13.(1分)小明看书,每天看3页,看了5天页开始看起。
14.(1分)妈妈买来一些苹果,比20多,比30少,一些天后正好吃完,这些苹果一共有个。
四、选一选(将正确的答案填在括号里)。
(12分)15.(2分)可以用4×2。
江苏省常州市三年(2020-2022)九年级上学期期末数学试题汇编-03解答题(提升题)知识点分类

江苏省常州市三年(2020-2022)九年级上学期期末数学试题汇编-03解答题(提升题)知识点分类一.一元二次方程的应用(共1小题)1.(2022秋•常州期末)常州大剧院举办文艺演出.经调研,如果票价定为每张50元,那么1200张门票可以全部售出;如果票价每增加1元,那么售出的门票将会减少20张.要使门票收入达到60500元,票价应定为多少元?二.三角形综合题(共1小题)2.(2022秋•常州期末)如果三角形一个内角的2倍与另一个内角的和等于90°,那么我们称这样的三角形为“类互余”三角形.(1)若△ABC是“类互余”三角形,∠C>90°,∠A=40°,则∠B= ;(2)如图1,在△ABC中,∠C=90°,BC=2,D是AC上的一点,CD=1,AD=3,△ABD是“类互余”三角形吗?请说明理由;(3)如图2,在△ABC中,,tan∠ABC=2,D是CB延长线上的一点.若△ABD 是“类互余”三角形,求BD的长.三.正方形的性质(共1小题)3.(2021秋•常州期末)【问题】老师上完《7.3特殊角的三角函数》一课后,提出了一个问题,让同学们尝试去探究75°的正弦值.小明和小华经过思考与讨论,作了如下探索:【方案一】小明构造了图1,在△ABC中,AC=2,∠B=30°,∠C=45°.第一步:延长BA,过点C作CD⊥BA,垂足为D,求出DC的长;第二步:在Rt△ADC中,计算sin75°.【方案二】小华构造了图2,边长为a的正方形ABCD的顶点A在直线EF上,且∠DAF =30°.第一步:连接AC,过点C作CG⊥EF,垂足为G,用含a的代数式表示AC和CG的长;第二步:在Rt△AGC中,计算sin75°.请分别按照小明和小华的思路,完成解答过程.四.直线与圆的位置关系(共1小题)4.(2021秋•常州期末)如图,AB是⊙O的直径,弦AD平分∠BAC,过点D作DE⊥AC,垂足为E.(1)判断DE所在直线与⊙O的位置关系,并说明理由;(2)若AE=4,ED=2,求⊙O的半径.五.圆的综合题(共2小题)5.(2020秋•常州期末)如图1,在矩形ABCD中,AB=6cm,BC=8cm,点P以3cm/s的速度从点A向点B运动,点Q以4cm/s的速度从点C向点B运动.点P、Q同时出发,运动时间为t秒(0<t<2),⊙M是△PQB的外接圆.(1)当t=1时,⊙M的半径是 cm,⊙M与直线CD的位置关系是 ;(2)在点P从点A向点B运动过程中.①圆心M的运动路径长是 cm;②当⊙M与直线AD相切时,求t的值.(3)连接PD,交⊙M于点N,如图2,当∠APD=∠NBQ时,求t的值.6.(2021秋•常州期末)如图1,边长为6cm的等边△ABC中,AD是高,点P以cm/s 的速度从点D向A运动,以点P为圆心,1cm为半径作⊙P,设点P的运动时间为ts.(1)当⊙P与边AC相切时,求t的值;(2)如图2,若在点P出发的同一时刻,点Q以1cm/s的速度从点B向点C运动,一个点停止运动时,另一个点也随之停止运动.过点Q作BA的平行线,交AC于点M.当QM 与⊙P相切时,求t的值;(3)在运动过程中,当⊙P与△ABC的边共有两个公共点时,直接写出t的取值范围.六.相似三角形的性质(共2小题)7.(2020秋•常州期末)如图,已知△OAB,点A的坐标为(2,2),点B的坐标为(3,0).(1)求sin∠AOB的值;(2)若点P在y轴上,且△POA与△AOB相似,求点P的坐标.8.(2021秋•常州期末)如果经过一个三角形某个顶点的直线将这个三角形分成两部分,其中一部分与原三角形相似,那么称这条直线被原三角形截得的线段为这个三角形的“形似线段”.(1)在△ABC中,∠A=30°.①如图1,若∠B=100°,请过顶点C画出△ABC的“形似线段”CM,并标注必要度数;②如图2,若∠B=90°,BC=1,则△ABC的“形似线段”的长是 ;(2)如图3,在△DEF中,DE=4,EF=6,DF=8,若EG是DEF的“形似线段”,求EG的长.七.相似三角形的判定(共1小题)9.(2022秋•常州期末)如图,AB是⊙O的直径,弦AD平分∠BAC.(1)过点D作⊙O的切线DE,交AC于点E(用直尺和圆规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,连接BD,△ADE与△ABD相似吗?为什么?八.作图-相似变换(共1小题)10.(2021秋•常州期末)如图,在平面直角坐标系中,△ABC的三个顶点A、B、C的坐标分别为(0,3)、(2,1)、(4,1).(1)以原点O为位似中心,在第一象限画出△ABC的位似图形△ABC,使△A1B1C1与△ABC的相似比为2:1;(2)借助网格,在图中画出△ABC的外接圆⊙P,并写出圆心P的坐标 ;(3)将△ABC绕(2)中的点P(3)将△ABC绕点P顺时针旋转90°,则点A运动的路线长是 .九.方差(共2小题)11.(2020秋•常州期末)某商店1~6周销售甲、乙两种品牌冰箱的数量如表(表Ⅰ)所示(单位:台):第1周第2周第3周第4周第5周第6周甲9101091210乙1312711107现根据表Ⅰ数据进行统计得到表Ⅱ:平均数中位数众数甲 10 乙10 7(1)填空:根据表Ⅰ的数据补全表Ⅱ;(2)老师计算了乙品牌冰箱销量的方差:S乙2=[(13﹣10)2+(12﹣10)2+(7﹣10)2+(11﹣10)2+(10﹣10)2+(7﹣10)2]=(台2).请你计算甲品牌冰箱销量的方差,根据计算结果,建议商家可多采购哪一种品牌冰箱?为什么?12.(2021秋•常州期末)“119”全国消防日,某校为强化学生的消防安全意识,组织了“关注消防,珍爱家园”知识竞赛,满分为100分.现从八、九两个年级各随机抽取10名学生组成八年级代表队和九年级代表队,成绩如下(单位:分):八年级代表队:80,90,90,100,80,90,100,90,100,80;九年级代表队:90,80,90,90,100,70,100,90,90,100.(1)填表:代表队平均数中位数方差八年级代表队90 60九年级代表队 90 (2)结合(1)中数据,分析哪个代表队的学生竞赛成绩更好?请说明理由;(3)学校想给满分的学生颁发奖状,如果该校九年级一共有600名学生且全部参加了知识竞赛,那么九年级大约有多少名学生可以获得奖状?一十.列表法与树状图法(共3小题)13.(2020秋•常州期末)学校为了丰富学生课余生活,开设了社团课.现有以下社团:A.篮球、B.机器人、C.绘画,学校要求每人只能参加一个社团,甲和乙准备随机报名一个社团.(1)甲选择“机器人”社团的概率是 ;(2)请用树状图或列表法求甲、乙两人选择同一个社团的概率.14.(2021秋•常州期末)小丽的爸爸积极参加社区志愿服务,根据社区安排,志愿者将被随机分配到以下小组中的一个:A组(交通疏导)、B组(环境消杀)、C组(便民代购),开展服务工作.(1)小丽的爸爸被分配到C组的概率是 ;(2)若小丽的班主任刘老师也参加了该社区的志愿者队伍,那么刘老师和小丽的爸爸被分到同一组的概率是多少?请用画树状图或列表的方法写出分析过程.15.(2022秋•常州期末)学校为了践行“立德树人,实践育人”的目标,开展劳动课程,组织学生走进农业基地,欣赏田园风光,体验劳作的艰辛和乐趣.该劳动课程有以下小组:A.搭豇豆架、B.斩草除根、C.趣挖番薯、D.开垦播种.学校要求每人只能参加一个小组,甲和乙准备随机报名一个小组.(1)甲选择“搭虹豆架”小组的概率是 ;(2)请用树状图或列表法求甲、乙两人选择同一个小组的概率.江苏省常州市三年(2020-2022)九年级上学期期末数学试题汇编-03解答题(提升题)知识点分类参考答案与试题解析一.一元二次方程的应用(共1小题)1.(2022秋•常州期末)常州大剧院举办文艺演出.经调研,如果票价定为每张50元,那么1200张门票可以全部售出;如果票价每增加1元,那么售出的门票将会减少20张.要使门票收入达到60500元,票价应定为多少元?【答案】55元.【解答】解:设票价应定为x元,由题意得:x[1200﹣20(x﹣50)]=60500,解得:x1=x2=55.答:票价应定为55元.二.三角形综合题(共1小题)2.(2022秋•常州期末)如果三角形一个内角的2倍与另一个内角的和等于90°,那么我们称这样的三角形为“类互余”三角形.(1)若△ABC是“类互余”三角形,∠C>90°,∠A=40°,则∠B= 25°或10° ;(2)如图1,在△ABC中,∠C=90°,BC=2,D是AC上的一点,CD=1,AD=3,△ABD是“类互余”三角形吗?请说明理由;(3)如图2,在△ABC中,,tan∠ABC=2,D是CB延长线上的一点.若△ABD 是“类互余”三角形,求BD的长.【答案】(1)25°或10°;(2)是,理由见解析;(3)或6.【解答】解:(1)∵∠C>90°,∴∠A+∠B<90°∵△ABC是“类互余”三角形,∠A=40°,∴∠A+2∠B=90°或2∠A+∠B=90°,∴∠B=25°或∠B=10°,故答案为:25°或10°.(2)△ABD是“类互余”三角形,理由如下,在△ABC中,∠C=90°,BC=2,D是AC上的一点,CD=1,AD=3,∴AC=AD+DC=4,∴,∴=,又∵∠C=∠C,∴△ACB∽△BCD,∴∠CBD=∠A,设∠CBD=∠A=α,则∠ADB=∠ABC﹣∠CBD=(90°﹣α)﹣α=90°﹣2α,∴2∠A+∠ABD=2α+90°﹣2α=90°,∴△ABD是“类互余”三角形;(3)设∠ADB=α,依题意,△ABD是“类互余”三角形,∠ABD>90°,当2∠ADB+∠BAD=90°时,如图所示,过点A作AE⊥BC于点E,则∠BAD=90°﹣α,∴∠EAB=α,∴∠EAB=∠ADB,∵tan∠ABC=2,,设AE=2a,则BE=a,∴,解得:a=2,∴AE=4,BE=2,∵∠EAB=∠ADB,∴,∴ED=8,∴BD=DE﹣BE=8﹣2=6;当∠ADB+2∠BAD=90°,如图所示,过点A作AE⊥BC于点E,过点B作BF⊥AD于点F,则∠BAD=α,∠ADB=90°﹣2α,∴∠EAB=∠BAD=α,∴BF=BE=2,设BD=x,则ED=2+x,∵,∴,即,解得:.即或6.三.正方形的性质(共1小题)3.(2021秋•常州期末)【问题】老师上完《7.3特殊角的三角函数》一课后,提出了一个问题,让同学们尝试去探究75°的正弦值.小明和小华经过思考与讨论,作了如下探索:【方案一】小明构造了图1,在△ABC中,AC=2,∠B=30°,∠C=45°.第一步:延长BA,过点C作CD⊥BA,垂足为D,求出DC的长;第二步:在Rt△ADC中,计算sin75°.【方案二】小华构造了图2,边长为a的正方形ABCD的顶点A在直线EF上,且∠DAF =30°.第一步:连接AC,过点C作CG⊥EF,垂足为G,用含a的代数式表示AC和CG的长;第二步:在Rt△AGC中,计算sin75°.请分别按照小明和小华的思路,完成解答过程.【答案】【方案一】.【方案二】.【解答】解:【方案一】如图1,过点A作AQ⊥BC于点Q,在△ABC中,AC=2,∠B=30°,∵∠C=45°.AC=2,∴AQ=CQ=AC=,∵∠B=30°,∴BQ=AQ=,∴BC=BQ+QC=+,∴CD=BC=,∵∠DAC=∠B+∠ACB=75°,∴sin75°==.【方案二】如图2,延长CB交FE于点H,∵正方形ABCD的边长为a,∴AC=a,∵∠DAF=30°.∴∠BAH=60°,∴∠H=30°,∴AH=2AB=2a,∴BH=AB=a,∴CH=BH+BC=a+a=(+1)a,∴CG=CH=,∵∠GAC=∠CAD+∠DAF=75°,∴sin75°===.四.直线与圆的位置关系(共1小题)4.(2021秋•常州期末)如图,AB是⊙O的直径,弦AD平分∠BAC,过点D作DE⊥AC,垂足为E.(1)判断DE所在直线与⊙O的位置关系,并说明理由;(2)若AE=4,ED=2,求⊙O的半径.【答案】(1)直线DE与⊙O相切,理由见解析;(2).【解答】解:(1)直线DE与⊙O相切;理由:连接OD,∵∠CAB的平分线是AD,∴∠CAD=∠DAB.∵OA=OD,∴∠OAD=∠ODA.∴∠EAD=∠ADO,∴AE∥OD,∵∠AED=90°,∴∠ODE=90°.∵OD是⊙O的半径,∴直线DE与⊙O相切;(2)连接BD,∵ED=2,AE=4,∴AD==2,∵AB是⊙O的直径,∴∠ADB=90°,∵∠EAD=∠BAD,∴△ADE∽△ABD,∴=,∴AB=5,∴⊙O的半径为.五.圆的综合题(共2小题)5.(2020秋•常州期末)如图1,在矩形ABCD中,AB=6cm,BC=8cm,点P以3cm/s的速度从点A向点B运动,点Q以4cm/s的速度从点C向点B运动.点P、Q同时出发,运动时间为t秒(0<t<2),⊙M是△PQB的外接圆.(1)当t=1时,⊙M的半径是 cm,⊙M与直线CD的位置关系是 相离 ;(2)在点P从点A向点B运动过程中.①圆心M的运动路径长是 5 cm;②当⊙M与直线AD相切时,求t的值.(3)连接PD,交⊙M于点N,如图2,当∠APD=∠NBQ时,求t的值.【答案】见试题解答内容【解答】解:(1)如图1,过M作KN⊥AB于N,交CD于K,∵四边形ABCD是矩形,∴∠ABC=90°,AB∥CD,∴⊙M的直径是PQ,KN⊥CD,当t=1时,AP=3,CQ=4,∵AB=6,BC=8,∴PB=6﹣3=3,BQ=8﹣4=4,∴PQ==5,∴⊙M的半径为cm,∵MN∥BQ,M是PQ的中点,∴PN=BN,∴MN是△PQB的中位线,∴MN=BQ=×4=2,∴MK=8﹣2=6>,∴⊙M与直线CD的位置关系是相离;故答案为:,相离;(2)①如图2,由P、Q运动速度与AB,BC的比相等,∴圆心M在对角线BD上,由图可知:P和Q两点在t=2时在点B重合,当t=0时,直径为对角线AC,M是AC的中点,故M运动路径为OB=BD,由勾股定理得:BD==10,则圆心M的运动路径长是5cm;故答案为:5;②如图3,当⊙M与AD相切时,设切点为F,连接FM并延长交BC于E,则EF⊥AD,EF⊥BC,则BQ=8﹣4t,PB=6﹣3t,∴PQ=10﹣5t,∴PM==FM=5﹣t,△BPQ中,ME=PB=3﹣t,∵EF=FM+ME,∴5﹣t+3﹣t=6,解得:t=;(3)如图4,过D作DG⊥PQ,交PQ的延长线于点G,连接DQ,∵∠APD=∠NBQ,∠NBQ=∠NPQ,∴∠APD=∠NPQ,∵∠A=90°,DG⊥PG,∴AD=DG=8,∵PD=PD,∴Rt△APD≌Rt△GPD(HL),∴PG=AP=3t,∵PQ=10﹣5t,∴QG=3t﹣(10﹣5t)=8t﹣10,∵DC2+CQ2=DQ2=DG2+QG2,∴62+(4t)2=82+(8t﹣10)2,∴3t2﹣10t+8=0,(t﹣2)(3t﹣4)=0,解得:t1=2(舍),t2=.6.(2021秋•常州期末)如图1,边长为6cm的等边△ABC中,AD是高,点P以cm/s 的速度从点D向A运动,以点P为圆心,1cm为半径作⊙P,设点P的运动时间为ts.(1)当⊙P与边AC相切时,求t的值;(2)如图2,若在点P出发的同一时刻,点Q以1cm/s的速度从点B向点C运动,一个点停止运动时,另一个点也随之停止运动.过点Q作BA的平行线,交AC于点M.当QM 与⊙P相切时,求t的值;(3)在运动过程中,当⊙P与△ABC的边共有两个公共点时,直接写出t的取值范围.【答案】(1)t=3﹣;(2)(﹣)或(+);(3)t的取值范围为0≤t<或t=3﹣或3﹣<t≤3.【解答】解:(1)设⊙P与边AC相切点E,连接PE,如图,则PE⊥AC.∵△ABC是边长为6的等边三角形,AD是高,∴BD==3cm,∠DAC=∠BAC=30°.∴AD==3,由题意得:PD=tcm,∴AP=AD﹣PD=(3﹣t)cm.在Rt△APE中,∵sin∠PAE=,∴AP=.∴3﹣t=.解得:t=3﹣.∴当⊙P与边AC相切时,t的值为3﹣.(2)设QM与⊙P相切于点E,①当点E在AD的左侧时,设QM与AD交于点F,如图,连接EP,过点M作MH⊥AD于点H,∵QM与⊙P相切于点E,∴EP⊥QM.∵△ABC是边长为6的等边三角形,AD是高,∴∠DAB=∠DAC=∠BAC=30°.∵QM∥AB,∴∠QFD=∠BAD=30°.∵∠AFM=∠QFD,∴∠AFM=30°.∴∠FAM=∠AFM=30°.∴AM=FM.∵MH⊥AD,∴AH=FH=.由题意得:BQ=t,DP=t,∵∠B=∠BAC=60°,AB∥QM,∴四边形ABQM为等腰梯形,∴AM=BQ=t.∴AH=AM•cos∠DAC=t.∴AF=2AH=2t.∵EP⊥QM,∠EFP=30°,∴FP=2EP=2.∵AF+FP+PD=AD,∴t+2+t=3.解得:t=﹣;②当点P在AD的右侧时,设QM与AD交于点F,如图,连接EP,过点M作MH⊥AD于点H,∵QM与⊙P相切于点E,∴EP⊥QM.∵△ABC是边长为6的等边三角形,AD是高,∴∠DAB=∠DAC=∠BAC=30°.∵QM∥AB,∴∠QFD=∠BAD=30°.∵∠AFM=∠QFD,∴∠AFM=30°.∴∠FAM=∠AFM=30°.∴AM=FM.∵MH⊥AD,∴AH=FH=.由题意得:BQ=t,DP=t,∵∠B=∠BAC=60°,AB∥QM,∴四边形ABQM为等腰梯形,∴AM=BQ=t.∴AH=AM•cos∠DAC=t.∴AF=2AH=2t.∵EP⊥QM,∠EFP=30°,∴FP=2EP=2.∵AF+DP﹣FP=AD,∴t+t﹣2=3.解得:t=+.综上,当QM与⊙P相切时,t的值为(﹣)或(+).(3)①当0≤PD<1时,此时⊙P与BC相交,⊙P与BC边有两个公共点,符合题意,∴此时t的取值范围为0≤t<;②当1<PD<3﹣2时,此时⊙P与△ABC的三边均相离,没有公共点;③当PD=3﹣2时,此时⊙P与AB,AC边相切,此时⊙P与△ABC的边共有两个公共点;∴由(1)知:t=3﹣;④当3﹣2<PD<3﹣1时,此时⊙P与AB,AC边均相交,此时⊙P与△ABC的边共有四个公共点;⑤当3﹣1<PD≤3时,此时⊙P与AB,AC边均相交,但各只有一个交点,符合题意,∴此时t的取值范围为:3﹣<t≤3.综上,当⊙P与△ABC的边共有两个公共点时,t的取值范围为0≤t<或t=3﹣或3﹣<t≤3.六.相似三角形的性质(共2小题)7.(2020秋•常州期末)如图,已知△OAB,点A的坐标为(2,2),点B的坐标为(3,0).(1)求sin∠AOB的值;(2)若点P在y轴上,且△POA与△AOB相似,求点P的坐标.【答案】(1).(2)(0,3)或(0,).【解答】解:(1)如图,过点A作AH⊥OB于H.∵A(2,2),∴AH=OH=2,∴∠AOB=45°,∴sin∠AOB=.(2)由(1)可知,∠AOP=∠AOB=45°,OA=2,当△AOP∽△AOB时,=,可得OP′=OB=3,∴P′(0,3),当△AOP∽△BOA时,=,∴=,∴OP=,∴P(0,),综上所述,满足条件的点P的坐标为(0,3)或(0,).8.(2021秋•常州期末)如果经过一个三角形某个顶点的直线将这个三角形分成两部分,其中一部分与原三角形相似,那么称这条直线被原三角形截得的线段为这个三角形的“形似线段”.(1)在△ABC中,∠A=30°.①如图1,若∠B=100°,请过顶点C画出△ABC的“形似线段”CM,并标注必要度数;②如图2,若∠B=90°,BC=1,则△ABC的“形似线段”的长是 或 ;(2)如图3,在△DEF中,DE=4,EF=6,DF=8,若EG是DEF的“形似线段”,求EG的长.【答案】(1)①作图见解析部分;②或;(2)3.【解答】解:(1)①如图1中,线段CM即为所求;②如图2中,当BH⊥AC时,线段BH是“形似线段”,∵∠ABC=90°,BC=1,∠A=30°,∴AC=2BC=2,AB=BC=,∵•AB•BC=•AC•BH,∴BH==.当CM平分∠BCA时,线段CT是“形似线段”,在Rt△CBT中,CT==.综上所述,△ABC的“形似线段”的长是或;(2)如图3中,当△DEG∽△DFE时,=,∴=,∴EG=3,当△FEG∽△FDE时,=,∴=,∴EG=3,∴EG=3.七.相似三角形的判定(共1小题)9.(2022秋•常州期末)如图,AB是⊙O的直径,弦AD平分∠BAC.(1)过点D作⊙O的切线DE,交AC于点E(用直尺和圆规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,连接BD,△ADE与△ABD相似吗?为什么?【答案】(1)见解析;(2)△ADE∽△ABD,理由见解析.【解答】解:(1)如图所示,DE即为所求,理由如下,连接OD,∵弦AD平分∠BAC,∴∠CAD=∠BAD,∵OD=OA,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切线;(2)△ADE∽△ABD,理由如下,连接BD,如图,∵弦AD平分∠BAC,∴∠CAD=∠BAD,∵OD=OA,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE是⊙O的切线,∴OD⊥DE,∴AC⊥DE,∵AB是⊙O的直径,∴∠ADB=90°,∴∠AED=∠ADB,∴△ADE∽△ABD.八.作图-相似变换(共1小题)10.(2021秋•常州期末)如图,在平面直角坐标系中,△ABC的三个顶点A、B、C的坐标分别为(0,3)、(2,1)、(4,1).(1)以原点O为位似中心,在第一象限画出△ABC的位似图形△ABC,使△A1B1C1与△ABC的相似比为2:1;(2)借助网格,在图中画出△ABC的外接圆⊙P,并写出圆心P的坐标 (3,4) ;(3)将△ABC绕(2)中的点P(3)将△ABC绕点P顺时针旋转90°,则点A运动的路线长是 π .【答案】(1)作图见解析部分;(2)作图见解析部分,P(3,4).(3)π.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,点P即为所求,P(3,4),故答案为:(3,4);(3)∵PA==,∴的长==π.故答案为:π.九.方差(共2小题)11.(2020秋•常州期末)某商店1~6周销售甲、乙两种品牌冰箱的数量如表(表Ⅰ)所示(单位:台):第1周第2周第3周第4周第5周第6周甲9101091210乙1312711107现根据表Ⅰ数据进行统计得到表Ⅱ:平均数中位数众数甲 10 10 10 乙10 10.5 7(1)填空:根据表Ⅰ的数据补全表Ⅱ;(2)老师计算了乙品牌冰箱销量的方差:S乙2=[(13﹣10)2+(12﹣10)2+(7﹣10)2+(11﹣10)2+(10﹣10)2+(7﹣10)2]=(台2).请你计算甲品牌冰箱销量的方差,根据计算结果,建议商家可多采购哪一种品牌冰箱?为什么?【答案】(1)10、10、10.5;(2)建议商家可多采购甲品牌冰箱,理由见解答.【解答】解:(1)甲品牌销售数量从小到大排列为:9、9、10、10、10、12,所以甲品牌销售数量的平均数为=10(台),众数为10台,乙品牌销售数量从小到大排列为7、7、10、11、12、13,所以乙品牌销售数量的中位数为=10.5(台),补全表格如下:平均数中位数众数甲101010乙1010.57故答案为:10、10、10.5;(2)建议商家可多采购甲品牌冰箱,∵甲品牌冰箱销量的方差=×[(9﹣10)2×2+(10﹣10)2×3+(12﹣10)2]=1,S2=,乙∴<S乙2,∴甲品牌冰箱的销售量比较稳定,建议商家可多采购甲品牌冰箱.12.(2021秋•常州期末)“119”全国消防日,某校为强化学生的消防安全意识,组织了“关注消防,珍爱家园”知识竞赛,满分为100分.现从八、九两个年级各随机抽取10名学生组成八年级代表队和九年级代表队,成绩如下(单位:分):八年级代表队:80,90,90,100,80,90,100,90,100,80;九年级代表队:90,80,90,90,100,70,100,90,90,100.(1)填表:代表队平均数中位数方差八年级代表队90 90 60九年级代表队 90 90 80 (2)结合(1)中数据,分析哪个代表队的学生竞赛成绩更好?请说明理由;(3)学校想给满分的学生颁发奖状,如果该校九年级一共有600名学生且全部参加了知识竞赛,那么九年级大约有多少名学生可以获得奖状?【答案】(1)90、90、80;(2)八年级代表队的学生竞赛成绩更好,理由见解答;(3)九年级大约有180名学生可以获得奖状.【解答】解:(1)将八年级代表队成绩重新排列为80,80,80,90,90,90,90,100,100,100,所以其中位数为=90,九年级代表队成绩的平均数为=90,所以其方差为×[(70﹣90)2+(80﹣90)2+5×(90﹣90)2+3×(100﹣90)2]=80,故答案为:90、90、80;(2)八年级代表队的学生竞赛成绩更好,理由如下:∵八、九年级代表队的学生的竞赛成绩的平均数相等,而八年级代表队的学生的竞赛成绩的方差小于九年级,成绩更加稳定,∴八年级代表队的学生竞赛成绩更好;(3)600×=180(名),答:九年级大约有180名学生可以获得奖状.一十.列表法与树状图法(共3小题)13.(2020秋•常州期末)学校为了丰富学生课余生活,开设了社团课.现有以下社团:A.篮球、B.机器人、C.绘画,学校要求每人只能参加一个社团,甲和乙准备随机报名一个社团.(1)甲选择“机器人”社团的概率是 ;(2)请用树状图或列表法求甲、乙两人选择同一个社团的概率.【答案】(1);(2).【解答】解:(1)甲选择“机器人”社团的概率是,故答案为:;(2)画树状图如图:共有9个等可能的结果,甲、乙两人选择同一个社团的结果有3个,∴甲、乙两人选择同一个社团的概率为=.14.(2021秋•常州期末)小丽的爸爸积极参加社区志愿服务,根据社区安排,志愿者将被随机分配到以下小组中的一个:A组(交通疏导)、B组(环境消杀)、C组(便民代购),开展服务工作.(1)小丽的爸爸被分配到C组的概率是 ;(2)若小丽的班主任刘老师也参加了该社区的志愿者队伍,那么刘老师和小丽的爸爸被分到同一组的概率是多少?请用画树状图或列表的方法写出分析过程.【答案】(1);(2).【解答】解:(1)小丽的爸爸被分配到C组的概率是,故答案为:;(2)画树状图如下:共有9种等可能的结果,刘老师和小丽的爸爸被分到同一组的结果有3种,∴刘老师和小丽的爸爸被分到同一组的概率为=.15.(2022秋•常州期末)学校为了践行“立德树人,实践育人”的目标,开展劳动课程,组织学生走进农业基地,欣赏田园风光,体验劳作的艰辛和乐趣.该劳动课程有以下小组:A.搭豇豆架、B.斩草除根、C.趣挖番薯、D.开垦播种.学校要求每人只能参加一个小组,甲和乙准备随机报名一个小组.(1)甲选择“搭虹豆架”小组的概率是 ;(2)请用树状图或列表法求甲、乙两人选择同一个小组的概率.【答案】(1);(2).【解答】解:(1)甲选择“搭虹豆架”小组的概率是,故答案为:;(2)画树状图如下:共有16种等可能的结果,其中甲、乙两人选择同一个小组的结果有4种,∴甲、乙两人选择同一个小组的概率为=.。
2020-2021学年江苏省无锡市九年级四模数学试题及答案解析

中考数学模拟试题注意事项:1.本试卷包含选择题(第1题~第10题,共10题)、非选择题(第11题~第28题,共18题)两部分.本卷满分130分,考试时间为120分钟.2.答题前,考生务必将本人的姓名、准考证号填写在答题纸相应的位置上,同时务必在试卷的装订线内将本人的姓名、准考证号、毕业学校填写好.3.所有的试题都必须在专用的“答题纸”上作答,选择题用2B铅笔作答、非选择题在指定位置用0.5毫米黑色水笔作答.在试卷或草稿纸上答题无效.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑.............)1.-5的相反数是(▲)A.15B.15C.5 D.-52.下列运算正确的是(▲)A.(-2x2)3=-6x6B.(y+x)(-y+x)=y2-x2 C.2x+2y=4xy D.x4÷x2=x23.下列各式中,是3a2b的同类项的是(▲)A.2x2y B.―2ab2C.a2b D.3ab4.某中学足球队的18名队员的年龄情况如下表:年龄(单位:岁)14 15 16 17 18人数 3 6 4 4 1则这些队员年龄的众数和中位数分别是 ( ▲ ) A .15,15 B .15,15.5 C .15,16D .16,155.如图,直线a ∥b ,EF ⊥CD 于点F ,∠2=25°,则∠1的度数是 ( ▲ ) A .155° B .135° C .125° D .115°6.若双曲线y =m 2―2m x 过点(2,6),则该双曲线一定过点 ( ▲ )A .(―3,―4)B .(4,―3)C .(―6,2)D .(4,4)7.如图,△ABC 中,AB =6,AC =8,BC =10,D 、E 分别是AC 、AB 的中点,则以DE 为直径的圆与BC 的位置关系是 ( ▲ ) A .相切 B .相交C .相离D .无法确定8.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,abC DEF1 2 (第5题)(第8题)(第7题)A BCD B ′(第10题)则任两个螺丝间的距离的最大值为 ( ▲ ) A .6 B .7 C .8 D .109.若A(x 1,y 1)、B(x 2,y 2)是一次函数y =ax +x ―2图像上的不同的两点,记m =(x 1―x 2)( y 1―y 2),则当m <0时,a 的取值范围是 ( ▲ ) A .a <0 B .a >0 C .a <―1 D .a >―110.如图,在△ABC 中,已知AB =2a ,∠A =30°,CD 是AB 边的中线,若将△ABC 沿CD 对折起来,折叠后两个小△ACD 与△BCD 重叠部分的面积恰好等于折叠前△ABC 的面积的14,有如下结论:①BC 的边长等于a ;②折叠前的△ABC 的面积可以等于32a 2;③折叠前的△ABC 的面积可以等于33a 2;④折叠后,以A 、B 为端点的线段与中线CD 一定平行且相等,其中正确的结论是 ( ▲ )A .①③B .①②④C .①③④D .①②③④二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置.........处) 11.16的平方根是 ▲ .12.国家提倡“低碳减排”,某公司计划建风能发电站,电站年均发电量约为213000000度,将数据213000000用科学记数法表示为 ▲ . 13.函数23y x =+中自变量x 的取值范围是 ▲ . 14.正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为▲ .15.已知圆柱体的底面圆周长是6πcm ,母线长为5cm ,则该圆柱体的全面积为 ▲ cm 2.16.如图,BD 为⊙O 的直径,点A 为¼BDC的中点,∠ABD =35º,则∠DBC= ▲ º.17.如图,若将左边正方形剪成四块,恰能拼成右边的矩形,设a =1,则这个正方形的面积为 ▲ .18.如图,等腰梯形ABCD ,AB ∥CD ,AB =32,DC =2,对角线AC ⊥BD ,平行于线段BD 的直线MN 、RQ 分别以1个单位/秒、2个单位/秒的速度同时从点A 出发沿AC 方向向点C 匀速平移,分别交等腰梯形ABCD 的边于M 、N 和R 、Q ,分别交对角线AC 于F 、G ,当直线RQ 到达点C 时两直线同时停止运动.记等腰梯形ABCD 被直线MN 扫过的面积为S 1,被直线RQ 扫过的面积为S 2,若S 2=mS 1,则m 的最小值是 ▲ .三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19. (本题满分8分)(1)计算:22cos4523-︒--+;(2)化简:2121a a a a a -+⎛⎫-÷ ⎪⎝⎭.20. (本题满分8分)(1)解方程:111=+-x x x ; (2)解不等式组:12,5 1.2x x x+≤⎧⎪⎨->⎪⎩.21.(本题满分8分)如图,在□ABCD 中,点E 、F 分别是AD 、BC 的中点,分别连接BE 、DF 、BD . (1)求证:△AEB ≌△CFD ;(2)若四边形EBFD 是菱形,求∠ABD 的度数.22.(本题满分8分)“校园安全”受到全社会的广泛关注,某校政教处对部分学生及家长就校园安全知识的了解程度,进行了随机抽样调查,并绘制成如图所示的两幅统计图,请根据统计图中的信息,解答下列问题:(1)参与调查的学生及家长共有 ▲人;(2)在扇形统计图中,“基本了解”所对应的圆心角的度数是 ▲ 度; (3)在条形统计图中,“非常了解”所对应的学生人数是 ▲ 人;(4)若全校有1200名学生,请你估计对“校园安全”知识达到“非常了解”和“基本了解”的学生共有多少人?ABCDFE(第21题)23.(本题满分6分)为了备战初三物理、化学实验操作考试,某校对初三学生进行了模拟训练.物理、化学各有4个不同的操作实验题目,物理用番号①、②、③、④代表,化学用字母a、b、c、d表示.测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定,第一次抽签确定物理实验题目,第二次抽签确定化学实验题目.(1)请用树形图或列表法,表示某个同学抽签的各种可能情况;(2)小张同学对物理的①、②和化学的b、c的号实验准备得较好,他同时抽到两科都准备较好的实验题目的概率是多少?24.(本题8分)如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30º,在A、C之间选择一点B (A、B、得塔顶D的仰角为75º,且AB间距离为40m.(1)求点B到AD的距离;(第24题)(2)求塔高CD(结果用根号表示).25.(本题满分10分)某股份有限公司根据公司实际情况,对本公司职工实行内部医疗公积金制度,公司规定:(一)每位职工在年初需缴纳医疗公积金m 元;(二)职工个人当年治病花费的医疗费年底按表1的办法分段处理:表1分段方式处理办法 不超过150元(含150元)全部由个人承担超过150元,不超过10000元(不含150元,含10000元)的部分个人承担n%,剩余部分由公司承担超过10000元(不含10000元)的部分全部由公司承担 设一职工当年治病花费的医疗费为x 元,他个人实际承担的费用(包括医疗费个人承担的部分和缴纳的医疗公积金m 元)为y 元.(1)由表1可知,当0150x ≤≤时,y x m =+;那么,当15010000x <≤时,y = ▲ ; (用含m 、n 、x 的方式表示)(2)该公司职工小陈和大李2013年治病花费的医疗费和他们个人实际承担的费用如表2:职工 治病花费的医疗费x (元)个人实际承担的费用y (元)小陈 300 280 大李500320请根据表2中的信息,求m 、n 的值,并求出当15010000x <≤时,y 关于x 函数解析式; (3)该公司职工个人一年因病实际承担费用最多只需要多少元?26.(本题满分10分)如图,矩形OABC (4,―2).抛物线2y x bx c =++经过A ,B 两点.yABCO(1)求抛物线的解析式;(2)若点P由点A出发以每秒1个单位的速度沿AB边向点B移动,1秒后点Q也由点A出发以每秒7个单位的速度沿AO,OC,CB边向点B移动,当其中一个点到达终点时另一个点也停止移动,点P的移动时间为t秒.①当△APQ的面积恰好被AC平分时,求t的值;②当PQ∥AC时,对于抛物线对称轴上一点H,∠HOQ>∠POQ,直接写出点H的纵坐标的取值范围.27.(本题满分10分)如图,在平面直角坐标系中,已知点A(4,0),点B(0,3).点P从点A出发,以每秒1个单位的速度向右平移,点Q从点B出发,以每秒2个单位的速度向右平移,又P、Q两点同时出发.(1)连接AQ,当△ABQ是直角三角形时,求点Q的坐标;(2)当P、Q运动到某个位置时,如果沿着直线AQ翻折,点P恰好落在线段AB上,求这时∠AQP的度数;(3)过点A作AC⊥AB,AC交射线PQ于点C,连接BC,D是BC的中点.在点P、Q的运动过程中,是否存在某时刻,使得以A 、C 、Q 、D 为顶点的四边形是平行四边形?若存在,试求出这时tan ∠ABC 的值;若不存在,试说明理由.28.(本题满分8分)已知正方形ABCD 的边长AB =k (k 是正整数),正△PAE 的顶点P 在正方形内,顶点E 在边AB 上,且AE =1. 将△PAE 在正方形内按图1中所示的方式,沿着正方形的边AB 、BC 、CD 、DA 、AB 、……连续地翻转n 次,使顶点..P .第一次回到原来的起始位置. (1)如果我们把正方形ABCD 的边展开在一直线上,那么这一翻转过 程可以看作是△PAE 在直线上作连续的翻转运动. 图2是k =1时,△PAE 沿正方形的边连续翻转过程的展开示意图. 请你探索:若k =1,则△PAE 沿正方形的边连续翻转的次数n = ▲ 时,顶点..P .第一次回到原来的起始位置.P (图1)(图2)yxOQPABDC yxOQPAB(2)若k=2,则n=▲时,顶点P.第一次回到原来的起始位置;若k=3,则..n=▲时,顶点P.第一次回到原来的起始位置...(3)请你猜测:使顶点P.第一次回到原来的起始位置的n值与k之间的关系(请用含k的代..数式表示n).中考模拟考试(二)数 学 参 考 答 案三、解答题:本大题共10小题,共84分.19. (本题满分8分,每题4分)(1)原式= 2122329'⨯-+L L (2)221(1)=2a a a a--'÷原式L L =149'L L =141a a +'-L L 20. (本题满分8分,每题4分)(1)21(1)2x x x x '+-=-L L (2)解①得:x ≥1……1′ 132x '=L L 解②得:x <3……2′ 检验……4′ ∴1≤x <3……4′21. (本题满分8分)(1)证明:∵四边形ABCD 是平行四边形,∴∠A =∠C ,AD =BC ,AB =CD .……………2分 ∵点E 、F 分别是AD 、BC 的中点,∴AE =12AD ,FC =12B C .∴AE =CF .……………………3分∴△AE B≌△CFD.4分(2)解:∵四边形EBFD是菱形,∴BE=DE.……………………………5分∴∠EBD=∠EDB.……………………6分∵AE=DE,∴BE=AE.∴∠A=∠ABE.……………………7分∵∠EBD+∠EDB+∠A+∠ABE=180°,∴∠ABD=∠ABE+∠EBD=12×180°=90°.………………8分22. (本题满分8分)(1)400;………2分(2)135;………4分(3)62;…………6分(4)调查的学生的总人数是:62+73+54+16=205(人),对“校园安全”知识达到“非常了解”和“基本了解”的学生是62+73=135(人),则全校有1200名学生中,达到“非常了解”和“基本了解”的学生是:1200×≈790(人).…………8分23. (本题满分6分)解:(1)画树状图得:∴某个同学抽签的所有等可能情况有16种;………………………………………4分(2)∵小张同时抽到两科都准备的较好的实验题目的有①b,①c,②b,②c共4种情况,∴他同时抽到两科都准备的较好的实验题目的概率是=.………………6分25.(本题满分10分)解:(1)()150150%y m x n =++- ………………………(2分) (2)由表2知,小陈和大李的医疗费超过150元而小于10000元,因此有:()()150300150%28010020150500150%320,m n m n m n ++-=⎧=⎧⎪⎨⎨=++-=⎩⎪⎩g g 解得: ………………………(6分) ()()1150********%220150100005y x x x ∴=++-=+≤p …………(8分) (3)个人实际承担的费用最多只需2220元. …………………………………(10分)26.(本题满分10分)解:(1)抛物线242y x x =--…………………………3分(2)①当1<t ≤97时,如图1.若AC 平分△APQ 面积,则M 为PQ 中点, 作PN ⊥AB 交AC 于点N ,则AQ=PN=7(t-1) 由△APN ∽△ABC ,解得t=1413. …………………4分当97<t ≤137时,如图2. 若AC 平分△APQ 面积,则M 为PQ 中点, ∴AP=CQ=t ,7(t-1)+t=6,解得t=138. …………………5分当137<t ≤157时,AC 不可能平分△APQ 的面积.…………………6分 ∴当t=1413或138时,△APQ 的面积被AC 平分.②当H 2y <-或H 1423y >时,∠HOQ >∠POQ .……………………10分(各2分)27.(本题满分10分)(图2)解:(1)Q ⎪⎭⎫⎝⎛3,425或()3,4 …………2分(少一解扣1分)(2)点E 为AB 的中点.……3分 理由.………5分(3)①当点C 在线段PQ 上时,延长BQ 与AC 的延长线交于点F ,过点F 作FH ⊥x 轴,垂足为H ; ∵ AC ⊥AB∴HA OB F A ∽△△∴FH AO FA AB = 即345=FA∴415=FA∵ DQ ∥AC ,DQ =AC ,且D 为BC 中点∴ F C =2DQ =2AC ,∴45=AC ,在Rt △BAC 中, tan ∠ABC =41………8分②当点C 在PQ 的延长线上时,tan ∠ABC =49.……………………………………10分28.(本题满分8分)(1)12次 ………………2分 (2)24次;12次;……………………4分(3)当k 是3的倍数时,n =4k ;当k 不是3的倍数时,n =12k. …………8分DCyxOQPABF。
2020-2021学年九年级上学期期末考试数学试卷(有答案)

2020-2021学年九年级上学期期末考试数学试卷一.选择题(共8小题,满分24分,每小题3分)1.若y=(m﹣1)是关于x的二次函数,则m的值为()A.﹣2B.﹣2或1C.1D.不存在2.如图,在平面直角坐标系中,A(6,0)、B(0,8),点C在y轴正半轴上,点D在x 轴正半轴上,且CD=6,以CD为直径在第一象限作半圆,交线段AB于E、F,则线段EF的最大值为()A.3.6B.4.8C.3D.33.一次数学测试后,随机抽取九年级三班6名学生的成绩如下:80,85,86,88,88,95.关于这组数据的错误说法是()A.极差是15B.众数是88C.中位数是86D.平均数是87 4.近年来,我国石油对外依存度快速攀升,2017年和2019年石油对外依存度分别为64.2%和70.8%,设2017年到2019年中国石油对外依存度平均年增长率为x,则下列关于x的方程正确的是()A.64.2%(1+x)2=70.8%B.64.2%(1+2x)=70.8%C.(1+64.2%)(1+x)2=1+70.8%D.(1+64.2%)(1+2x)=1+70.8%5.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30°B.40°C.45°D.50°6.如图,△ABC为等腰直角三角形,∠BAC=90°,BC=2,E为AB上任意一动点,以CE为斜边作等腰Rt△CDE,连接AD,下列说法:①∠BCE=∠ACD;②AC⊥ED;③△AED∽△ECB;④AD∥BC;⑤四边形ABCD的面积有最大值,且最大值为.其中,正确的结论是()A.①②④B.①③⑤C.②③④D.①④⑤7.如图,△ABC中,AB=AC=5,BC=8,若∠BPC=∠BAC,则cos∠BPC=()A.B.C.D.8.设max{m,n}表示m,n(m≠n)两个数中的最大值.例如max{﹣1,2}=2,max{12,8}=12,则max{2x,x2+2}的结果为()A.2x﹣x2﹣2B.2x+x2+2C.2x D.x2+2二.填空题(共10小题,满分30分,每小题3分)9.方程x2=4的解为.10.已知点P是线段AB的黄金分割点(AP>PB),AB=6,那么AP的长是.11.若,则的值为.12.已知二次函数y=ax2+bx+c(a≠0)的自变量x与函数值y之间满足下列数量关系:x0123y75713则代数式(4a+2b+c)(a﹣b+c)的值为.13.如图,某同学利用半径为40cm的扇形纸片制作成一个圆锥形纸帽(接缝忽略不计),若圆锥底面半径为10cm,那么这个圆锥的侧面积是cm2.14.直角三角形中,两直角边分别是12和5,则斜边上的中线长是.15.如图所示,∠AOB是放置在正方形网格中的一个角,则sin∠AOB的值是.16.如图,小明为了测量楼房MN的高,在离N点20m的A处放了一个平面镜,小明沿NA 方向后退到C点,正好从镜子中看到楼顶M点.若AC=1.6m,小明的眼睛B点离地面的高度BC为1.5m,则楼高MN=m.17.如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为.18.在一块直角三角形铁皮上截一块正方形铁皮,如图,已有的铁皮是Rt△ABC,∠C=90°,要截得的正方形EFGD的边FG在AB上,顶点E、D分别在边CA、CB上,如果AF=4,GB=9,那么正方形铁皮的边长为.三.解答题(共10小题,满分96分)19.(1)计算:(π﹣2019)0+2sin60°﹣+|1﹣|(2)解方程:x2﹣2x﹣3=020.如图,在△ABC中,∠C=90°,AB的垂直平分线分别交边BC、AB于点D、E,联结AD.(1)如果∠CAD:∠DAB=1:2,求∠CAD的度数;(2)如果AC=1,tan B=,求∠CAD的正弦值.21.如图,在平面直角坐标系中,点A、点B的坐标分别为(1,3),(3,2).(1)画出△OAB绕点B顺时针旋转90°后的△O′A′B;(2)以点B为位似中心,相似比为2:1,在x轴的上方画出△O′A′B放大后的△O ″A″B;(3)点M是OA的中点,在(1)和(2)的条件下,M的对应点M′的坐标为.22.“共和国勋章”是中华人民共和国的最高荣誉勋章,在2019年获得“共和国勋章”的八位杰出人物中,有于敏、孙家栋、袁隆平、黄旭华四位院士,如图是四位院士(依次记为A、B、C、D)为让同学们了解四位院士的贡献,老师设计如下活动:取四张完全相同的卡片,分别写上A、B、C、D四个标号,然后背面朝上放置,搅匀后每个同学可以从中随机抽取一张,记下标号后放回,老师要求每位同学依据抽到的卡片上的标号查找相应院士的资料制作小报,求小明和小华查找同一位院士资料的概率.23.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”24.如图所示,已知:∠AOB=120°,PT切⊙O于T,A,B,P三点共线,∠APT的平分线依次交AT,BT于C,D.(1)求证:△CDT为等边三角形.(2)若AC=4,BD=1,求PC的长.25.已知函数y1=x2﹣(m+2)x+2m+3,y2=nx+k﹣2n(m,n,k为常数且n≠0).(1)若函数y1的图象经过点A(2,5),B(﹣1,3)两个点中的其中一个点,求该函数的表达式.(2)若函数y1,y2的图象始终经过同一定点M.①求点M的坐标和k的值.②若m≤2,当﹣1≤x≤2时,总有y1≤y2,求m+n的取值范围.26.如图以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点F.(1)求证:DF⊥AC;(2)若∠ABC=30°,求tan∠BCO的值.27.如图,△ABC中,以AB为直径作⊙O,交BC于点D,E为弧BD上一点,连接AD、DE、AE,交BD于点F.(1)若∠CAD=∠AED,求证:AC为⊙O的切线;(2)若DE2=EF•EA,求证:AE平分∠BAD;(3)在(2)的条件下,若AD=4,DF=2,求⊙O的半径.28.如图,已知抛物线y=ax2+bx﹣3的图象与x轴交于点A(1,0)和B(3,0),与y轴交于点C.D是抛物线的顶点,对称轴与x轴交于E.(1)求抛物线的解析式;(2)如图1,在抛物线的对称轴DE上求作一点M,使△AMC的周长最小,并求出点M 的坐标和周长的最小值.(3)如图2,点P是x轴上的动点,过P点作x轴的垂线分别交抛物线和直线BC于F、G.设点P的横坐标为m.是否存在点P,使△FCG是等腰三角形?若存在,直接写出m的值;若不存在,请说明理由.参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:若y=(m﹣1)是关于x的二次函数,则,解得:m=﹣2.2.解:过CD的中点作EF的垂线与AB交于点M,连接GF,∵GM⊥EF,∴EF=2FM=2=2,当GM的值最小时,EF的值最小,根据垂线段最短可知,当直线过O点时,EF的值最大,∵A(6,0),B(0,8),∴AB=10,∵sin∠OAB==,∴OM=4.8,∵CD=6,∴OG=3,∴GM=1.8,∴FM=2.4,∴EF=4.8;故选:B.3.解:A、极差是15,故A正确;B、众数是88,故B正确;C、中位数是87,故C错误;D、平均数是87,故D正确.故选:C.4.解:设2017年到2019年中国石油对外依存度平均年增长率为x,由题意,得64.2%(1+x)2=70.8%.5.解:∵∠ACB=60°,∴∠AOB=120°,∵AO=BO,∴∠ABO=(180°﹣120°)÷2=30°,故选:A.6.解:∵△ABC、△DCE都是等腰Rt△,∴AB=AC=BC=,CD=DE=CE;∠B=∠ACB=∠DEC=∠DCE=45°;①∵∠ACB=∠DCE=45°,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE;即∠ECB=∠DCA;故①正确;②当B、E重合时,A、D重合,此时DE⊥AC;当B、E不重合时,A、D也不重合,由于∠BAC、∠EDC都是直角,则∠AFE、∠DFC 必为锐角;故②不完全正确;④∵,∴;由①知∠ECB=∠DCA,∴△BEC∽△ADC;∴∠DAC=∠B=45°;∴∠DAC=∠BCA=45°,即AD∥BC,故④正确;③由④知:∠DAC=45°,则∠EAD=135°;∠BEC=∠EAC+∠ECA=90°+∠ECA;∵∠ECA<45°,∴∠BEC<135°,即∠BEC<∠EAD;因此△EAD与△BEC不相似,故③错误;⑤△A BC的面积为定值,若梯形ABCD的面积最大,则△ACD的面积最大;△ACD中,AD边上的高为定值(即为1),若△ACD的面积最大,则AD的长最大;由④的△BEC∽△ADC知:当AD最长时,BE也最长;故梯形ABCD面积最大时,E、A重合,此时EC=AC=,AD=1;故S=(1+2)×1=,故⑤正确;梯形ABCD因此本题正确的结论是①④⑤,故选D.7.解:过点A作AE⊥BC于点E,如图所示:∵AB=AC=5,∴BE=BC=×8=4,∠BAE=∠BAC,∵∠BPC=∠BAC,∴∠BPC=∠BAE.在Rt△BAE中,由勾股定理得AE===3,∴cos∠BPC=cos∠BAE==.故选:C.8.解:∵x2+2﹣2x=(x﹣1)2+1,(x﹣1)2≥0,∴(x﹣1)2+1>0,∴x2+2>2x,∴max{2x,x2+2}的结果为:x2+2.故选:D.二.填空题(共10小题,满分30分,每小题3分)9.解:开方得,x=±2,即x1=2,x2=﹣2.故答案为,x1=2,x2=﹣2.10.解:由于P为线段AB=6的黄金分割点,且AP是较长线段;则AP=6×=3﹣3.故答案为:3﹣3.11.解:∵=,∴b=a,∴==.故答案为:.12.解:观察表格可知:x=0时,y=7,x=2时,y=7,∴抛物线的对称轴为直线x==1,∵x=3时,y=13,∴x=﹣1时,y=13,∴4a+2b+c=7,a﹣b+c=13,∴(4a+2b+c)(a﹣b+c)的值为91,故答案为91.13.解:圆锥侧面积公式为:s侧面积=πrR=π×10×40=400π.故答案为:400π.14.解:∵直角三角形中,两直角边分别是12和5,∴斜边为=13,∴斜边上中线长为×13=6.5.故答案为:6.5.15.解:如图,连接AB.∵OA=AB=,OB=2,∴OB2=OA2+AB2,∴∠OAB=90°,∴△AOB是等腰直角三角形,∴∠AOB=45°,∴sin∠AOB=,故答案为:.16.解:∵BC⊥CA,MN⊥AN,∴∠C=∠N=90°,∵∠BAC=∠MAN,∴△BCA∽△MNA.∴,即,∴MN=(m),答:楼房MN的高度为m,故答案为:.17.解:由折叠得:∠CBO=∠DBO,∵矩形ABCO,∴BC∥OA,∴∠CBO=∠BOA,∴∠DBO=∠BOA,∴BE=OE,在△ODE和△BAE中,,∴△ODE≌△BAE(AAS),∴AE=DE,设DE=AE=x,则有OE=BE=8﹣x,在Rt△ODE中,根据勾股定理得:42+x2=(8﹣x)2,解得:x=3,即OE=5,DE=3,过D作DF⊥OA,∵S=OD•DE=OE•DF,△OED∴DF=,OF==,则D(,﹣).故答案为:(,﹣)18.解:根据题意知,∠AFE=∠BDG=∠C=90°,∴∠A=BDG(同角的余角相等).∴△AEF∽△DBG,∴=.又∵EF=DG,AF=4,GB=9,∴=.∴EF=6.即正方形铁皮的边长为6.故答案是:6.三.解答题(共10小题,满分96分)19.解:(1)原式=1+2×﹣2+﹣1=1+﹣2+﹣1=0;(2)∵x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,则x﹣3=0或x+1=0,解得x=3或x=﹣1.20.解:(1)∵∠CAD:∠DAB=1:2∴∠DAB=2∠CAD在Rt△ABC中,∠CAD+∠DAB+∠DBA=90°∵DE垂直平分AB交边BC、AB于点D、E∴∠DAB=∠DBA∴∠CAD+∠DAB+∠DBA=∠CAD+2∠CAD+2∠CAD=90°解得,∠CAD=18°(2)在Rt△ABC中,AC=1,tan∠B==,∴BC=2由勾股定理得,AB===∵DE垂直平分AB交边BC、AB于点D、E∴BE=AE=∵∠DAE=∠DBE∴在Rt△ADE中tan∠B=tan∠DAE==∴DE=∴由勾股定理得AD===∴cos∠CAD===∴sin∠CAD===则∠CAD的正弦值为21.解:(1)如图,△O′A′B即为所求;(2)如图,△O″A″B即为所求;(3)如图,∵点M是OA的中点,∴M的对应点M′的坐标为(2,7).故答案为:(2,7).22.解:根据题意画树状图如下:共有16种等可能的结果数,其中小明和小华查找同一位院士资料的有4种结果,∴小明和小华查找同一位院士资料的概率为=.23.解:如图1,∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=12﹣x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴=,∴=,x=,如图2,四边形DGFE是正方形,过C作CP⊥AB于P,交DG于Q,设ED=x,S△ABC=AC•BC=AB•CP,12×5=13CP,CP=,同理得:△CDG∽△CAB,∴=,∴=,x=<,∴该直角三角形能容纳的正方形边长最大是(步).24.(1)证明:∵∠AOB=120°,∴∠ATB==60°,∵PT切⊙O于T,∴∠BTP=∠TAP,∵PC平分∠APT,∴∠APC=∠CPT,∵∠TCD=∠TAP+∠APC,∠CDT=∠BTP+∠CPT,∴∠TCD=∠CDT==60°,∴△CDT为等边三角形;(2)解:设CT=DT=x,∵∠TCD=∠CDT=∠BDP,∠BPD=∠CPT,∴△PCT∽△PDB,∴,∵∠DTP=∠PAC,∠APC=∠DPT,∴△ACP∽△TDP,∴,∴,即,∴x2=4,∴x=±2,∵x>0,∴x=2,∴,PC=4.25.解:(1)对于函数y1=x2﹣(m+2)x+2m+3,当x=2时,y=3,∴点A不在抛物线上,把B(﹣1,3)代入y1=x2﹣(m+2)x+2m+3,得到3=1+3m+5,解得m=﹣1,∴抛物线的解析式为y=x2﹣x+1.(2)①∵函数y1经过定点(2,3),对于函数y2=nx+k﹣2n,当x=2时,y2=k,∴当k=3时,两个函数过定点M(2,3).②∵m≤2,∴抛物线的对称轴x=≤2,∴抛物线的对称轴在定点M(2,3)的左侧,由题意当1+(m+2)+2m+3≤﹣n+3﹣2n时,满足当﹣1≤x≤2时,总有y1≤y2,∴3m+3n≤﹣3,∴m+n≤﹣1.26.(1)证明:连接OD.∵O为AB中点,D为BC中点,∴OD∥AC.∵DF为⊙O的切线,∴DF⊥OD.∴DF⊥AC.(2)过O作OE⊥BD,则BE=ED.在Rt△BEO中,∠B=30°,∴OE=OB,BE=OB.∵BD=DC,BE=ED,∴EC=3BE=OB.在Rt△OEC中,tan∠BCO=.27.证明:(1)∵AB是直径,∴∠BDA=90°,∴∠DBA+∠DAB=90°,∵∠CAD=∠AED,∠AED=∠ABD,∴∠CAD=∠ABD,∴∠CAD+∠DAB=90°,∴∠BAC=90°,即AB⊥AC,且AO是半径,∴AC为⊙O的切线;(2)∵DE2=EF•EA,∴,且∠DEF=∠DEA,∴△DEF∽△AED,∴∠EDF=∠DAE,∵∠EDF=∠BAE,∴∠BAE=∠DAE,∴AE平分∠BAD;(3)如图,过点F作FH⊥AB,垂足为H,∵AE平分∠BAD,FH⊥AB,∠BDA=90°,∴DF=FH=2,=AB×FH=×BF×AD,∵S△ABF∴2AB=4BF,∴AB=2BF,在Rt△ABD中,AB2=BD2+AD2,∴(2BF)2=(2+BF)2+16,∴BF=,BF=﹣2(不合题意舍去)∴AB=,∴⊙O的半径为.28.解:(1)将点A、B的坐标代入抛物线表达式得:,解得,∴抛物线的解析式为:y=﹣x2+4x﹣3;(2)如下图,连接BC交DE于点M,此时MA+MC最小,又因为AC是定值,所以此时△AMC的周长最小.由题意可知OB=OC=3,OA=1,∴BC==3,同理AC=,∴此时△AMC的周长=AC+AM+MC=AC+BC=+3;∵DE是抛物线的对称轴,与x轴交点A(1,0)和B(3,0),∴AE=BE=1,对称轴为x=2,由OB=OC,∠BOC=90°得∠OBC=45°,∴EB=EM=1,又∵点M在第四象限,在抛物线的对称轴上,∴M(2,﹣1);(3)存在这样的点P,使△FCG是等腰三角形.∵点P的横坐标为m,故点F(m,﹣m2+4m﹣3),点G(m,m﹣3),则FG2=(﹣m2+4m﹣3+3﹣m)2,CF2=(m2﹣4m)2+m2,GC2=2m2,当FG=FC时,则(﹣m2+4m﹣3+3﹣m)2=m2+(m2﹣4m)2,解得m=0(舍去)或4;当GF=GC时,同理可得m=0(舍去)或3;当FC=GC时,同理可得m=0(舍去)或5或3(舍去),综上,m=5或m=4或或3.。
2020-2021学年江苏省常州市九年级(上)期末数学试卷及参考答案

2020-2021学年江苏省常州市九年级(上)期末数学试卷一、选择题(本大题共8小题,每小题2分,共16分)1.(2分)tan30°的值等于()A.1B.C.D.2.(2分)泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度,金字塔的影长,推算出金字塔的高度,这种测量原理,就是我们所学的()A.图形的平移B.图形的旋转C.图形的轴对称D.图形的相似3.(2分)若代数式x2的值与2x的值相等,则x的值是()A.2B.0C.2或﹣2D.0或24.(2分)如图,半圆的直径为AB,圆心为点O,C、D是半圆的3等分点,在该半圆内任取一点,则该点取自阴影部分的概率是()A.B.C.D.5.(2分)某同学对数据16,20,20,36,5■,51进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A.中位数B.平均数C.方差D.众数6.(2分)一个直角三角形的两条直角边的和是28cm,面积是96cm2.设这个直角三角形的一条直角边为xcm,依题意,可列出方程为()A.x(14﹣x)=96B.x(14﹣x)=96C.x(28﹣x)=96D.x(28﹣x)=967.(2分)如图,在△ABC中,AC=4,D是AC上一点,AD=1,M、N分别是BD、BC 的中点,若∠ABD=∠ACB,则的值是()A.B.C.D.8.(2分)如图,两个正六边形ABCDEF、EDGHIJ的顶点A、B、H、I在同一个圆上,点P在上,则tan∠API的值是()A.2B.2C.2D.1二、填空题(本大题共8小题,每小题2分,共16分)9.(2分)若x=3y,则=.10.(2分)数据6,5,10,6,7的极差是.11.(2分)已知圆弧所在圆的半径为4,所对的圆心角为60°,则这条弧的长是.12.(2分)△ABC,△DEF的条件如图所示,则n的值是.13.(2分)在△ABC中,∠C=90°,AC=3,BC=4,则sin∠ABC=.14.(2分)写一个一元二次方程,使它的二次项系数为1,且两个根分别为3、﹣2.所写的一元二次方程为.15.(2分)正方形ABCD、正方形FECG如图放置,点E在BC上,点G在CD上,且BC=3EC,则tan∠FAG=.16.(2分)如图,△ABC是⊙O的内接三角形,AE是⊙O的弦,且AE⊥BC,垂足为D.若cos∠EAC=,CE=2,则△OAB的面积是.三、解答题(本大题共9小题,第17、19、22、24题每题8分,第18、23题每题7分,第20、21题每题6分,第25题10分,共68分)17.(8分)(1)解方程:x2﹣4x=12;(2)计算:sin30°+cos30°tan45°.18.(7分)某商店1~6周销售甲、乙两种品牌冰箱的数量如表(表Ⅰ)所示(单位:台):第1周第2周第3周第4周第5周第6周甲9101091210乙1312711107现根据表Ⅰ数据进行统计得到表Ⅱ:平均数中位数众数甲10乙107(1)填空:根据表Ⅰ的数据补全表Ⅱ;(2)老师计算了乙品牌冰箱销量的方差:S乙2=[(13﹣10)2+(12﹣10)2+(7﹣10)2+(11﹣10)2+(10﹣10)2+(7﹣10)2]=(台2).请你计算甲品牌冰箱销量的方差,根据计算结果,建议商家可多采购哪一种品牌冰箱?为什么?19.(8分)学校为了丰富学生课余生活,开设了社团课.现有以下社团:A.篮球、B.机器人、C.绘画,学校要求每人只能参加一个社团,甲和乙准备随机报名一个社团.(1)甲选择“机器人”社团的概率是;(2)请用树状图或列表法求甲、乙两人选择同一个社团的概率.20.(6分)网络购物已成为新的消费方式,催生了快递行业的高速发展.某快递公司2020年9月份与11月份投递的快递件数分别为10万件和14.4万件,假定每月投递的快递件数的增长率相同,求该快递公司投递的快递件数的月平均增长率.21.(6分)如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E.△ABE与△CDE 相似吗?为什么?22.(8分)已知关于x的一元二次方程x2+2mx﹣n2+5=0.(1)当m=1时,该一元二次方程的一个根是1,求n的值;(2)若该一元二次方程有两个相等的实数根.①求m、n满足的关系式;②在x轴上取点H,使得OH=|m|,过点H作x轴的垂线l,在垂线l上取点P,使得PH=|n|,则点P到点(3,4)的距离最小值是.23.(7分)图1是放置在水平面上的可折叠式护眼灯,其中底座的高AB=2cm,连杆BC =40cm,灯罩CD=34cm.(1)转动BC、CD,使得∠BCD成平角,且∠ABC=150°,如图2,则灯罩端点D离桌面l的高度DH是cm.(2)将图2中的灯罩CD再绕点C顺时针旋转,使∠BCD=150°,如图3,求此时灯罩端点D离桌面l的高度DI.24.(8分)如图,已知△OAB,点A的坐标为(2,2),点B的坐标为(3,0).(1)求sin∠AOB的值;(2)若点P在y轴上,且△POA与△AOB相似,求点P的坐标.25.(10分)如图1,在矩形ABCD中,AB=6cm,BC=8cm,点P以3cm/s的速度从点A 向点B运动,点Q以4cm/s的速度从点C向点B运动.点P、Q同时出发,运动时间为t秒(0<t<2),⊙M是△PQB的外接圆.(1)当t=1时,⊙M的半径是cm,⊙M与直线CD的位置关系是;(2)在点P从点A向点B运动过程中.①圆心M的运动路径长是cm;②当⊙M与直线AD相切时,求t的值.(3)连接PD,交⊙M于点N,如图2,当∠APD=∠NBQ时,求t的值.2020-2021学年江苏省常州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分)1.【分析】根据特殊角的三角函数值解答.【解答】解:tan30°=.故选:D.【点评】本题考查特殊角的三角函数值,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主,比较简单.2.【分析】根据图形的变换和相似三角形的应用等知识直接回答即可.【解答】解:泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度,金字塔的影长,推算出金字塔的高度,这种测量原理,就是我们所学的图形的相似,故选:D.【点评】考查了相似三角形的应用、图形的变换等知识,解题的关键是了解物高与影长成正比,难度不大.3.【分析】先列方程x2=2x,然后利用因式分解法解方程.【解答】解:根据题意得x2=2x,移项得x2﹣2x=0,x(x﹣2)=0,x=0或x﹣2=0,所以x1=0,x2=2.故选:D.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.4.【分析】由C、D是半圆的3等分点知∠AOC=∠COD=∠BOD=60°,据此得,再根据概率公式求解即可.【解答】解:∵C、D是半圆的3等分点,∴∠AOC=∠COD=∠BOD=60°,∴,∴该点取自阴影部分的概率为=,故选:D.【点评】本题主要考查概率公式,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.5.【分析】利用平均数、中位数、方差和众数的定义对各选项进行判断即可.【解答】解:这组数据的平均数、方差和标准差都与被涂污数字有关,而这组数据的中位数为20与36的平均数,与被涂污数字无关.故选:A.【点评】本题考查了方差:方差描述了数据对平均数的离散程度.也考查了中位数、平均数和众数的概念.6.【分析】设一条直角边的长为xcm,则另一条直角边的长为(28﹣x)cm,根据三角形的面积公式结合面积是96cm2,即可得出关于x的一元二次方程.【解答】解:设一条直角边的长为xcm,则另一条直角边的长为(28﹣x)cm,根据题意得:x(28﹣x)=96,故选:C.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.【分析】通过证明△ABD∽△ACB,可得,即可求解.【解答】解:∵M、N分别是BD、BC的中点,∴AM,AN分别是△ABD,△ABC的中线,∵∠ABD=∠ACB,∠BAD=∠CAB,∴△ABD∽△ACB,∴,∴,∴AB=2,∴,故选:C.【点评】本题考查了相似三角形的判定和性质,掌握相似三角形的性质是本题的关键.8.【分析】如图,连接AE,EI,AH,过点J作JM⊥EI于M.证明∠AIH=90°,设HI=a,求出AI即可解决问题.【解答】解:如图,连接AE,EI,AH,过点J作JM⊥EI于M.∵ABCDEF是正六边形,∴∠DEF=∠F=120°,∵FA=FE,∴∠FEA=∠FAE=30°,∴∠AED=90°,同法可证,∠DEI=∠EIH=90°,∴∠AED+∠DEI=180°,∴A,E,I共线,设IH=IJ=JE=a,∵JM⊥EI,∴EM=MI=a,∴AI=2EI=2a,∵∠API=∠AHI,∴tan∠API=tan∠AHI===2,故选:A.【点评】本题考查正多边形与圆,解直角三角形,圆周角定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.二、填空题(本大题共8小题,每小题2分,共16分)9.【分析】直接利用已知进而变形求出答案.【解答】解:∵x=3y,∴=3.故答案为:3.【点评】此题主要考查了比例的性质,正确将已知变形是解题关键.10.【分析】用最大数减去最小数即可.【解答】解:这组数据最大的是10,最小的是5,所以这组数据的极差为10﹣5=5,故答案为:5.【点评】本题主要考查极差,极差是指一组数据中最大数据与最小数据的差.11.【分析】直接利用弧长公式L=计算可得.【解答】解:此扇形的弧长为=π,故答案为π.【点评】本题主要考查弧长的计算,解题的关键是掌握弧长公式L=.12.【分析】通过证明△ABC∽△EFD,可得,即可求解.【解答】解:∵∠A=50°,∠B=60°,∴∠C=70°,∵∠B=∠F=60°,∠C=∠D,∴△ABC∽△EFD,∴,∴,∴n=6,故答案为6.【点评】本题考查了相似三角形的判定和性质,掌握相似三角形的判定定理是本题的关键.13.【分析】利用勾股定理先求出AB的长,再求出∠ABC的正弦值.【解答】解:在△ABC中,∠C=90°,AC=3,BC=4,∴AB===5.∴sin∠ABC==.故答案为:.【点评】本题考查了解直角三角形,掌握勾股定理和直角三角形的边角间关系是解决本题的关键.14.【分析】首先设此一元二次方程为x2+px+q=0,由二次项系数为1,两根分别为3,﹣2,根据根与系数的关系可得p=﹣(3﹣2)=﹣1,q=3×(﹣2)=﹣6,继而求得答案.【解答】解:∵二次项系数为1,∴设此一元二次方程为x2+px+q=0,∵两根分别为3和﹣2.∴p=﹣(3﹣2)=﹣1,q=3×(﹣2)=﹣6,∴这个方程为:x2﹣x﹣6=0.故答案为:x2﹣x﹣6=0.【点评】此题考查了根与系数的关系.此题难度不大,注意若二次项系数为1,x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2.15.【分析】根据题意,可以设EC=a,然后即可得到AD、DG和AG的长,然后作FH⊥AG,利用锐角三角函数和勾股定理可以得到AH和FH的长,从而可以得到tan∠FAG的值.【解答】解:作FH⊥AG于点H,设EC=a,则BC=AD=CD=3a,∵四边形ABCD是正方形,∴∠D=90°,DG=BE=2a,∴AG==a,∴sin∠DAG==,∵AD∥GF,∴∠HGF=∠DAG,∴sin∠HGF=,∵sin∠HGF=,∴=,解得HF=a,∴HG=a,∴AH=AG﹣HG=a﹣a=a,∴tan∠FAH===,即tan∠FAG=,故答案为:.【点评】本题考查正方形的性质、锐角三角形函数,解答本题的关键是明确题意,利用数形结合的思想解答.16.【分析】由圆周角定理可得∠ABF=90°,设AF=10x,AB=3x,由勾股定理可求x的值,由三角形的面积公式可求解.【解答】解:如图,延长AO,交⊙O于F,连接BF,∵AF是直径,∴∠ABF=90°,∴∠ABF=∠ADC,又∵∠ACB=∠F,∴∠EAC=∠BAF,∴=,∴CE=BF=2,∵cos∠EAC=,∴cos∠BAF==,设AF=10x,AB=3x,∵AF2=AB2+BF2,∴100x2=4+90x2,∴x=,∴AB=6,=××AB×BF=3,∴△OAB的面积=S△ABF故答案为3.【点评】本题考查了三角形的外接圆和外心,圆的有关知识,锐角三角函数,勾股定理等知识,添加恰当辅助线构造直角三角形是本题的关键.三、解答题(本大题共9小题,第17、19、22、24题每题8分,第18、23题每题7分,第20、21题每题6分,第25题10分,共68分)17.【分析】(1)先移项得到x2﹣4x﹣12=0,然后利用因式分解法解方程;(2)利用特殊角的三角函数值得到原式=+××1,然后进行二次根式的混合运算.【解答】解:(1)x2﹣4x﹣12=0,(x﹣6)(x+2)=0,x﹣6=0或x+2=0,所以x1=6,x2=﹣2;(2)原式=+××1=+=2.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了实数的运算.18.【分析】(1)将两种品牌冰箱销售量重新排列,再根据平均数、众数和中位数的概念求解即可;(2)先计算出甲品牌冰箱销售数量的方差,再根据方差的意义求解即可.【解答】解:(1)甲品牌销售数量从小到大排列为:9、9、10、10、10、12,所以甲品牌销售数量的平均数为=10(台),众数为10台,乙品牌销售数量从小到大排列为7、7、10、11、12、13,所以乙品牌销售数量的中位数为=10.5(台),补全表格如下:平均数中位数众数甲101010乙1010.57故答案为:10、10、10.5;(2)建议商家可多采购甲品牌冰箱,∵甲品牌冰箱销量的方差=×[(9﹣10)2×2+(10﹣10)2×3+(12﹣10)2]=1,S乙2=,2,∴<S乙∴甲品牌冰箱的销售量比较稳定,建议商家可多采购甲品牌冰箱.【点评】此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,也考查平均数、众数和中位数的定义.19.【分析】(1)直接由概率公式求解即可;(2)画树状图,共有9个等可能的结果,甲、乙两人选择同一个社团的结果有3个,再由概率公式求解即可.【解答】解:(1)甲选择“机器人”社团的概率是,故答案为:;(2)画树状图如图:共有9个等可能的结果,甲、乙两人选择同一个社团的结果有3个,∴甲、乙两人选择同一个社团的概率为=.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B 的概率.20.【分析】设该快递公司投递的快递件数的月平均增长率为x,根据该快递公司今年9月份及11月份投递的快递件数,即可得出关于x的一元二次方程,解之取其正值即可得出结论;【解答】解:设该快递公司投递的快递件数的月平均增长率为x,依题意,得:10(1+x)2=14.4,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该快递公司投递的快递件数的月平均增长率为20%.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.【分析】根据圆内接四边形的性质得到∠EDC=∠B,于是可证明△EDC∽△EBA.【解答】解:△EDC∽△EBA,理由如下:∵四边形ABCD内接于⊙O,∴∠EDC=∠B,而∠DEC=∠BEA,∴△EDC∽△EBA.【点评】本题主要考查圆内接四边形的性质,相似三角形的判定,难度适中.22.【分析】(1)把m=1,x=1代入方程得1+2﹣n2+5=0,然后解关于n的方程即可;(2)①利用判别式的意义得到Δ=4m2﹣4(﹣n2+5)=0,从而得到m与n的关系;②利用勾股定理得到OP==,则点P在以O点为圆心,为半径的圆上,然后根据点与圆的位置关系判断点P到点(3,4)的距离最小值.【解答】解:(1)把m=1,x=1代入方程得1+2﹣n2+5=0,解得n=±2,即n的值为±2;(2)①根据题意得Δ=4m2﹣4(﹣n2+5)=0,整理得m2+n2=5;②∵OH=|m|,PH=|n|,∴OP==,即点P在以O点为圆心,为半径的圆上,∴原点与点(3,4)的连线与⊙O的交点P使点P到点(3,4)的距离最小,∵原点到点(3,4)的距离为=5,∴点P到点(3,4)的距离最小值是5﹣.故答案为5﹣.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.也考查了点与圆的位置关系.23.【分析】(1)作BE⊥DH于点E,根据题意求出BD,根据正弦的定义求出DE,进而求出DH;(2)过点D作DE⊥l于E,过点C作CG⊥BH于G,CK⊥DE于K,根据直角三角形的性质求出DK,根据正弦的定义求出KE,进而求出DI.【解答】解:(1)如图2,作BE⊥DH于点E,∵AB⊥AH,DH⊥AH,∴四边形ABEH是矩形,∴∠EBA=90°,EH=AB=2cm,∴∠DBE=150°﹣90°=60°,∴ED=BD•sin60°=37(cm),∴DH=ED+EH=(37+2)cm,∴连杆端点D离桌面l的高度DE为(37+2)cm,故答案为:(37+2);(2)如图3,过点D作DE⊥l于E,过点C作CG⊥BH于G,CK⊥DE于K,则四边形ABEI、CGEK为矩形,∴EI=AB=2cm,KE=CG,∠KCG=90°,∴∠DCK=150°﹣30°﹣90°=30°,∴DK=DC=17(cm),在Rt△CBG中,CG=BC•sin∠CBG=40×=20(cm),∴DI=DK+KE+EI=DK+CG+EI=17+20+2=(20+19)cm,答:灯罩端点D离桌面l的高度DI为(20+19)cm.【点评】本题考查了解直角三角形的应用,解题的关键是学会添加常用辅助线,构造矩形和直角三角形解决问题.24.【分析】(1)证明∠AOB=45°,可得结论.(2)分两种情形,利用相似三角形的性质分别求解即可.【解答】解:(1)如图,过点A作AH⊥OB于H.∵A(2,2),∴AH=OH=2,∴∠AOB=45°,∴sin∠AOB=.(2)由(1)可知,∠AOP=∠AOB=45°,OA=2,当△AOP∽△AOB时,=,可得OP′=OB=3,∴P′(0,3),当△AOP∽△BOA时,=,∴=,∴OP=,∴P(0,),综上所述,满足条件的点P的坐标为(0,3)或(0,).【点评】本题考查相似三角形的性质,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.25.【分析】(1)先求出PB,BQ的长,根据勾股定理可得PQ的长,根据直角三角形的外接圆直径是斜边即可求解;(2)①根据边界点确定:故M运动路径为OB,根据勾股定理即可求解;②如图3,根据切线的性质作辅助线EF,则EF⊥AD,EF⊥BC,由EF=FM+ME列方程即可求解;(3)如图4,作辅助线,构建全等三角形,证明AP=PQ,AD=DQ,最后根据勾股定理列方程即可求解.【解答】解:(1)如图1,过M作KN⊥AB于N,交CD于K,∵四边形ABCD是矩形,∴∠ABC=90°,AB∥CD,∴⊙M的直径是PQ,KN⊥CD,当t=1时,AP=3,CQ=4,∵AB=6,BC=8,∴PB=6﹣3=3,BQ=8﹣4=4,∴PQ==5,∴⊙M的半径为cm,∵MN∥BQ,M是PQ的中点,∴PN=BN,∴MN是△PQB的中位线,∴MN=BQ=×4=2,∴MK=8﹣2=6>,∴⊙M与直线CD的位置关系是相离;故答案为:,相离;(2)①如图2,由P、Q运动速度与AB,BC的比相等,∴圆心M在对角线BD上,由图可知:P和Q两点在t=2时在点B重合,当t=0时,直径为对角线AC,M是AC的中点,故M运动路径为OB=BD,由勾股定理得:BD==10,则圆心M的运动路径长是5cm;故答案为:5;②如图3,当⊙M与AD相切时,设切点为F,连接FM并延长交BC于E,则EF⊥AD,EF⊥BC,则BQ=8﹣4t,PB=6﹣3t,∴PQ=10﹣5t,∴PM==FM=5﹣t,△BPQ中,ME=PB=3﹣t,∵EF=FM+ME,∴5﹣t+3﹣t=6,解得:t=;(3)如图4,过D作DG⊥PQ,交PQ的延长线于点G,连接DQ,∵∠APD=∠NBQ,∠NBQ=∠NPQ,∴∠APD=∠NPQ,∵∠A=90°,DG⊥PG,∴AD=DG=8,∵PD=PD,∴Rt△APD≌Rt△GPD(HL),∴PG=AP=3t,∵PQ=10﹣5t,∴QG=3t﹣(10﹣5t)=8t﹣10,∵DC2+CQ2=DQ2=DG2+QG2,∴62+(4t)2=82+(8t﹣10)2,∴3t2﹣10t+8=0,(t﹣2)(3t﹣4)=0,解得:t1=2(舍),t2=.【点评】本题四边形和圆的综合题,考查了直角三角形的性质,全等三角形的判定和性质,矩形的性质,角平分线的性质,勾股定理,添加恰当辅助线是本题的关键.。
2020-2021学年江苏省无锡市宜兴实验中学九年级(上)第一次独立作业数学试卷 (解析版)

2020-2021学年江苏省无锡市宜兴实验中学九年级(上)第一次独立作业数学试卷一、选择题(共10小题).1.(3分)下列关于x的方程中,一定是一元二次方程的为()A.x2﹣2=(x+3)2B.ax2+bx+c=0C.x2+﹣5=0 D.x2﹣1=02.(3分)一元二次方程x2﹣6x﹣6=0配方后化为()A.(x﹣3)2=15 B.(x﹣3)2=3 C.(x+3)2=15 D.(x+3)2=3 3.(3分)若关于x的方程x2+mx+1=0有两个不相等的实数根,则m的值可以是()A.0 B.﹣1 C.2 D.﹣34.(3分)已知实数x1,x2满足x1+x2=7,x1x2=12,则以x1,x2为根的一元二次方程是()A.x2﹣7x+12=0 B.x2+7x+12=0 C.x2+7x﹣12=0 D.x2﹣7x﹣12=0 5.(3分)下列各组中的四条线段成比例的是()A.1、2、20、30 B.1、2、3、4 C.5、10、10、20 D.4、2、1、3 6.(3分)如图,已知∠CAE=∠BAD,那么添加一个条件后,仍不能判定△ABC与△ADE 相似的是()A.∠C=∠AED B.∠B=∠D C.=D.=7.(3分)如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各剪去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32 B.(10﹣2x)(6﹣2x)=32C.(10﹣x)(6﹣x)=32 D.10×6﹣4x2=328.(3分)如图在△ABC中,点G是重心,连接BG并延长BG交AC于D,若点G到AB 的距离为2,则点D到AB的距离是()A.2.5 B.3 C.3.6 D.49.(3分)在如图的正方形网格图中,A、B、C、D都是格点,AB、CD相交于点E,则CE:ED的比值为()A.B.C.D.10.(3分)如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC边上的中线BD反向延长线交y轴负半轴于E,双曲线的图象经过点A,若S△BEC=8,则k等于()A.8 B.16 C.24 D.28二、填空题(本大题共8小题,每小题2分,共16分)11.(2分)一元二次方程x2﹣2x=0的解是.12.(2分)已知=,则=.13.(2分)设a,b是方程x2+x﹣2019=0的两个实数根,则a2+2a+b的值为;14.(2分)在比例尺为1:40000的地图上,某条道路的长为5cm,则该道路的实际长度是km.15.(2分)关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则实数k 的取值范围是.16.(2分)如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上.若线段AB=4cm,则线段BC=cm.17.(2分)如图,在△ABC中,AB=AC,∠BAC=90°,点D在BC边上,连接AD,作BE⊥AD于点E,连接CE.若∠CED=45°,CD=2,则CE=.18.(2分)如图,等边△ABC,AB=2,D为BA延长线上一点,以CD为边向左侧作等边△CDE,连接AE,当AE⊥BD时,AD的长为.三、解答题(本大题共9小题,共84分)19.(16分)解方程:(1)(x﹣1)2=4;(2)x2﹣4x+2=0;(3)(x+1)(x﹣2)=x+1;(4)2x2+1=4x(用配方法).20.(8分)关于x的一元二次方程x2﹣x﹣(m+2)=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为符合条件的最小整数,求此方程的根.21.(8分)如图,△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=16,BD=8,(1)求证:△ACD∽△BED;(2)求DC的长.22.(8分)已知△ABC的两边AB、AC的长是关于x的一元二次方程:x2﹣(2k+1)x+k (k+1)=0的两个实数根,第三边BC的长为5.求k为何值时,△ABC是等腰三角形?并求△ABC的周长.23.(8分)如图,在平行四边形ABCD中,CE是∠DCB的角平分线,且交AB于点E,DB与CE相交于点O,(1)求证:△EBC是等腰三角形;(2)已知:AB=7,BC=5,求的值.24.(8分)一个广告公司制作广告的收费标准是:以面积为单位,在不超过规定面积a(m2)的范围内,每张广告收费100元,若超过a(m2),则除了要交这100元的基本广告费以外,超过部分还要按每平方米5a元缴费.下表是该公司对两家用户广告的面积及相应收费情况的记载:单位广告的面积(m2)收费金额(元)烟草公司 6 140食品公司 3 100红星公司要制作一张大型公益广告,其材料形状是矩形,它的四周是空白,并且四周各空0.5m,那么空白部分的面积为49m2.已知矩形材料的长与宽之比为3:2,并且空白部分不收广告费,那么这张广告的费用是多少?25.(8分)(1)如图1,在▱ABCD中,E为AD的中点,在BD上找出一点N,使得DN:BN=1:2,请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(2)如图,已知△ABC,点P为平面上一点,请用直尺(不带刻度)和圆规,按下列要求作图:(不要求写作法,但要保留作图痕迹)①如图2,若点P在AB边上,且AP:PB=1:2,请在AC边上确定一点Q,使得AQ:AC=1:3;②如图3,若点P在△ABC内,过点P作线段MN,M在AB边上,N在AC边上,满足PM:PN=1:2.26.(10分)如图1:已知在Rt△ABC中,∠C=90°,AC=20cm,BC=15cm,点P由A 点出发,沿AB方向向点B匀速运动,速度为5cm/s;点Q由C出发沿CA方向向点A 匀速运动,速度为4cm/s,若设运动的时间为t(s)(0<t<5),解答下列问题:(1)如图1,连接PQ,设△APQ的面积为y(cm2),则y与t之间的函数关系式是;(2)如图2,连接PC、BQ,当PC⊥BQ,求t的值;(3)如图3,已知AB上有一点M,AC上有一点N,连接MN,使线段MN恰好把△ACB 的周长和面积同时平分?若存在,求出AN的值;若不存在,说明理由.27.(10分)已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿BA 向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动.DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5).解答下列问题:(1)当t为何值时,点A在线段PQ的垂直平分线上?(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由.(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.(图(3)供做题时使用)参考答案一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列关于x的方程中,一定是一元二次方程的为()A.x2﹣2=(x+3)2B.ax2+bx+c=0C.x2+﹣5=0 D.x2﹣1=0解:A.此方程整理后为6x+11=0,不是一元二次方程;B.ax2+bx+c=0未明确a,b,c的取值情况,不是一元二次方程;C.x2+﹣5=0不是整式方程,不是一元二次方程;D.x2﹣1=0是一元二次方程;故选:D.2.(3分)一元二次方程x2﹣6x﹣6=0配方后化为()A.(x﹣3)2=15 B.(x﹣3)2=3 C.(x+3)2=15 D.(x+3)2=3 解:方程整理得:x2﹣6x=6,配方得:x2﹣6x+9=15,即(x﹣3)2=15,故选:A.3.(3分)若关于x的方程x2+mx+1=0有两个不相等的实数根,则m的值可以是()A.0 B.﹣1 C.2 D.﹣3解:∵a=1,b=m,c=1,∴△=b2﹣4ac=m2﹣4×1×1=m2﹣4,∵关于x的方程x2+mx+1=0有两个不相等的实数根,∴m2﹣4>0,解得:m>2或m<﹣2,则m的值可以是:﹣3,故选:D.4.(3分)已知实数x1,x2满足x1+x2=7,x1x2=12,则以x1,x2为根的一元二次方程是()A.x2﹣7x+12=0 B.x2+7x+12=0 C.x2+7x﹣12=0 D.x2﹣7x﹣12=0 解:以x1,x2为根的一元二次方程x2﹣7x+12=0,5.(3分)下列各组中的四条线段成比例的是()A.1、2、20、30 B.1、2、3、4 C.5、10、10、20 D.4、2、1、3 解:A、1×30≠2×20,故本选项错误;B、1×4≠2×3,故本选项错误;C、5×20=10×10,故本选项正确;D、1×4≠2×3,故本选项错误.故选:C.6.(3分)如图,已知∠CAE=∠BAD,那么添加一个条件后,仍不能判定△ABC与△ADE 相似的是()A.∠C=∠AED B.∠B=∠D C.=D.=解:∵∠CAE=∠DAB,∴∠DAE=∠BAC,∴当∠C=∠AED,∠B=∠D或=时,△ABC∽△ADE.故选:C.7.(3分)如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各剪去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32 B.(10﹣2x)(6﹣2x)=32C.(10﹣x)(6﹣x)=32 D.10×6﹣4x2=32解:设剪去的小正方形边长是xcm,则纸盒底面的长为(10﹣2x)cm,宽为(6﹣2x)cm,根据题意得:(10﹣2x)(6﹣2x)=32.8.(3分)如图在△ABC中,点G是重心,连接BG并延长BG交AC于D,若点G到AB 的距离为2,则点D到AB的距离是()A.2.5 B.3 C.3.6 D.4解:分别过D,G作GE⊥AB,DF⊥AB,∵点G是△ABC的重心∴BG=2DG设DG=x,则GB=2x∵GE⊥AB,DF⊥AB,∠ABD=∠ABD∴△BGE∽△BDF∴=即=∴DF=3.故选:B.9.(3分)在如图的正方形网格图中,A、B、C、D都是格点,AB、CD相交于点E,则CE:ED的比值为()A.B.C.D.解:如图,过点A作AF⊥BD,交BD的延长线于F,过点C作CH⊥BD于H,设AB与CH的交点为N,与DM交于点G,小正方形的边长为1,∵AF∥CH,∴△BNH∽△BAF,∴=,∴NH=AF=,∴CN=CH﹣NH=,∵DM∥AF,∴=,∴DG=,∵CH∥DM,∴△CEN∽△DEG,∴==,故选:C.10.(3分)如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC边上的中线BD反向延长线交y轴负半轴于E,双曲线的图象经过点A,若S△BEC=8,则k等于()A.8 B.16 C.24 D.28解:∵BD为Rt△ABC的斜边AC上的中线,∴BD=DC,∠DBC=∠ACB,又∠DBC=∠EBO,∴∠EBO=∠ACB,又∠BOE=∠CBA=90°,∴△BOE∽△CBA,∴=,即BC×OE=BO×AB.又∵S△BEC=8,即BC×OE=2×8=16=BO×AB=|k|.又由于反比例函数图象在第一象限,k>0.所以k等于16.故选:B.二、填空题(本大题共8小题,每小题2分,共16分)11.(2分)一元二次方程x2﹣2x=0的解是x1=0,x2=2.解:原方程变形为:x(x﹣2)=0,x1=0,x2=2.故答案为:x1=0,x2=2.12.(2分)已知=,则=.解:∵=,∴a=b,∴==;故答案为:.13.(2分)设a,b是方程x2+x﹣2019=0的两个实数根,则a2+2a+b的值为2018;解:∵设a,b是方程x2+x﹣2019=0的两个实数根,∴a+b=﹣1,a2+a﹣2019=0,∴a2+a=2019,∴a2+2a+b=(a2+a)+(a+b)=2019+(﹣1)=2018,故答案为:2018.14.(2分)在比例尺为1:40000的地图上,某条道路的长为5cm,则该道路的实际长度是2km.解:设这条道路的实际长度为x,则:=,解得x=200000cm=2km.∴这条道路的实际长度为2km.故答案为:2.15.(2分)关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则实数k 的取值范围是k<2且k≠1.解:∵关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,∴k﹣1≠0且△=(﹣2)2﹣4(k﹣1)>0,解得:k<2且k≠1.故答案为:k<2且k≠1.16.(2分)如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上.若线段AB=4cm,则线段BC=12cm.解:如图,过点A作AE⊥CE于点E,交BD于点D,∵练习本中的横格线都平行,且相邻两条横格线间的距离都相等,∴,即,∴BC=12cm.故答案为:12.17.(2分)如图,在△ABC中,AB=AC,∠BAC=90°,点D在BC边上,连接AD,作BE⊥AD于点E,连接CE.若∠CED=45°,CD=2,则CE=.解:过C作CM⊥BE,交BE的延长线于M,交AC于N,过C作CF⊥AD,交AD延长线于F,∵∠CED=45°,∴△EFC是等腰直角三角形,∴EF=FC=EC,∵∠BED=∠DEM=90°,∴∠CEM=45°,∴△EMC是等腰直角三角形,∴EM=CM=EC,设FC=2x,则EM=CM=EF=2x,EC=2x,∵∠DAC+∠ACE=∠ACE+∠ECB=45°,∴∠DAC=∠ECB,∵∠AEC=∠BEC=90°+45°=135°,∴△AEC∽△CEB,∴,∵△ABC是等腰直角三角形,∴BC=AC,∴=,∴AE=2x,∴AE=EF,∵EN∥CF,∴AN=CN,∴EN=FC=x,由勾股定理得:AN=x,∴AB=AC=2x,BC=AB=2x,Rt△ABE中,BE==4x,∵BE∥CF,∴△BED∽△CFD,∴,∴,x=,∴EC=2×=;故答案为:18.(2分)如图,等边△ABC,AB=2,D为BA延长线上一点,以CD为边向左侧作等边△CDE,连接AE,当AE⊥BD时,AD的长为4.解:如图:连接BE,∵△ABC和△CDE都是等边三角形,∴EC=CD,AC=BC,∠ACB=∠DCE=60°=∠DAC=∠ABC,∴∠ECB=∠DCA,∠CAD=60°在△CDA和△CEB中,,∴△ACD≌△BCE(SAS),∴AD=BE,∠DAC=∠EBC=120°,∴∠EBA=60°,∵AE⊥BD,∴∠AEB=30°,∴BE=2AB=4=AD,故答案为:4.三、解答题(本大题共9小题,共84分)19.(16分)解方程:(1)(x﹣1)2=4;(2)x2﹣4x+2=0;(3)(x+1)(x﹣2)=x+1;(4)2x2+1=4x(用配方法).解:(1)∵(x﹣1)2=4,∴x﹣1=±2,则x1=3,x2=﹣1;(2)∵x2﹣4x+2=0,∴a=1,b=﹣4,c=2,则△=(﹣4)2﹣4×2×1=8,∴x===2±.则x1=2+,x2=2﹣;(3)∵(x+1)(x﹣2)=x+1,∴(x+1)(x﹣2﹣1)=0,则x+1=0或x﹣3=0,解得x1=﹣1,x2=3;(4)2x2+1=4x,∴x2﹣2x=﹣,∴(x﹣1)2=,则x﹣1=±,即x1=1+,x2=1﹣.20.(8分)关于x的一元二次方程x2﹣x﹣(m+2)=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为符合条件的最小整数,求此方程的根.解:(1)∵方程x2﹣x﹣(m+2)=0有两个不相等的实数根,∴(﹣1)2+4(m+2)>0,解得;(2)∵,∴m的最小整数为﹣2,∴方程为x2﹣x=0,解得x=0或x=1.21.(8分)如图,△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=16,BD=8,(1)求证:△ACD∽△BED;(2)求DC的长.解:(1)∵∠C=∠E,∠ADC=∠BDE,∴△ACD∽△BED;(2)∵△ACD∽△BED,∴=,又∵AD:DE=3:5,AE=16,∴AD=6,DE=10,∵BD=8,∴=,即=.∴DC=.22.(8分)已知△ABC的两边AB、AC的长是关于x的一元二次方程:x2﹣(2k+1)x+k (k+1)=0的两个实数根,第三边BC的长为5.求k为何值时,△ABC是等腰三角形?并求△ABC的周长.解:分两种情况:①当AB=AC时,△=b2﹣4ac=0,∴(2k+1)2﹣4k(k+1)=0解得k不存在;②当AB=BC时,即AB=5,解得或,则△ABC的周长为:5+5+4=14或5+5+6=16.综上所述,当k=4或5时,△ABC是等腰三角形.其相应的△ABC的周长是14或16.23.(8分)如图,在平行四边形ABCD中,CE是∠DCB的角平分线,且交AB于点E,DB与CE相交于点O,(1)求证:△EBC是等腰三角形;(2)已知:AB=7,BC=5,求的值.【解答】证明:(1)∵四边形ABCD是平行四边形,∴CD∥AB,∴∠1=∠2.∵CE平分∠BCD,∴∠1=∠3,∴∠2=∠3,∴BC=BE,∴△EBC是等腰三角形;解:(2)∵∠1=∠2,∠4=∠5,∴△COD∽△EOB,∴=.∵平行四边形ABCD,∴CD=AB=7.∵BE=BC=5,∴==,∴=.24.(8分)一个广告公司制作广告的收费标准是:以面积为单位,在不超过规定面积a(m2)的范围内,每张广告收费100元,若超过a(m2),则除了要交这100元的基本广告费以外,超过部分还要按每平方米5a元缴费.下表是该公司对两家用户广告的面积及相应收费情况的记载:单位广告的面积(m2)收费金额(元)烟草公司 6 140食品公司 3 100红星公司要制作一张大型公益广告,其材料形状是矩形,它的四周是空白,并且四周各空0.5m,那么空白部分的面积为49m2.已知矩形材料的长与宽之比为3:2,并且空白部分不收广告费,那么这张广告的费用是多少?解:依题意,得:100+(6﹣a)×5a=140,整理,得:a2﹣6a+8=0,解得:a1=2,a2=4,又∵a≥3,∴a=4.设矩形材料的长为3xm,则宽为2xm,依题意,得:(3x+0.5)(2x+0.5)﹣3x•2x=49,解得:x=19.5,∴3x•2x=2281.5,∴100+4×5×(2281.5﹣4)=45650(元).答:这张广告的费用是45650元.25.(8分)(1)如图1,在▱ABCD中,E为AD的中点,在BD上找出一点N,使得DN:BN=1:2,请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(2)如图,已知△ABC,点P为平面上一点,请用直尺(不带刻度)和圆规,按下列要求作图:(不要求写作法,但要保留作图痕迹)①如图2,若点P在AB边上,且AP:PB=1:2,请在AC边上确定一点Q,使得AQ:AC=1:3;②如图3,若点P在△ABC内,过点P作线段MN,M在AB边上,N在AC边上,满足PM:PN=1:2.解:(1)如图,点N即为所求.(2)①如图,点Q即为所求.②如图,线段MN即为所求.26.(10分)如图1:已知在Rt△ABC中,∠C=90°,AC=20cm,BC=15cm,点P由A 点出发,沿AB方向向点B匀速运动,速度为5cm/s;点Q由C出发沿CA方向向点A匀速运动,速度为4cm/s,若设运动的时间为t(s)(0<t<5),解答下列问题:(1)如图1,连接PQ,设△APQ的面积为y(cm2),则y与t之间的函数关系式是y =﹣6t2+30t;(2)如图2,连接PC、BQ,当PC⊥BQ,求t的值;(3)如图3,已知AB上有一点M,AC上有一点N,连接MN,使线段MN恰好把△ACB 的周长和面积同时平分?若存在,求出AN的值;若不存在,说明理由.解:(1)如图1,过点P作PH⊥AC于H,则BC∥PH,∵∠C=90°,AC=20cm,BC=15cm,∴AB===25cm,∵PH∥BC,∴=,∴PH=3t,AH=4t,∴△APQ的面积=×PH×AQ,∴y=×3t×(20﹣4t)=﹣6t2+30t;故答案为:y=﹣6t2+30t;(2)如图,过点P作PH⊥AC于H,∵PC⊥BQ,∴∠PCQ+∠BQC=90°,又∵∠PCQ+∠HPC=90°,∴∠BQC=∠CPH,又∵∠PHC=∠BCQ=90°,∴△BCQ∽△CHP,∴,∴,∴t=;(3)当MN平分△ACB的周长,可得5t+20﹣4t=×(15+25+20),∴t=10(不合题意舍去),当MN平分△ACB的面积,可得×20×15=﹣6t2+30t,∴方程无解,∴不存在27.(10分)已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC 匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿BA 向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动.DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5).解答下列问题:(1)当t为何值时,点A在线段PQ的垂直平分线上?(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由.(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.(图(3)供做题时使用)解:(1)∵点A在线段PQ的垂直平分线上,∴AP=AQ,∵∠DEF=45°,∠ACB=90°,∠DEF+∠ACB+∠EQC=180°,∴∠EQC=45°,∴∠DEF=∠EQC,∴CE=CQ,由题意知:CE=t,BP=2t,∴CQ=t,∴AQ=8﹣t,在Rt△ABC中,由勾股定理得,AB=10cm,则AP=10﹣2t,∴10﹣2t=8﹣t,解得:t=2,答:当t=2s时,点A在线段PQ的垂直平分线上;(2)存在某一时刻t,使面积y最小,理由如下:过P作PM⊥BE,交BE于M,∴∠BMP=90°,在Rt△ABC和Rt△BPM中,sin B==,∴=,解得,PM=t,∵BC=6cm,CE=t,∴BE=6﹣t,∴y=S△ABC﹣S△BPE=×BC×AC﹣BE×PM=×6×8﹣(6﹣t)×t=t2﹣t+24=(t﹣3)2+,∵a=>0,∴抛物线开口向上,∴当t=3时,y=,最小答:当t=3s时,四边形APEC的面积最小,最小面积为cm2;(3)假设存在某一时刻t,使点P、Q、F三点在同一条直线上,过P作PN⊥AC,交AC于N,∴∠ANP=∠ACB=∠PNQ=90°,∵∠PAN=∠BAC,∴△PAN∽△BAC,∴==,即==,解得,PN=6﹣t,AN=8﹣t,∵NQ=AQ﹣AN,∴NQ=8﹣t﹣(8﹣t)=t,∵∠ACB=90°,B、C(E)、F在同一条直线上,∴∠QCF=90°,∠QCF=∠PNQ,∵∠FQC=∠PQN,∴△QCF∽△QNP,∴=,即=,解得:t=1,答:当t=1s,点P、Q、F三点在同一条直线上.。
2023-2024学年江苏省无锡市滨湖区九年级(上)期中数学试卷[含答案]
![2023-2024学年江苏省无锡市滨湖区九年级(上)期中数学试卷[含答案]](https://img.taocdn.com/s3/m/5333dd79cdbff121dd36a32d7375a417866fc1a3.png)
2023-2024学年江苏省无锡市滨湖区九年级(上)期中数学试卷一.选择题(共10小题)1.(3分)下列方程是一元二次方程的是( )A.2x+1=0B.x2﹣3x+1=0C.x2+y=1D.2.(3分)若方程x2﹣2x﹣3=0的一个实数根为m,则2026﹣m2+2m的值是( )A.2024B.2023C.2022D.20213.(3分)用配方法解方程x2+8x+7=0,则配方正确的是( )A.(x+4)2=9B.(x﹣4)2=9C.(x﹣8)2=16D.(x+8)2=574.(3分)下列说法正确的是( )A.经过三点可以作一个圆B.三角形的外心到这个三角形的三边距离相等C.等弧所对的圆心角相等D.相等的圆心角所对的弧相等5.(3分)在△ABC中,D、E分别在△ABC的边AB、AC上,下列条件中不能判定DE∥BC的是( )A.B.C.∠AED=∠C D.6.(3分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若CD=6,AB=10,则AE的长为( )A.1B.2C.3D.47.(3分)如图,AB是⊙O的直径,C,D为⊙O上的点,且点D在上.若∠D=130°.则∠CAB的度数为( )A.30°B.40°C.50°D.60°8.(3分)如图,⊙O是锐角三角形ABC的外接圆,OD⊥AB,OE⊥BC,OF⊥AC.垂足分别为D,E,F,连接DE,EF,FD.若DE+DF=6.5,△ABC的周长为21,则EF的长为( )A.8B.4C.3.5D.39.(3分)如图,将5个全等的等腰三角形拼成内外两个大小不同的正五边形图案,设小正五边形边长为1,则大正五边形边长为( )A.B.C.D.10.(3分)如图,AB为⊙O直径,C为圆上一点,I为△ABC内心,AI交⊙O于D,OI⊥AD于I,若CD=4,则AC为( )A.B.C.D.5二.填空题(共8小题)11.(3分)若方程x2﹣ax+3=0的一个根为1,则a= .12.(3分)已知圆锥的底面半径是5cm,母线长10cm,则侧面积是 cm2.13.(3分)如果关于x的一元二次方程(m﹣1)x2+2x+1=0有两个不相等的实数根,则m的取值范围是 .14.(3分)如图,扇形OAB的半径为1,分别以点A、B为圆心,大于AB的长为半径画弧,两弧相交于点P,∠BOP=35°,则的长l= (结果保留π).15.(3分)已知⊙O的半径是4,圆心O到直线l的距离d为方程x2﹣4x﹣5=0的一个根,则⊙O与直线l的位置关系为 .16.(3分)如图,在△ABC中,点D、E为边AB三等分点,点F、G在边BC上,AC∥DG∥EF,点H 为AF与DG的交点.若HD=3,则AC的长为 .17.(3分)如图,点O是矩形ABCD对角线BD上的一点,⊙O经过点C,且与AB边相切于点E,若AB=4,BC=5,则⊙O的半径长为 .18.(3分)如图,AB是⊙O的直径,C是⊙O上的一动点,以AC为边在其左侧作正方形ACEF.连接BF,则的最大值为 .三.解答题(共10小题)19.解方程:(1)(x﹣1)2=36;(2)2x2﹣7x+3=0.20.解方程:(1)(x﹣5)2=2x﹣10;(2)(2x﹣5)2﹣(2x﹣5)﹣2=0.21.关于x的一元二次方程x2﹣(m+3)x+m﹣1=0.(1)试判断该方程根的情况并说明理由;(2)若x1,x2是该方程的两个实数根,且3x1﹣x1x2+3x2=12,求m的值.22.如图,已知△ABC和△AED,边AB,DE交于点F,AD平分∠BAC,AF平分∠EAD,.(1)求证:△AED∽△ABC;(2)若BD=3,BF=2,求AB的长.23.某商店销售一款工艺品,平均每天可销售20件,每件盈利40元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,在一定范围内,每件工艺品的单价每降价1元,商场平均每天可多售出2件.(1)如果商店通过销售这种工艺品每天想盈利1050元,那么每件工艺品单价应降多少元?(2)能否通过降价使商店每天盈利达到1600元?请说明理由.24.等腰△ABC中,AB=AC,以AB为直径作圆交BC于点D,请仅用无刻度的直尺,根据下列条件分别在图1、图2中画一条弦,使这条弦的长度等于弦BD.(保留作图痕迹,不写作法)(1)如图1,∠A<90°;(2)如图2,∠A>90°.25.如图,以△ABC的边AB为直径的半圆O分别交BC,AC于点D,E,已知,过点D作DF⊥AC于点F.(1)求证:DF是⊙O的切线;(2)若AB=10,BC=12,求DF和AE的长.26.如图,平行四边形ABCD的面积为96,AB=10,BC=12,∠B为锐角.点E在边BC上,过点E作边BC的垂线,交平行四边形的其它边于点F,在EF的右侧作正方形EFGH.(1)如果点G在对角线AC上,则正方形EFGH的面积为 ;(2)设EF与对角线AC交于点P,如果点G与点D重合,求AP:CP的值;(3)如果点F在边AB上,且△GCH与△BEF相似,求BE的长.27.【问题发现】(1)如图1,将正方形ABCD和正方形AEFG按如图所示的位置摆放,连接BE和DG,延长DG交BE的延长线于点H,请直接写出BE与DG的数量关系和位置关系.【类比探究】(2)若将“正方形ABCD和正方形AEFG“;改成“矩形ABCD和矩形AEFG,且矩形ABCD∽矩形AEFG,AE=3,AG=4”,如图,点E、D、G三点共线,点G在线段DE上时,若,求BE的长.【拓展延伸】(3)若将“正方形ABCD和正方形AEFG改成“菱形ABCD和菱形AEFG,且菱形ABCD∽菱形AEFG,如图3,AD=5,AC=6,AG平分∠DAC,点P在射线AG上,过点P作PQ⊥AF,垂足为点Q,连接QC,当∠PQC=∠DAC时,求AP的长.28.如图1,在△ABC中,∠C=90°,AC=8,BC=6,D、E分别是AB,AC上的点,DF∥BC交AC 于F点,过点D,E,F的外接圆于AB相切于点D,交BE于G,连结DE.(1)求证:∠AED=∠ABC.(2)若,求CE的长.(3)如图2,M为BE的中点,连结FG,DM.①当FG与△DMB的一边平行时,求所有满足条件的DM的长.②连结FM交DE于点H,若,求△EFM的面积.参考答案与试题解析一.选择题(共10小题)1.(3分)下列方程是一元二次方程的是( )A.2x+1=0B.x2﹣3x+1=0C.x2+y=1D.【分析】根据一元二次方程的定义,逐项判断即可求解.【解答】解:A、2x+1=0,不是一元二次方程,故本选项不符合题意;B、x2﹣3x+1=0,是一元二次方程,故本选项符合题意;C、x2+y=1,不是一元二次方程,故本选项不符合题意;D、,不是一元二次方程,故本选项不符合题意.故选:B.【点评】本题考查了一元二次方程的定义,属于基础概念题型,只含有一个未知数,并且含未知数的项的最高次数是2的整式方程叫做一元二次方程,熟知一元二次方程的概念是解题关键.2.(3分)若方程x2﹣2x﹣3=0的一个实数根为m,则2026﹣m2+2m的值是( )A.2024B.2023C.2022D.2021【分析】依据题意,根据方程的根满足方程,进而将m代入方程得m2﹣2m﹣3=0,再整体代入即可得解.【解答】解:∵方程x2﹣2x﹣3=0的一个实数根为m,∴m2﹣2m﹣3=0.∴m2﹣2m=3.∴2026﹣m2+2m=2026﹣(m2﹣2m)=2026﹣3=2023.故选:B.【点评】本题主要考查一元二次方程的解,解题时要熟练掌握并理解是关键.3.(3分)用配方法解方程x2+8x+7=0,则配方正确的是( )A.(x+4)2=9B.(x﹣4)2=9C.(x﹣8)2=16D.(x+8)2=57【分析】本题可以用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.【解答】解:∵x2+8x+7=0,∴x2+8x=﹣7,⇒x2+8x+16=﹣7+16,∴(x+4)2=9.∴故选:A.【点评】此题考查配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.(3分)下列说法正确的是( )A.经过三点可以作一个圆B.三角形的外心到这个三角形的三边距离相等C.等弧所对的圆心角相等D.相等的圆心角所对的弧相等【分析】根据确定圆的条件对A进行判断;根据三角形外心的定义对B进行判断;根据圆心角、弦、弧的关系对C、D进行判断.【解答】解:A、经过不共线的三点可以作一个圆,所以A选项错误;B、三角形的外心到这个三角形的三个顶点的距离相等,所以B选项错误;C、等弧所对的圆心角相等,所以C选项正确;D、在同圆或等圆中,相等的圆心角所对的弧相等,所以D选项错误.故选:C.【点评】本题考查了确定圆的条件:不在同一直线上的三点确定一个圆.原式考查了圆心角、弦、弧的关系和三角形的外接圆.5.(3分)在△ABC中,D、E分别在△ABC的边AB、AC上,下列条件中不能判定DE∥BC的是( )A.B.C.∠AED=∠C D.【分析】根据平行线分线段成比例定理对各个选项进行判断即可.【解答】解:如图:A、,不能判定DE∥BC,故A符合题意;B、∵,∴DE∥BC,故B不符合题意;C、∵∠AED=∠C,∴DE∥BC,故C不符合题意;D、∵,∴DE∥BC,故D不符合题意.故选:A.【点评】本题主要考查了平行线分线段成比例定理,平行线的判定,如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.6.(3分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若CD=6,AB=10,则AE的长为( )A.1B.2C.3D.4【分析】连接OC,由垂径定理求出EC的长,由勾股定理求出OE的长,即可得到AE的长.【解答】解:连接OC,∵直径AB⊥CD,∴EC=CD=×6=3,∵AB=10,∴OC=OA=5,∴OE==4,∴AE=OA﹣OE=1.故选:A.【点评】本题考查垂径定理,勾股定理,关键是通过作辅助线构造直角三角形,应用垂径定理求出CE 的长,由勾股定理求出OE的长.7.(3分)如图,AB是⊙O的直径,C,D为⊙O上的点,且点D在上.若∠D=130°.则∠CAB的度数为( )A.30°B.40°C.50°D.60°【分析】利用圆内接四边形的性质求出∠B=50°,再求出∠CAB即可.【解答】解:∵∠D+∠B=180°,∠D=130°,∴∠B=50°,∵AB是直径,∴∠ACB=90°,∴∠CAB=90°﹣∠B=90°﹣50°=40°.故选:B.【点评】本题考查圆周角定理,圆内接四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.(3分)如图,⊙O是锐角三角形ABC的外接圆,OD⊥AB,OE⊥BC,OF⊥AC.垂足分别为D,E,F,连接DE,EF,FD.若DE+DF=6.5,△ABC的周长为21,则EF的长为( )A.8B.4C.3.5D.3【分析】根据垂径定理得到AD=BD,AF=CF,BE=CE,根据三角形的中位线定理得到DE+DF+EF=(AB+BC+AC)==10.5,于是得到结论.【解答】解:∵OD⊥AB,OE⊥BC,OF⊥AC,∴AD=BD,AF=CF,BE=CE,∴DE,DF,EF是△ABC的中位线,∴DE=,∴DE+DF+EF=(AB+BC+AC)==10.5,∵DE+DF=6.5,∴EF=10.5﹣6.5=4,故选:B.【点评】本题考查了三角形外接圆与外心,三角形中位线定理,垂径定理,熟练掌握三角形中位线定理是解题的关键.9.(3分)如图,将5个全等的等腰三角形拼成内外两个大小不同的正五边形图案,设小正五边形边长为1,则大正五边形边长为( )A.B.C.D.【分析】根据多边形的内角和定理得到∠ABE==108°,等量代换得到∠CBE+∠ABC=∠BAC+∠ABC=108°,如图,作∠ACB的平分线CD交AB于D,根据相似三角形的性质即可得到结论.【解答】解:在正五边形ABEFG中,∠ABE==108°,∵将5个全等的等腰三角形拼成内外两个大小不同的正五边形图案,∴∠CBE+∠ABC=∠BAC+∠ABC=108°,如图,作∠ACB的平分线CD交AB于D,∵AB=AC,∴∠ABC=∠ACB,∴∠ACB+∠BAC+∠ABC=108°+∠ACB=180°,∴∠ABC=∠ACB=72°,∴∠BAC=36°,∴∠ACD=∠BCD=∠BAC=36°,∴∠BCD=∠BAC,AD=CD=BC,∴△ABC∽△CBD,∴=,∵AB=BC+1,∴BD=AB﹣AD=AB﹣BC=1,∴=,∴BC=,∴AB=BC+1=,故选:D.【点评】本题考查了正多边形与圆,等腰三角形的性质,全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.10.(3分)如图,AB为⊙O直径,C为圆上一点,I为△ABC内心,AI交⊙O于D,OI⊥AD于I,若CD=4,则AC为( )A.B.C.D.5【分析】连接BD、CD、BI,由已知可得BD=CD=4,进而可证ID=BD=4,勾股定理计算AB,连接OD交BC于点E,则OD⊥BC,设DE=x,利用OB2﹣OE2=BD2﹣DE2求x,再利用勾股定理求AC即可.【解答】解:连接BD、CD、BI,∵I为△ABC内心,∴∠BAD=∠CAD,∠ABI=∠CBI,∴,∴BD=CD=4,∵∠DBI=∠DBC+∠CBI=∠DAC+∠CBI=∠DAB+∠ABI=∠BID,∴ID=BD=4,∵OI⊥AD,∴AD=2ID=8,∴AB=,连接OD交BC于点E,则OD⊥BC,设DE=x,则OE=AB﹣x=2﹣x,∵OB2﹣OE2=BD2﹣DE2,∴(2)2﹣(2﹣x)2=42﹣x2,解得:x=,∴BE=,∴BC=2BE=,∵AB为⊙O直径,∴∠ACB=90°,∴AC=,故选:A.【点评】本题考查了三角形的内切圆和内心,三垂径定理,圆周角定理,三角形外角性质,等知识点的应用,正确作出辅助线后求出AD=2BD是解此题的关键,有一定的难度.二.填空题(共8小题)11.(3分)若方程x2﹣ax+3=0的一个根为1,则a= 4 .【分析】把x=1代入原方程得到关于a的方程1﹣a+3=0,然后解方程即可.【解答】解:把x=1代入原方程得,1﹣a+3=0,解得a=4.故答案为4.【点评】考查了一元二次方程ax2+bx+c=0(a≠0)的解的定义:使方程左右两边成立的未知数的值叫方程的解.12.(3分)已知圆锥的底面半径是5cm,母线长10cm,则侧面积是 50π cm2.【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式即可求解.【解答】解:圆锥的底面周长是:2×5π=10π(cm),则圆锥的侧面积是:.故答案为:50π.【点评】本题考查了扇形的面积公式,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.13.(3分)如果关于x的一元二次方程(m﹣1)x2+2x+1=0有两个不相等的实数根,则m的取值范围是 m<2且m≠1 .【分析】根据一元二次方程的定义和判别式的意义得到m﹣1≠0且Δ=22﹣4(m﹣1)>0,然后求出两不等式解集的公共部分即可.【解答】解:根据题意得m﹣1≠0且Δ=22﹣4(m﹣1)>0,解得m<2且m≠1.故答案为m<2且m≠1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.14.(3分)如图,扇形OAB的半径为1,分别以点A、B为圆心,大于AB的长为半径画弧,两弧相交于点P,∠BOP=35°,则的长l= π (结果保留π).【分析】由等腰三角形的性质求出∠AOB的度数,由弧长公式即可计算.【解答】解:由作图知:OP垂直平分AB,∵OA=OB,∴∠AOB=2∠BOP=2×35°=70°,∵扇形的半径是1,∴的长==π.故答案为:π.【点评】本题考查弧长的计算,关键是掌握弧长公式.15.(3分)已知⊙O的半径是4,圆心O到直线l的距离d为方程x2﹣4x﹣5=0的一个根,则⊙O与直线l的位置关系为 相离 .【分析】首先求出方程的根,得到圆心O到直线l的距离为d,若d<r,则直线与圆相交;若d=r,则直线与圆相切;若d>r,则直线与圆相离,从而得出答案.【解答】解:∵x2﹣4x﹣5=0,∴(x+1)(x﹣5)=0,解得:x1=﹣1,x2=5,∵点O到直线l距离是方程x2﹣4x﹣5=0的一个根,∴x=5,∴点O到直线l的距离d=5,∵r=4,∴d>r,∴直线l与圆相离,故答案为:相离.【点评】本题主要考查了直线与圆的位置关系,一元二次方程的解,解一元二次方程﹣因式分解法,解决问题的关键是掌握比较圆心到直线的距离d与圆的半径r大小关系判定直线与圆的位置关系.16.(3分)如图,在△ABC中,点D、E为边AB三等分点,点F、G在边BC上,AC∥DG∥EF,点H 为AF与DG的交点.若HD=3,则AC的长为 18 .【分析】首先根据点D、E为边AB的三等分点得AB=3BE,AE=2AD,根据DG∥EF得△ADH和△AEF相似,可求出EF的长,再根据EF∥AC得△BEF和△BAC相似,从而可求出AC的长.【解答】解:∵点D、E为边AB的三等分点,∴AD=DE=EB,∴AB=3BE,AE=2AD,∵DG∥EF,∴△ADH∽△AEF,∴DH:EF=AD:AE,∵HD=3,AE=2AD,∴3:EF=AD:2AD,∴EF=6,∵EF∥AC,∴△BEF∽△BAC,∴EF:AC=BE:AB,∵EF=6,AB=3BE,∴6:AC=BE:3BE,∴AC=18,故答案为:18.【点评】此题主要考查了相似三角形的判定和性质,解答此题的关键是理解平行于三角形一边的直线截其它两边,所截得的三角形与原三角形相似,相似三角形的对应边成比例.17.(3分)如图,点O是矩形ABCD对角线BD上的一点,⊙O经过点C,且与AB边相切于点E,若AB=4,BC=5,则⊙O的半径长为 .【分析】连接OE,并延长EO交点CD于点F,连接OC,根据FE//BC得△DOF∽△DBC,然后设圆的半径为r,OE=OC=r,求出r=5﹣x,用含x的式子表示出OF,CF,OC,再在△OCF中,利用勾股定理构建方程求出x,继而可得答案.【解答】解:连接OE,并延长EO交点CD于点F,连接OC,设半径为r,AE=x,则BE=4﹣x,则EF⊥AB,∵四边形ABCD是矩形,∴BC⊥AB,∴EF∥BC,∴△DOF∽△DBC,四边形BCFE是矩形,∴,即=,CF=BE=4﹣x,∴r=5﹣x,则OF=x,CF=4﹣x,在Rt△OCF中,∵CF2+OF2=OC2,∴(4﹣x)2+(x)2=(5﹣x)2,解得x=或x=﹣6(舍),则r=5﹣x=,故答案为:.【点评】本题考查的是切线的性质、矩形的性质、相似三角形的判定和性质、勾股定理,掌握圆的切线垂直于经过切点的半径是解题的关键.18.(3分)如图,AB是⊙O的直径,C是⊙O上的一动点,以AC为边在其左侧作正方形ACEF.连接BF,则的最大值为 .【分析】连接OC,把△AOC绕点A顺时针旋转90°,得到△AO1F,连接O1B,先求出点F在以r为半径的⊙O上运动,取得BF最大值为BO1+r,再根据勾股定理求出BO1=r,最后代入化简即可.【解答】解:连接OC,把△AOC绕点A顺时针旋转90°,得到△AO1F,连接O1B.设AO=OC=r,则AB=2r,∴O1F=OC=r,∴点F在以r为半径的⊙O上运动,∴当点F运动至BO1的延长线与⊙O1的交点处(B,O1,F三点共线)时,BF取得最大值,最大值为BO1+r.在Rt△AO1B中,BO1==r,∴BF的最大值为(+1)r,∴的最大值为.故答案为:.【点评】本题考查了旋转的性质,勾股定理,正方形的性质,求圆上一点到圆外一点的最短距离,熟练掌握各知识点是解题的关键.三.解答题(共10小题)19.解方程:(1)(x﹣1)2=36;(2)2x2﹣7x+3=0.【分析】(1)根据直接开平方法解方程即可;(2)根据因式分解法解方程即可.【解答】解:(1)x﹣1=±6,∴x1=7,x2=﹣5;(2)(2x﹣1)(x﹣3)=0,2x﹣1=0或x﹣3=0,∴x1=,x2=3.【点评】本题考查了解一元二次方程﹣因式分解法,解一元二次方程﹣直接开平方法,解决本题的关键是掌握因式分解法和直接开平方法.20.解方程:(1)(x﹣5)2=2x﹣10;(2)(2x﹣5)2﹣(2x﹣5)﹣2=0.【分析】(1)利用因式分解法解方程;(2)利用因式分解法解方程.【解答】解:(1)方程整理,得:(x﹣5)2﹣2(x﹣5)=0,因式分解,得:(x﹣5)(x﹣5﹣2)=0.于是,得:x﹣5=0或x﹣7=0,解得x1=5,x2=7;(2)(2x﹣5)2﹣(2x﹣5)﹣2=0.因式分解得:(2x﹣5+1)(2x﹣5﹣2)=0,即(2x﹣4)(2x﹣7)=0,∴2x﹣4=0或2x﹣7=0,解得:x1=2,x2=.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解答本题的关键.21.关于x的一元二次方程x2﹣(m+3)x+m﹣1=0.(1)试判断该方程根的情况并说明理由;(2)若x1,x2是该方程的两个实数根,且3x1﹣x1x2+3x2=12,求m的值.【分析】(1)利用一元二次方程根的判别式即可求解.(2)利用一元二次方程根与系数的关系即可求解.【解答】解:(1)有两个不相等的实数根,理由如下:Δ=[﹣(m+3)]2﹣4(m﹣1)=m2+2m+13=(m+1)2+12,∵(m+1)2≥0,∴(m+1)2+12≥12,∴原方程有两个不相等的实数根.(2)由题意得:x1x2=m﹣1,x1+x2=m+3,∴3x1﹣x1x2+3x2=3(x1+x2)﹣x1x2=3(m+3)﹣(m﹣1)=12,解得:m=1.【点评】本题考查了一元二次方程根与系数的关系及根的判别式,熟练掌握一元二次方程根与系数的关系及根的判别式是解题的关键.22.如图,已知△ABC和△AED,边AB,DE交于点F,AD平分∠BAC,AF平分∠EAD,.(1)求证:△AED∽△ABC;(2)若BD=3,BF=2,求AB的长.【分析】(1)先由角平分线的定义说明∠BAC=∠EAD,再由已知可得结论;(2)先由(1)三角形相似得∠B=∠E,再由已知角平分线的定义、公共角可得△BDF∽△BAD,代入计算得结论.【解答】(1)证明:∵AD平分∠BAC,AF平分∠EAD,∴∠BAC=2∠EAB=2∠BAD,∠EAD=2∠BAD.∴∠BAC=∠EAD.又∵,∴△AED∽△ABC.(2)解:由(1)知△AED∽△ABC,∴∠B=∠E.又∵∠EFA=∠BFD,∴∠EAB=∠EDB.∵∠EAB=∠BAD,∴∠EDB=∠BAD.又∵∠B=∠B,∴△BDF∽△BAD.∴=.∴AB===.答:AB的长为.【点评】本题主要考查了相似三角形的性质与判定,掌握角平分线的定义和相似三角形的性质与判定是解决本题的关键.23.某商店销售一款工艺品,平均每天可销售20件,每件盈利40元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,在一定范围内,每件工艺品的单价每降价1元,商场平均每天可多售出2件.(1)如果商店通过销售这种工艺品每天想盈利1050元,那么每件工艺品单价应降多少元?(2)能否通过降价使商店每天盈利达到1600元?请说明理由.【分析】(1)设每件工艺品单价应降x元(x<40),则当天销售量为(20+2x)件,根据题意列出一元二次方程,解方程即可求解.(2)解:设每件工艺品单价应降为y元(y<40),则当天的销售量为(20+2y)件,根据题意列出一元二次方程,解方程即可求解.【解答】解:(1)设每件工艺品单价应降x元(x<40),则当天销售量为(20+2x)件,依题意,得:(40﹣x)(20+2x)=1050,整理,得x2﹣30x+125=0,解得:x1=25,x2=5(不合题意,舍去).答:商店想通过销售这种工艺品每天想盈利1050元,每件工艺品单价应降25元;(2)不能,理由如下:设每件工艺品单价应降为y元(y<40),则当天的销售量为(20+2y)件,依题意,得:(40﹣y)(20+2y)=1600,整理,得:y2﹣30y+400=0.∵Δ=(﹣30)2﹣4×1×400=﹣700<0,∴该方程无实数根,即不能通过降价使商店每天盈利达到1600元.【点评】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.24.等腰△ABC中,AB=AC,以AB为直径作圆交BC于点D,请仅用无刻度的直尺,根据下列条件分别在图1、图2中画一条弦,使这条弦的长度等于弦BD.(保留作图痕迹,不写作法)(1)如图1,∠A<90°;(2)如图2,∠A>90°.【分析】(1)如图1,连接AD,由于AB为直径,则∠ADB=90°,由于AB=AC,所以AD平分∠BAC,即∠BAD=∠EAD,于是得到BD=DE;(2)如图2,延长CA交圆于E,连接BE、DE,与(1)一样得到∠BAD=∠DAC,而∠DAC=∠DBE,所以∠DBE=∠BAD,所以DE=BD.【解答】解:(1)如图1,DE为所作:(2)如图2,DE为所作:【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.25.如图,以△ABC的边AB为直径的半圆O分别交BC,AC于点D,E,已知,过点D作DF⊥AC于点F.(1)求证:DF是⊙O的切线;(2)若AB=10,BC=12,求DF和AE的长.【分析】(1)连接OC,由题意易得∠ADB=∠ADC=90°,然后可得OC是△ABC的中位线,进而根据平行线的性质可进行求证;(2)由(1)知,则根据勾股定理可得AD=8,然后根据等积法可得,进而可得△CDE∽△CAB,则根据相似三角形的性质可进行求解.【解答】(1)证明:连接OD,如图所示:∵AB为⊙O的直径,∴∠ADB=∠ADC=90°,∵,∴∠CAD=∠BAD,∴∠B=∠C,∴AC=AB,∴DC=DB,∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∵DF⊥AC,∴DF⊥OD,∴DF是⊙O的切线;(2)解:由(1)知,在△ABD中,由勾股定理得,,由得,;∵∠DCE=∠ACB,∠CED=∠CBA,∴△CDE∽△CAB,∴,∴,∴,∴.【点评】本题主要考查切线的性质与判定、圆周角的性质及相似三角形的性质与判定,熟练掌握切线的性质与判定、圆周角的性质及相似三角形的性质与判定是解题的关键.26.如图,平行四边形ABCD的面积为96,AB=10,BC=12,∠B为锐角.点E在边BC上,过点E作边BC的垂线,交平行四边形的其它边于点F,在EF的右侧作正方形EFGH.(1)如果点G在对角线AC上,则正方形EFGH的面积为 ;(2)设EF与对角线AC交于点P,如果点G与点D重合,求AP:CP的值;(3)如果点F在边AB上,且△GCH与△BEF相似,求BE的长.【分析】(1)过A作AM⊥BC垂足为M,根据面积计算出AM=8,根据勾股定理计算出,从而得到AM垂直平分BC,再证明△BEF≌△CHG得到BE=HC,设FE=x,分别得到,根据BC=BE+EH+HC建立方程,解方程即可得到答案;(2)根据矩形的性质推到得EF=AM=8,得出AF=AD﹣FD=12﹣8=4,再根据勾股定理计算出CH=6,通过AF∥EC证明△AFP∽△CEP,通过三角形的相似比计算出AP:CP;(3)根据∠B=∠HCG和∠B=∠HGC两种情况进行讨论,当∠B=∠HCG可利用(1)得结论得到答案,当∠B=∠HG C时,EF=x,得;,EH=GH=x,根据HC=BC﹣BE﹣EH得到,再根据相似三角形的相似比建立方程,解方程即可得到答案.【解答】解:(1)如图所示,过A作AM⊥BC垂足为M,∵AM⊥BC,平行四边形ABCD的面积为96,∴BC•AM=96,∴AM=8,∴,∴MC=6,∴AM垂直平分BC,∴AB=AC,∠B=∠ACB,设FE=x,∵AM⊥BC,EF⊥BC,∴AM∥EF,∴△BFE∽△BAM,∴,∴,∴,在△BEF和△CHG中,∴△BEF≌△CHG(AAS),∴,∵EH=EF=x,BC=BE+EH+HC,∴,∴S正方形EFGH=;(2)如图所示,过A作AM⊥BC垂足为M,∴AM∥EF,AM⊥BC,∵平行四边形ABCD,∴AF∥BC,∴四边形AMEF为矩形,∴EF=AM=8,∵AD=BC=12,FD=EF,∴AF=AD﹣FD=12﹣8=4,∵CD=10,DH=8,∴CH=6,∴EC=EH﹣CH=8﹣6=2,∵AF∥EC,∴∠FAP=∠PCE,∠AFP=∠PEC,∴△AFP∽△CEP,∴,∴AP:CP=2:1;(3)如图所示,∵△BEF∽△CHG,当∠B=∠HCG时,点G在AC上时,由(1)得△BEF≌△CHG,;当∠B=∠HGC时,点G不在AC上,如图所示,∵△BEF∽△CHG,∴,设EF=x,得,EH=GH=x,∴,∴,,∴,∴,∴.【点评】本题考查正方形的性质、平行四边形的性质、全等三角形性质和判定和相似三角形的性质和判定,解题的关键是灵活运用相似三角形的相似比建立方程.27.【问题发现】(1)如图1,将正方形ABCD和正方形AEFG按如图所示的位置摆放,连接BE和DG,延长DG交BE的延长线于点H,请直接写出BE与DG的数量关系和位置关系.【类比探究】(2)若将“正方形ABCD和正方形AEFG“;改成“矩形ABCD和矩形AEFG,且矩形ABCD∽矩形AEFG,AE=3,AG=4”,如图,点E、D、G三点共线,点G在线段DE上时,若,求BE的长.【拓展延伸】(3)若将“正方形ABCD和正方形AEFG改成“菱形ABCD和菱形AEFG,且菱形ABCD∽菱形AEFG,如图3,AD=5,AC=6,AG平分∠DAC,点P在射线AG上,过点P作PQ⊥AF,垂足为点Q,连接QC,当∠PQC=∠DAC时,求AP的长.【分析】(1)证明两三角形全等,证得相关线段与角的关系,进一步证明相似,进而得出位置关系;(2)由矩形相似得出对应边成比例且夹角相等,证得相似得出比例线段,再根据勾股定理求出关键线段,即可求解;(3)根据题意进行分类讨论,画出图形,运用解直角三角形、勾股定理、相似三角形、特殊四边形、角平分线特性,求出关键线段即可求解.【解答】解:(1)BE=DG,BE⊥DG.证明:在正方形ABCD和正方形AEFG中,AB=AD,AE=AG,∠EAG=∠BAD=90°,∴∠EAG﹣∠BAG=∠BAD﹣∠BAG,即∠EAB=∠GAD,∴△EAB≌△GAD(SAS),∴∠EBA=∠GDA,BE=DG,∵∠BOH=∠AOD,∴△BHO∽△DAO,∴∠BHO=∠BAD=90°,∴BE⊥DG;(2)过点A作AM⊥DE于点M,∵矩形ABCD∽矩形AEFG,AE=3,AG=4,∴,∠EAG=∠BAD=90°,∴∠EAG﹣∠BAG=∠BAD﹣∠BAG,即∠EAB=∠GAD,∴△EAB∽△GAD,∴,在Rt△AEG中,=5,,∴AM=,MG=,MD=,∴GD=MD﹣MG=4,∵,∴BE=3;(3)①当点P在线段AG上时,根据题意作图如下:连接BD交AC于点O,作CM⊥AF,交AF的延长线于点M,作CN∥AG交AF 于点N,∵菱形ABCD∽菱形AEFG,∴∠DAB=∠GAE,∠DAC=∠BAD,∠GAF=∠GAE,BD⊥AC,AO=AC=3,∴∠DAC=∠GAF,∴∠DAG=∠CAF,∵AG平分∠DAC,∴∠DAG=∠DAC,∴∠GAC=∠CAF=∠GAF,∵CN∥AG,∴∠GAC=∠ACN,∠CNM=∠GAF,∴∠CAF=∠ACN,∴AN=CN,在Rt△ADO中,cos∠DAC=,∴cos∠CNM=cos∠PQC=cos∠PAQ=,∴tan∠APQ==,∵PQ⊥AF,∴∠PAQ+∠APQ=∠PQC+∠CQM=90°,∴∠APQ=∠CQM,∴tan∠CQM=tan∠APQ==,即,在Rt△CNM中,可得三边比值为:MN:CM:CN=3:4:5,∵AN=CN,∴CM:AM=1:2,在Rt△CAM中,设CM为3x,则QM=4x,AM=6x,根据勾股定理得:AM2+CM2=AC2,即(6x)2+(3x)2=62,解得:x=,∴AQ=AM﹣QM=2x=,∴AP=AQ=;②当点P在线段AG的延长线上时,根据题意作图如下:过点C作CM⊥AF于点M,同①可知:此时AQ=AM+MQ=10x,∴AQ=10×=,∴AP=AQ=,所以AP的长为或.【点评】本题综合考查了全等三角形的判定与性质、相似三角形的判定与相似、正方形、矩形、菱形的性质、勾股定理、角平分线性质、等腰三角形的性质、解直角三角形等知识和技能,根据图形进行分类讨论是解题的关键.28.如图1,在△ABC中,∠C=90°,AC=8,BC=6,D、E分别是AB,AC上的点,DF∥BC交AC 于F点,过点D,E,F的外接圆于AB相切于点D,交BE于G,连结DE.(1)求证:∠AED=∠ABC.(2)若,求CE的长.(3)如图2,M为BE的中点,连结FG,DM.①当FG与△DMB的一边平行时,求所有满足条件的DM的长.②连结FM交DE于点H,若,求△EFM的面积.【分析】(1)由DF∥BC可知∠DFE=∠AFD=∠C=90°,再由过点D,E,F的外接圆于AB相切于点D得出∠ADE=90°,从而利用同角的余角相等即可得证;(2)取DE的中点O,连接EO,GO,则点O是过点D,E,F的外接圆的圆心,DO=FO=EO=GO,证明∠BEC=∠ABC从而得到△BEC∽△ABC,由相似三角形的性质得出,从而得解;(3)①分FG∥BD和FG∥DM两种情况讨论,当FG∥BD时,利用垂径定理得到EF=EG,再利用平行线分线段成比例得到证明AE=BE,从而设AE=BE=x,根据勾股定理列方程得到62+(8﹣x)2=x2,求出BE的长,利用直角三角形斜边上的中线等于斜边的一半求出DM即可;当FG∥DM时,先利用平行线的性质和等腰三角形的性质证明,再过点M作MP⊥BE,构造垂直平分线,从而得到PE=PB,有利用AAS证明△PDE≌△ADE,从得到AD=PD,DE=3x可得AD=PD=4x,PB=5x,利用AB的长度列方程可求出x,利用勾股定理得到BE,最后利用直角三角形斜边上的中线等于斜边的一半求出DM即可;②过点E作EQ∥BC,FM于点Q,延长FM交BC于点R,取CE的中点S,则SM是△CEB的中位线,则有MS⊥AC,,设AF=4a,则CF=8﹣4a利用EQ∥DF求出EQ,求出DF和EF 的长,利用SSA证明△EQM≌△BRM,从而得到EQ=BR=2a,CR=BC﹣BR=6﹣2a,最后利用△EFQ∽△CFR得到,解出a,得到EF的长度,根据三角形面积公式可得出答案.【解答】(1)证明:∵DF∥BC,∴∠DFE=∠AFD=∠C=90°,∴线段DE是过点D,E,F的外接圆的直径,又∵过点D,E,F的外接圆于AB相切于点D,∴∠ADE=90°,∠AED+∠A=90°,又∵∠C=90°,∴∠ABC+∠A=90°,∴∠AED=∠ABC;(2)解:取DE的中点O,连接FO,GO,则点O是过点D,E,F的外接圆的圆心,DO=FO=EO=GO,∵∠DFE=∠ADE=90°,∴∠AED+∠EDF=∠AED+∠A=90°,∴∠EDF=∠A,∠AED=90°﹣∠A,又∵DO=FO=EO=GO,∴∠DFO=∠EDF=∠A,∵=,∴FD=FG,∵FD=FG,DO=GO,FO=FO,∴△DFO≌△GFO(SSS),∴∠DFO=∠GFO=∠A,∴∠DEG=∠DFG=∠DFO+∠GFO=2∠A,∴∠BEC=180°﹣∠DEG﹣∠AED=180°﹣2∠A﹣(90°﹣∠A)=90°﹣∠A=∠AED=∠ABC,∵∠BEC=∠ABC,∠BCE=∠ACB=90°,∴△BEC∽△ABC,∴,。
人教版2020---2021学年度上学期九年级数学期末考试卷及答案含5套

第41页,共90页 第42页,共90页密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级 数学期末考试卷及答案(满分:120分 时间:120分钟)一、选择题(本大题每小题3分,满分42分) 1.2-的相反数是( )A.21 B.21- C.2- D.22.在实数2、0、1-、2-中,最小的实数是( ) A .2 B .0 C .1- D .2- 3.海南的富铁矿是国内少有的富铁矿之一,储量居全国第六位,其储量约为237 000 000吨,用科学记数法表示应为( )A. 237×106吨 B. 2.37×107吨 C. 2.37×108吨 D. 0.237×109吨 4.下列运算,正确的是( )A.523a a a =⋅B.ab b a 532=+C.326a a a =÷D.523a a a =+ 5. 下列各图中,是中心对称图形的是( )6. 方程042=-x的根是( )A. 2,221-==x xB. 4=xC. 2=xD. 2-=x7. 不等式组⎩⎨⎧-><-12x x 的解集是( ) A. 1->x B. 2-<x C. 2<x D. 21<<-x 8.函数1-=x y 中,自变量x 的取值范围是( )A. 1≥xB. 1->xC. 0>xD. 1≠x 9.下列各点中,在函数xy 2=图象上的点是( )A .(2,4)B .(-1,2)C .(-2,-1)D .(21-,1-)10.一次函数2+=x y 的图象不经过...( ) A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限11. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表: 跳高成绩(m) 1.501.551.601.651.70 1.75跳高人数1 323 5 1这些运动员跳高成绩的中位数和众数分别是( ) A .1.65,1.70 B .1.70,1.65 C .1.70,1.70 D .3,5 12.某农科院对甲、乙两种甜玉米各用10块相同条件的试验题号 一 二 三 总分 得分ABCD第7页,共90页 第8页,共90页田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s 甲2=0.002、s 乙2=0.03,则( ) A .甲比乙的产量稳定 B .乙比甲的产量稳定 C .甲、乙的产量一样稳定D .无法确定哪一品种的产 量更稳定13. 如图1,AB 、CD 相交于点O ,∠1=80°,如果DE ∥AB ,那么∠D 的度数为( )A. 80°B. 90°C. 100°D. 110°14. 如图2,正方形ABCD 的边长为2cm ,以B 点为圆心、AB长为半径作⋂AC ,则图中阴影部分的面积为( ) A.2)4(cm π- B. 2)8(cm π- C. 2)42(cm -π D. 2)2(cm -π二、填空题(本大题满分12分,每小题3分) 15. 计算:=-283.16.在一个不透明的布袋中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率是54,则n = .17.如图3,在等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,AB =6则AE = cm .18. 如图4,∠ABC=90°,O 为射线BC 上一点,以点O 21BO长为半径作⊙O ,当射线BA 绕点B 度时与⊙0相切.三、解答题(本大题满分56分) 19.计算(满分8分,每小题4分)(12314(2)2-⨯+-(2)化简:(a +1)(a -1)-a (a20.(满分8分)某商场正在热销2008年北京奥运会吉祥物A BC图3E DA B CO E1D图1A密封线学校班级姓名学号密封线内不得答题图10“福娃”玩具和一枚徽章的价格各是多少元?21.(8分)某中学学生会为考察该校学生参加课外体育活动的情况,采取抽样调查的方法从篮球、排球、乒乓球、足球及其他等五个方面调查了若干名学生的兴趣爱好(每人只能选其中一项),并将调查结果绘制成如下两幅不完整的统计图,请根据图中提供的信息解答下列问题:(1)在这次考察中一共调查了多少名学生?(2)在扇形统计图中,“乒乓球”部分所对应的圆心角是多少度?(3)补全条形统计图;(4)若全校有1800名学生,试估计该校喜欢篮球的学生约有多少人?22.(本题满分8分)如图的方格纸中,ABC∆的顶点坐标分别为()5,2-A、()1,4-B和()3,1-C(1)作出ABC∆关于x轴对称的111CBA∆,并写出点A、B、C的对称点1A、1B、1C的坐标;(2)作出ABC∆关于原点O对称的222CBA∆,并写出点A、B、C的对称点2A、2B、2C的坐标;(3)试判断:111CBA∆与222CBA∆是否关于y轴对称(只需写出判断结果).23.(本大题满分11分)如图,四边形ABCD是正方形,G是BC上任意一点(点G与B、C不重合),AE⊥DG于E,CF∥AE交DG于F.(1)在图中找出一对全等三角形,并加以证明;yAOxBC共计145元共计280元第21题图第41页,共90页第42页,共90页第7页,共90页 第8页,共90页(2)求证:AE=FC+EF.24.(13分)如图,已知二次函数图象的顶点坐标为C(1,0),直线m x y +=与该二次函数的图象交于A 、B 两点,其中A 点的坐标为(3,4),B 点在轴y 上. (1)求m 的值及这个二次函数的关系式;(2)P 为线段AB 上的一个动点(点P 与A 、B 不重合),过P 作x 轴的垂线与这个二次函数的图象交于点E 点,设线段PE 的长为h ,点P 的横坐标为x①求h 与x 之间的函数关系式,并写出自变量x 的取值范围;②线段PE 的长h 是否存在最大值?若存在,求出它的最大值及此时的x 值;若不存在,请说明理由?参考答案一、选择题(本大题每小题3ABCDE FG第41页,共90页 第42页,共90页密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题二、填空题(本大题满分12分,每小题3分)15.25 16. 8 17. 6 18. 60°或120 °三、解答题(本大题满分56分) 19.(本题满分8分,每小题4分)(1)原式=3 - 2 +(-8) (2)原式=a 2-1-a 2+a= -7 =a -120.(满分8分)解:设一盒“福娃”玩具和一枚徽章的价格分别为x 元和y 元.依题意,得 ⎩⎨⎧=+=+280321452y x y x 解这个方程组,得 ⎩⎨⎧==10125y x 答:一盒“福娃”玩具和一枚徽章的价格分别为125元和10元.21、(本题满分8分) 解:(1)∵,∴这次考察中一共调查了60名学生.(2)∵∴在扇形统计图中,“乒乓球”部分所对应的圆心角为90°(3),∴补全统计图如下图(4)∵∴可以估计该校学生喜欢篮球活动的约有450人22.满分(8分)解:(1)111C B A ∆如图,)5,2(1--A 、)1,4(1--B 、)3,1(1--C (2)222C B A ∆如图,)5,2(2-A 、)1,4(2-B 、)3,1(2-C(3)111C B A ∆与222C B A ∆关于y 轴对称23. (满分11分) (1) ΔAED ≌ΔDFC.60%106=%25%20%20%10%251=----︒=⨯︒90%2536012%2060=⨯450%251800=⨯题号 1 2 3 4 5 6 7 选择项 D D C A B A D 题号8 9 10 11 12 13 14 选择项ACDAACAADE FB 2yCAB C 1B 1A 1C 2A 2Ox∵四边形ABCD是正方形,∴ AD=DC,∠ADC=90º.又∵ AE⊥DG,CF∥AE,∴∠AED=∠DFC=90º,…∴∠EAD+∠ADE=∠FDC+∠ADE=90º,∴∠EAD=∠FDC.∴ΔAED≌ΔDFC (AAS).(2) ∵ΔAED≌ΔDFC,∴ AE=DF,ED=FC. …∵ DF=DE+EF,∴ AE=FC+EF. )24. (1) ∵点A(3,4)在直线y=x+m上,∴ 4=3+m.∴ m=1.设所求二次函数的关系式为y=a(x-1)2.∵点A(3,4)在二次函数y=a(x-1)2的图象上,∴ 4=a(3-1)2,∴ a=1.∴所求二次函数的关系式为y=(x-1)2.即y=x2-2x+1.(2) 设P、E两点的纵坐标分别为y P和y E .∴ PE=h=y P-y E=(x+1)-(x2-2x+1)=-x2+3x.…即h=-x2+3x (0<x<3).(3)略图7第7页,共90页第8页,共90页第41页,共90页 第42页,共90页密学校 班级姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期末考试卷及答案(满分:120分 时间:120分钟)一、选择题(共8小题,每小题3分,满分24分) 1.已知关于x 的一元二次方程x 2+2x ﹣a=0有两个相等的实数根,则a 的值是( )A .1B .﹣1C .D .﹣2.数据1,2,3,3,5,5,5的中位数和众数分别是( ) A .5,4 B .3,5 C .5,5 D .5,33.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都均为8.8环,方差分别为S 甲2=0.63,S 乙2=0.51,S 丙2=0.48,S 丁2=0.42,则四人中成绩最稳定的是( )A .甲B .乙C .丙D .丁4.如图,在⊙O 中,∠ABC=50°,则∠AOC 等于( )A .50°B .80°C .90°D .100°5.用一个圆心角为120°,半径为2的扇形作一个圆锥的侧面,则这个圆锥的底面圆半径为( ) A . B . C . D .6.二次函数y=ax 2+bx+c 图象上部分点的坐标满足表格:x … ﹣3 ﹣2 ﹣1 0 1 …y … ﹣3 ﹣2 ﹣3 ﹣6 ﹣11 … 则该函数图象的原点坐标为( )A .(﹣3,﹣3)B .(﹣2,﹣2)C .(﹣1,﹣3)D .(0,﹣6) 7.如果将抛物线y=x 2+2向下平移1个单位,那么所得新抛物线的表达式是( )A .y=(x ﹣1)2+2B .y=(x+1)2+2C .y=x 2+1D .y=x 2+3 8.如图,函数y=﹣x 与函数的图象相交于A ,B 两点,过A ,B 两点分别作y 轴的垂线,垂足分别为点C ,D .则四边形ACBD 的面积为( )A .2B .4C .6D .8线内不得答二、填空题(共6小题,每小题3分,满分18分)9.已知一元二次方程x2+mx﹣2=0的两个实数根分别为x1,x2,则x1•x2=______.10.如图,网格图中每个小正方形的边长为1,则弧AB的弧长l=______.11.二次函数y=﹣2(x﹣5)2+3的顶点坐标是______.12.如图,以BC为直径的⊙O与△ABC的另两边分别相交于点D、E.若∠A=60°,BC=4,则图中阴影部分的面积为______.(结果保留π)13.如图,点A、B、C在一次函数y=﹣2x+m的图象上,它们的横坐标依次为﹣1、1、2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积的和是______.14.如图,在平面直角坐标系中,抛物线y=a(x﹣1)2+k(k为常数)与x轴交于点A、B,与y轴交于点C,CD∥x与抛物线交于点D.若点A的坐标为(﹣1,0),则线段OB线段CD的长度和为______.三、解答题(共10小题,满分78分)15.解方程:x2+4x﹣7=0.16.在一个不透明的箱子中装有3个小球,分别标有A,B,C3第7页,共90页第8页,共90页第41页,共90页 第42页,共90页密线学校 班级 姓名 学号密 封 线 内 不 得 答 题17.为了了解我校开展的“养成好习惯,幸福一辈子”的活动情况,对部分学生进行了调查,其中一个问题是:“对于这个活动你的态度是什么?”共有4个选项: A .非常支持 B .支持 C .无所谓 D .反感根据调查结果绘制了两幅不完整的统计图.请你根据以上信息解答下列问题:(1)计算本次调查的学生人数和图(2)选项C 的圆心角度数; (2)请根据(1)中选项B 的部分补充完整;(3)若我校有5000名学生,你估计我校可能有多少名学生持反感态度.18.为落实国务院房地产调控政策,使“居者有其屋”,长春市加快了廉租房的建设力度,2013年市政府共投资2亿元人民币建设路廉租房8万平方米,预计到2015年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同,试求出市政府投资的增长率.19.如图,已知AB 是⊙O 的直径,P 为⊙O 外一点,且OP ∥BC ,∠P=∠BAC .(1)求证:PA 为⊙O 的切线; (2)若OB=5,OP=,求AC 的长.20.如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,A 、C 分别在坐标轴上,点B 的坐标为(4,2),直线y=﹣x+3交AB ,BC 分别于点M ,N ,反比例函数y=的图象经过点M ,N .(1)求反比例函数的解析式;(2)若点P 在y 轴上,且△OPM 的面积与四边形BMON 的面积相等,求点P 的坐标.密21.甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC﹣CD﹣DE,如图所示,从甲队开始工作时计时.(1)分别求线段BC、DE所在直线对应的函数关系式.(2)当甲队清理完路面时,求乙队铺设完的路面长.22.如图,已知抛物线y=ax2+bx(a≠0)经过A(﹣2,0),B(﹣3,3),顶点为C.(1)求抛物线的解析式;(2)求点C的坐标;(3)若点D在抛物线上,点E在抛物线的对称轴上,且以O、D、E为顶点的四边形是平行四边形,直接写出点D23.已知某种水果的批发单价与批发量的函数关系如图(1所示.(1)请说明图(1)中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w(元)与批发量m(之间的函数关系式;在图(2)指出金额在什么范围内,该种水果.(3)经调查,某经销商销售该种水果的日最高销量y(kg零售价x所示,该经销商拟每日售出不低于64kg得日获得的利润z(元)最大.第7页,共90页第8页,共90页密线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.如图,在菱形ABCD 中,AB=6,∠ABC=60°,动点E 、F 同时从顶点B 出发,其中点E 从点B 向点A 以每秒1个单位的速度运动,点F 从点B 出发沿B ﹣C ﹣A 的路线向终点A 以每秒2个单位的速度运动,以EF 为边向上(或向右)作等边三角形EFG ,AH 是△ABC 中BC 边上的高,两点运动时间为t 秒,△EFG 和△AHC 的重合部分面积为S .(1)用含t 的代数式表示线段CF 的长; (2)求点G 落在AC 上时t 的值; (3)求S 关于t 的函数关系式;(4)动点P 在点E 、F 出发的同时从点A 出发沿A ﹣H ﹣A 以每秒2单位的速度作循环往复运动,当点E 、F 到达终点时,点P 随之运动,直接写出点P 在△EFG 内部时t 的取值范围.参考答案一、选择题(共8小题,每小题3分,满分24分) 1. B .2.B .3.D . 4.D . 5.D .6.B .7C .8.D . 二、填空题(共6小题,每小题3分,满分18分) 9.已知一元二次方程x 2+mx ﹣2=0的两个实数根分别为x 1,x 2,则x 1•x 2= ﹣2 .得 答 题10.如图,网格图中每个小正方形的边长为1,则弧AB 的弧长l=.11.二次函数y=﹣2(x ﹣5)2+3的顶点坐标是 (5,3) . 12.如图,以BC 为直径的⊙O 与△ABC 的另两边分别相交于点D 、E .若∠A=60°,BC=4,则图中阴影部分的面积为 π .(结果保留π)13.如图,点A 、B 、C 在一次函数y=﹣2x+m 的图象上,它们的横坐标依次为﹣1、1、2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积的和是 3 .14.如图,在平面直角坐标系中,抛物线y=a (x ﹣1)2+k (a 、k 为常数)与x 轴交于点A 、B ,与y 轴交于点C ,CD ∥x 轴,与抛物线交于点D .若点A 的坐标为(﹣1,0),则线段OB 与线段CD 的长度和为 5 . 三、解答题(共10小题,满分78分) 15.解方程:x 2+4x ﹣7=0. 解:x 2+4x ﹣7=0, 移项得,x 2+4x=7, 配方得,x 2+4x+4=7+4, (x+2)2=11, 解得x+2=±,即x 1=﹣2+,x 2=﹣2﹣16.解:如图所示:P (两次摸出的小球所标字母不同)==.17.解:(1)根据题意得:60÷30%=200(名),30÷200×=54°,则本次调查的学生人数为200名,图(2)选项C 数为54°;(2)选项B 的人数为200﹣(60+30+10)=100(名)形统计图,如图(1)所示,(3)根据题意得:5000×5%=250(名), 则估计我校可能有250名学生持反感态度.密学校 班级 姓名 学号密 封 线 内 不 得 答 题18.解:设每年市政府投资的增长率为x ,根据题意,得:2+2(1+x )+2(1+x )2=9.5, 整理,得:x 2+3x ﹣1.75=0, 解得:x 1=0.5,x 2=﹣3.5(舍去).答:每年市政府投资的增长率为50%. 19.(1)证明:∵AB 是⊙O 的直径,∴∠ACB=90°, ∴∠BAC+∠B=90°. 又∵OP ∥BC , ∴∠AOP=∠B , ∴∠BAC+∠AOP=90°. ∵∠P=∠BAC . ∴∠P+∠AOP=90°,∴由三角形内角和定理知∠PAO=90°,即OA ⊥AP . 又∵OA 是的⊙O 的半径, ∴PA 为⊙O 的切线;(2)解:由(1)知,∠PAO=90°.∵OB=5, ∴OA=OB=5. 又∵OP=,∴在直角△APO 中,根据勾股定理知PA==,由(1)知,∠ACB=∠PAO=90°. ∵∠BAC=∠P , ∴△ABC ∽△POA , ∴=. ∴=,解得AC=8.即AC 的长度为8.20.解:(1)∵B (4,2),四边形OABC 是矩形, ∴OA=BC=2,将y=2代入y=﹣x+3得:x=2, ∴M (2,2),把M 的坐标代入y=得:k=4, ∴反比例函数的解析式是y=;(2)把x=4代入y=得:y=1, 即CN=1,不 得 答∵S 四边形BMON =S 矩形OABC ﹣S △AOM ﹣S △CON =4×2﹣×2×2﹣×4×1=4, 由题意得: OP ×AM=4, ∵AM=2, ∴OP=4,∴点P 的坐标是(0,4)或(0,﹣4).21.解:(1)设线段BC 所在直线对应的函数关系式为y=k 1x+b 1. ∵图象经过(3,0)、(5,50), ∴∴线段BC 所在直线对应的函数关系式为y=25x ﹣75. 设线段DE 所在直线对应的函数关系式为y=k 2x+b 2. ∵乙队按停工前的工作效率为:50÷(5﹣3)=25, ∴乙队剩下的需要的时间为:÷25=,∴E (,160),∴, 解得:∴线段DE 所在直线对应的函数关系式为y=25x ﹣112.5.(2)由题意,得甲队每小时清理路面的长为 100÷5=20,甲队清理完路面的时间,x=160÷20=8.把x=8代入y=25x ﹣112.5,得y=25×8﹣112.5=87.5. 答:当甲队清理完路面时,乙队铺设完的路面长为87.522.解:(1)根据题意得:,解得:,则抛物线的解析式是y=x 2+2x ; (2)y=x 2+2x=(x+1)2﹣1, 则C 的坐标是(﹣1,﹣1); (3)抛物线的对称轴是x=﹣1,当OA 是平行四边形的一边时,D 和E 一定在x 轴的上方.OA=2,密学校 班级 姓名 学号密 封 线 内 不 得 答 题则设E 的坐标是(﹣1,a ),则D 的坐标是(﹣3,a )或(1,a ).把(﹣3,a )代入y=x 2+2x 得a=9﹣6=3,则D 的坐标是(﹣3,3)或(1,3),E 的坐标是(﹣1,3);当OA 是平行四边形的对角线时,D 一定是顶点,坐标是(﹣1,﹣1),则E 的坐标是D 的对称点(﹣1,1).23. 解:(1)当批发量在20kg 到60kg 时,单价为5元/kg 当批发量大于60kg 时,单价为4元/kg … (2)当20≤m ≤60时,w=5m 当m >60时,w=4m …当240<w ≤300时,同样的资金可以批发到更多的水果.… (3)设反比例函数为则,k=480,即反比列函数为∵y ≥64, ∴x ≤7.5, ∴z=(x ﹣4)=480﹣∴当x=7.5时,利润z 最大为224元.24.解:(1)根据题意得:BF=2t , ∵四边形ABCD 是菱形, ∴BC=AB=6,∴CF=BC ﹣BF=6﹣2t ;(2)点G 落在线段AC 上时,如图1所示:∵四边形ABCD 是菱形, ∴AB=BC , ∵∠ABC=60°, ∴△ABC 是等边三角形, ∴∠ACB=60°, ∵△EFG 是等边三角形,密 封 线 内 不 得 答∴∠GFE=60°,GE=EF=BF •sin60°=t , ∵EF ⊥AB ,∴∠BFE=90°﹣60°=30°, ∴∠GFB=90°, ∴∠GFC=90°, ∴CF==t ,∵BF+CF=BC , ∴2t+t=6, 解得:t=2; (3)分三种情况: ①当0<t ≤时,S=0; ②当<t ≤2时,如图2所示,S=S △EFG ﹣S △MEN =×(t )2﹣××(﹣+2)2=t 2+t ﹣3, 即S=t 2+t ﹣3;③当2<t ≤3时,如图3所示:S=t 2+t ﹣3﹣(3t ﹣6)2,即S=﹣t 2+t ﹣;(4)∵AH=AB •sin60°=6×=3,∴3÷2=, ∴3÷2=,∴t=时,点P 与H 重合,E 与H 重合, ∴点P 在△EFG 内部时,﹣<(t ﹣)×2<t ﹣(2t ﹣3)+(2t ﹣3), 解得:<t <;即:点P 在△EFG 内部时t 的取值范围为:<t <.密学校 班级姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期末考试卷及答案(满分:120分 时间:120分钟)一、选择题(共8小题,每小题3分,满分24分) 1.已知四条线段满足,将它改写成为比例式,下面正确的是( ) A .B .C .D .2.二次函数y=﹣2(x ﹣1)2+3的图象的顶点坐标是( ) A .(1,3) B .(﹣1,3) C .(1,﹣3) D .(﹣1,﹣3) 3.下列事件中,必然事件是( ) A .抛出一枚硬币,落地后正面向上 B .打开电视,正在播放广告C .篮球队员在罚球线投篮一次,未投中D .实心铁球投入水中会沉入水底4.如图,点A ,B ,C ,D 都在⊙O 上,AC ,BD 相交于点E ,则∠ABD=( )A .∠ACDB .∠ADBC .∠AED D .∠ACB5.用配方法解一元二次方程x 2﹣4x=5时,此方程可变形为( )A .(x+2)2=1B .(x ﹣2)2=1C .(x+2)2=9D .(x ﹣2)2=96.若△ABC ∽△A ′B ′C ′,相似比为1:2,则△ABC 与△A ′B ′C ′的面积的比为( ) A .1:2 B .2:1 C .1:4 D .4:17.已知函数y=x 2+2x ﹣3,当x=m 时,y <0,则m 的值可能是( )A .﹣4B .0C .2D .38.一个圆锥的高为4cm ,底面圆的半径为3cm ,则这个圆锥的侧面积为( )A .12πcm 2B .15πcm 2C .20πcm 2D .30πcm 2二、填空题(本大题共有10小题,每小题3分,共30分) 9.方程x 2﹣4x+c=0有两个不相等的实数根,则c 的取值范围是 .密封线内不得答题10.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为m.11.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB= °.12.抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不见的情况下随机摸出两只袜子,它们恰好同色的概率是.13.一元二次方程x2+px﹣2=0的一个根为2,则p的值.14.如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为.15.如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是(填一个即可)16.二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是(用“>”“<”或“=”连接).三、解答题(本大题共有4小题,共39分)17.解方程:(1)x2﹣4x+1=0;(2)x(x﹣2)+x﹣2=0.18.如图,△ABC的三个顶点都在格点上,每个小方格边长均为1个单位长度.(1)请你作出△ABC关于点O成中心对称的△A1B1C1(其中A的对称点是A1,B的对称点是B1,C的对称点是C1);(2)直接写出点B1、C1的坐标.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题19.如图,四边形ABCD 内接于⊙O ,E 为AB 延长线上一点,若∠AOC=140°.求∠EBC 的度数.20.一只不透明的箱子里共有3个球,把它们的分别编号为1,2,3,这些球除编号不同外其余都相同,从箱子中随机摸出一个球,记录下编号后将它放回箱子,搅匀后再摸出一个球并记录下编号.(1)用树状图或列表法举出所有可能出现的结果; (2)求两次摸出的球都是编号为3的球的概率.四、解答题(本大题共有4小题,共39分)21.如图,Rt △ABC 中,∠C=90°,AB=10,AC=8,E 是AC 上一点,AE=5,ED ⊥AB 于D .(1)求证:△ACB ∽△ADE ;(2)求AD 的长度.22.如图,进行绿地的长、宽各增加xm .(1)写出扩充后的绿地的面积y (m 2)与x (m )之间的函数关系式;(2)若扩充后的绿地面积y 是原矩形面积的2倍,求x 的值.23.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,且AC 平分∠BAD ,点E 为AB 的延长线上一点,且∠ECB=∠CAD . (1)①填空:∠ACB= ,理由是 ; ②求证:CE 与⊙O 相切;(2)若AB=6,CE=4,求AD 的长.密封 线 内 不 得五、解答题(本大题共有3小题,共35分)24.如图1,在△ABC 中,∠A=120°,AB=AC ,点P 、Q 同时从点B 出发,以相同的速度分别沿折线B →A →C 、射线BC 运动,连接PQ .当点P 到达点C 时,点P 、Q 同时停止运动.设BQ=x ,△BPQ 与△ABC 重叠部分的面积为S .如图2是S 关于x 的函数图象(其中0≤x ≤8,8<x ≤m ,m <x ≤16时,函数的解析式不同).(1)填空:m 的值为 ;(2)求S 关于x 的函数关系式,并写出x 的取值范围; (3)请直接写出△PCQ 为等腰三角形时x 的值.25.如图(1),将线段AB 绕点A 逆时针旋转2α(0°<α<90°)至AC ,P 是过A ,B ,C 的三点圆上任意一点. (1)当α=30°时,如图(1),求证:PC=PA+PB ;(2)当α=45°时,如图(2),PA ,PB ,PC 它们的数量关系.26.如图,抛物线y=a (x ﹣m )2﹣m (其中m >1)与其对称轴l 相交于点P ,与y 轴相交于点A (0,m ).点A 关于直线l 的对称点为B ,作BC ⊥x 轴于点C ,连接PC 、PB ,与抛物线、x 轴分别相交于点D 、E ,连接DE .将△PBC 沿直线PB 翻折,得到△PBC ′.(1)该抛物线的解析式为 (用含m 的式子表示);(2)探究线段DE 、BC 的关系,并证明你的结论; (3)直接写出C ′点的坐标(用含m 的式子表示).密学校 班级 姓名 学号密 封 线 内 不 得 答 题参考答案一、选择题(共8小题,每小题3分,满分24分) 1.C 2.A .3.D .4.A .5.D .6.C .7.B .8.B . 二、填空题(本大题共有10小题,每小题3分,共30分)9.方程x 2﹣4x+c=0有两个不相等的实数根,则c 的取值范围是 c <4 .10.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为 15 m . 11.如图,在直角△OAB 中,∠AOB=30°,将△OAB 绕点O 逆时针旋转100°得到△OA 1B 1,则∠A 1OB= 70 °.12.抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不见的情况下随机摸出两只袜子,它们恰好同色的概率是.13.一元二次方程x 2+px ﹣2=0的一个根为2,则p 的值 ﹣1 .14.如图,在⊙O 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离为 3 .15.如图,要使△ABC 与△DBA 相似,则只需添加一个适当的条件是 ∠C=∠BAD (填一个即可)16.二次函数y=ax 2+bx+c 的图象如图所示,其对称轴与x 轴交于点(﹣1,0),图象上有三个点分别为(2,y 1),(﹣3,y 2),(0,y 3),则y 1、y 2、y 3的大小关系是 y 3<y 2<y 1 (用“>”“<”或“=”连接).三、解答题(本大题共有4小题,共39分)17.解方程:解:(1)方程变形得:x 2﹣4x=﹣1,配方得:x 2﹣4x+4=3,即(x ﹣2)2=3, 开方得:x ﹣2=±,得 答 题则x 1=2+,x 2=2﹣;(2)(x+1)(x ﹣2)=0, (x+1)(x ﹣2)=0, 解得x 1=﹣1,x 2=2. 18.解:(1)如图所示:.(2)根据上图可知,B 1(2,2),C 1(5,﹣1).19. 解:由圆周角定理得,∠D=∠AOC=70°,由圆内接四边形的性质得,∠EBC=∠D=70°. 20.解:(1)画树状图如下:由树状图可知所有可能出现的结果共9种;(2)由(1)中考共有9种等可能的结果,两次摸出的球都是编号为3的球的情况数是1种,所以其概率为. 四、解答题(本大题共有4小题,共39分) 21. (1)证明:∵DE ⊥AB ,∠C=90°,∴∠EDA=∠C=90°, ∵∠A=∠A ,∴△ACB ∽△ADE ;(2)解:∵△ACB ∽△ADE ,∴=, ∴=,∴AD=4.22.如图,进行绿地的长、宽各增加xm .(1)写出扩充后的绿地的面积y (m 2)与x (m 系式;(2)若扩充后的绿地面积y 是原矩形面积的2倍,求x密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题解:(1)由图可得,扩充后的绿地的面积y (m 2)与x (m )之间的函数关系式是:y=(30xm+m )(20xm+m )=600x 2m 2+50xm 2+m 2,即扩充后的绿地的面积y (m 2)与x (m )之间的函数关系式是:y=600x 2m 2+50xm 2+m 2;(2)∵扩充后的绿地面积y 是原矩形面积的2倍, ∴600x 2m 2+50xm 2+m 2=2×30xm ×20xm , 解得(舍去),即扩充后的绿地面积y 是原矩形面积的2倍,x 的值是.23.解:(1)①∵AB 为⊙O 的直径, ∴∠ACB=90°,故答案为90°,直径所对的圆周角是直角; ②连接OC ,则∠CAO=∠ACO , ∵AC 平分∠BAB , ∴∠BAC=∠CAD , ∵∠ECB=∠CAD . ∴∠BAC=∠ECB .∴∠ECB=∠ACO ,∵∠ACO+∠OCB=90°,∴∠ECB+∠OCB=90°,即CE ⊥OC .∴CE 与⊙O 相切; (2)∵CE 与⊙O 相切, ∴CE 2=BE •AE , ∵AB=6,CE=4, ∴42=BE (BE+6), ∴BE=2, ∴AE=6+2=8, ∵△ACE ∽△CBE ,∴=,即=,∴AC=4, ∴AC=CE=4, ∴∠CAB=∠E , ∴∠ECB=∠E ,∴∠ABC=2∠ECB=2∠BAC ,BC=BE=2, ∴∠DAB=∠ABC , ∴AD=BC=2.五、解答题(本大题共有3小题,共35分)24.解:(1)如图1中,作AM ⊥BC ,PN ⊥BC ,垂足分别为M ,N .密 封 线 内 不 得 答 题由题意AB=AC=8,∠A=120°, ∴∠BAM=∠CAM=60°,∠B=∠C=30°, ∴AM=AB=4,BM=CM=4, ∴BC=8, ∴m=BC=8, 故答案为8.(2)①当0≤m ≤8时,如图1中,在RT △PBN 中,∵∠PNB=90°,∠B=30°,PB=x , ∴PN=x . s=•BQ •PN=•x ••x=x 2.②当8<x ≤16,如图2中,在RT △PBN 中,∵PC=16﹣x ,∠PNC=90°,∠C=30°, ∴PN=PC=8﹣x ,∴s=•BQ •PN=•x •(8﹣x )=﹣x 2+4x . ③当8<x ≤16时,s=•8•(8﹣•x )=﹣2x+32.(3)①当点P 在AB 上,点Q 在BC 上时,△PQC 不可能是等腰三角形.②当点P 在AC 上,点Q 在BC 上时,PQ=QC , ∵PC=QC ,∴16﹣x=(8﹣x ), ∴x=4+4.③当点P 在AC 上,点Q 在BC 的延长线时,PC=CQ , 即16﹣x=x ﹣8, ∴x=8+4.∴△PCQ 为等腰三角形时x 的值为4+4或8+4.25.证明:(1)如图(1),在PA 上截取PD=PA , ∵AB=AC ,∠CAB=60°, ∴△ABC 为等边三角形, ∴∠APC=∠CPB=60°, ∴△APD 为等边三角形, ∴AP=AD=PD ,∴∠ADC=∠APB=120°, 在△ACD 和△ABP 中,,∴△ACD ≌△ABP (AAS ),密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴CD=PB ,∵PC=PD+DC , ∴PC=PA+PB ; (2)PC=PA+PB ,如图(2),作AD ⊥AP 与PC 交于一点D , ∵∠BAC=90°,∴∠CAD=∠BAP , 在△ACD 和△ABP 中,,∴△ACD ≌△ABP ,∴CD=PB ,AD=AP , 根据勾股定理PD=PA , ∴PC=PD+CD=PA+PB .26.解:(1)把点A (0,m )代入y=,得:2am 2﹣m=m , am ﹣1=0, ∵am >1,∴a=, ∴y=,故答案为:y=;(2)DE=BC . 理由:又抛物线y=,可得抛物线的顶点坐标P (m ,﹣m ),由l :x=m ,可得:点B (2m ,m ), ∴点C (2m ,0).设直线BP 的解析式为y=kx+b ,点P (m ,﹣m )和点B (2m ,m )在这条直线上, 得:,解得:,∴直线BP 的解析式为:y=x ﹣3m , 令y=0, x ﹣3m=0,解得:x=,∴点D (,0);设直线CP 的解析式为y=k 1x+b 1,点P (m ,﹣m )和点C (2m ,0)在这条直线上,得:,解得:, ∴直线CP 的解析式为:y=x ﹣2m ;密 封 线 内 不 得 答 题抛物线与直线CP 相交于点E ,可得:,解得:,(舍去), ∴点E (,﹣);∵x D =x E , ∴DE ⊥x 轴,∴DE=y D ﹣y E =,BC=y B ﹣y C =m=2DE , 即DE=BC ; (3)C ′(,).连接CC ′,交直线BP 于点F , ∵BC ′=BC ,∠C ′BF=∠CBF , ∴CC ′⊥BP ,CF=C ′F ,设直线BP 的解析式为y=kx+b ,点B (2m ,m ),P (m ,﹣m )在直线上, ∴,解得:,∴直线BP 的解析式为:y=x ﹣3m , ∵CC ′⊥BP ,∴设直线CC ′的解析式为:y=x+b 1,∴,解得:b 1=2m ,联立①②,得:,解得:,∴点F (,),∴CF==, 设点C ′的坐标为(a ,), ∴C ′F==,解得:a=,∴, ∴C ′(,).密学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期末考试卷及答案(满分:120分 时间:120分钟)一、选择题:每小题3分,共36分. 1.方程x 2=4x 的解是( )A .x=4B .x=2C .x=4或x=0D .x=0 2.在下列事件中,是必然事件的是( ) A .购买一张彩票中奖一百万元B .抛掷两枚硬币,两枚硬币全部正面朝上C .在地球上,上抛出去的篮球会下落D .打开电视机,任选一个频道,正在播新闻3.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x ,根据题意,下面列出的方程正确的是( )A .100(1+x )=121B .100(1﹣x )=121C .100(1+x )2=121 D .100(1﹣x )2=1214.关于x 的一元二次方程(m ﹣1)x 2+5x+m 2﹣3m+2=0的常数项为0,则m 等于( )A .1B .2C .1或2D .05.对于抛物线y=﹣(x ﹣5)2+3,下列说法正确的是( )A .开口向下,顶点坐标(5,3)B .开口向上,顶点坐标(5,3)C .开口向下,顶点坐标(﹣5,3)D .开口向上,顶点坐标(﹣5,3)6.二次函数y=kx 2﹣6x+3的图象与x 轴有交点,则k 的取值范围是( )A .k <3 B .k <3且k ≠0 C .k ≤3 D .k ≤3且k ≠0 7.二次函数y=ax 2+bx+c 的图象如图所示,则下列关系式中错误的是( )A .a <0B .c >0C .b 2﹣4ac >0 D .a+b+c >0 8.一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是白球的概率为( )封线内不A. B. C. D.9.两圆的半径分别为3和7,圆心距为7,则两圆的位置关系是()A.内切 B.相交 C.外切 D.外离10.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25π B.65πC.90π D.130π11.如图,四个边长为2的小正方形拼成一个大正方形,A、B、O是小正方形顶点,⊙O的半径为2,P是⊙O上的点,且位于右上方的小正方形内,则∠APB等于()A.30° B.45° C.60° D.90°12.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A.矩形 B.菱形 C.正方形 D.梯形二、填空题:每小题3分,共18分.13.已知关于x的方程x2﹣3x+k=0有一个根为1,个根为.14.抛物线y=3x2向右平移1个单位,再向下平移2所得到的抛物线是.15.如图,⊙O的直径AB=12,弦CD⊥AB于M,且M是半径的中点,则CD的长是(结果保留根号).16.一元二次方程x2﹣3x+1=0的两根为x1、x2,则x1+x2﹣•x2= .17.如图,已知以直角梯形ABCD的腰CD为直径的半圆O形上底AD、下底BC以及腰AB均相切,切点分别是D,C,E半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题18.如图,△ABC 绕点A 顺时针旋转45°得到△AB ′C ′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于 .三、解答题:本大题共7小题,19题10分,其余每题6分,共46分. 19.解方程:(1)3x 2﹣2x=4x 2﹣3x ﹣6 (2)3x 2﹣6x ﹣2=0.20.某商场服装部销售一种名牌衬衫,平均每天可售出40件,每件盈利50元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.(1)若商场要求该服装部每天盈利2400元,尽量减少库存,每件衬衫应降价多少元?(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.21.如图,甲转盘被分成3个面积相等的扇形,乙转盘被分成2个半圆,每一个扇形或半圆都标有相应的数字.同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为x ,乙转盘中指针所指区域内的数字为y (当指针指在边界线上时,重转一次,直到指针指向一个区域为止).(1)请你用画树状图或列表格的方法,列出所有等可能情况,并求出点(x ,y )落在坐标轴上的概率;(2)直接写出点(x ,y )落在以坐标原点为圆心,2为半径的圆内的概率.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.若圆锥的母线为10,底面半径为6,则圆锥的侧面积为.
16.设两直角边分别为3、4的直角三角形的外接圆和内切圆的半径长分别为R和r,则R—r=______.
故选B.
7.B
【详解】
解:∵二次函数y=x2-(m-1)x+4的图象与x轴有且只有一个交点,
∴△=b2-4ac=[-(m-1)]2-4×1×4=0,
∴(m-1)2=16,
解得: ,
∴m1=5,m2=-3.
∴m的值为5或-3.
故选B.
【点睛】
本题考查抛物线与x轴的交点.
8.B
【分析】
长24cm的木条与三角形木架的最长边相等,则长24cm的木条不能作为一边,设从24cm的一根上截下的两段长分别为xcm和ycm,且x+y≤24cm;长12cm的木条不能与15cm的边对应,否则x+y>24cm,故分12cm的木条与20cm的边对应和与24cm的边对应讨论即可求解.
(1)求线段AM的长度;
(2)过点A作AH⊥PQ,垂足为点 ,连接CH,求线段CH长度的最小值.
28.已知二次函数y=ax2-4ax+c(a≠0)的图像与x轴的负半轴和正半轴分别交于A、B两点,与y轴交于点C,且△CAO和△BOC的面积之比为1∶3.
(1)求A点的坐标;(直接写出答案)
(2)若点C的坐标为(0,2c-2).
B.x2-x-1=0,∆=(-1)2-4×1×(-1)=5>0,该方程有实数根,
C.x2-2x+3=0,∆=(-2)2-4×1×3=-8<0,该方程没有实数根,
D.x2- x+1=0,∆=(- )2-4×1×1=-2<0,该方程没有实数根,
故选B.
【点睛】
本题主要考查一元二次方程的判别式,掌握∆≥0,一元二次方程有实数根,∆<0,一元二次方程没有实数根,是解题的关键.
当长12cm的木条与24cm的一边对应时,则 ,
解得: ,此时 ,故满足;
综上所述,共有2种截法,
故选:B.
【点睛】
本题考查了相似三角形的应用:构建三角形相似,然后利用相似三角形的性质:相似三角形的对应边成比例计算即可.
9.D
【分析】
作点C关于OB对称点点A,连接AD与OB的交点即为E,此时CE+ED最小,进而得到阴影部分的周长最小,再由勾股定理求出AD的长,由弧长公式求出弧CD的长.
志愿服务时间(小时)
频数
A
0<x≤30
a
B
30<x≤60
10
C
60<x≤90
16
D
90<x≤120
20
(1)本次被抽取的教职工共有名;
(2)表中a=,扇形统计图中“C”部分所占百分比为%;
(3)扇形统计图中,“D”所对应的扇形圆心角的度数为°;
(4)若该市共有30000名教职工参与志愿服务,那么志愿服务时间多于60小时的教职工大约有多少人?
【详解】
解:阴影部分的周长=CE+ED+弧CD的长,由于C和D均为定点,E为动点,故只要CE+ED最小即可,作C点关于OB的对称点A,连接DA,此时即为阴影部分周长的最小值,如下图所示:
∵A、C两点关于OB对称,∴CE=AE,
∴CE+DE=AE+DE=AD,
又D为弧BC的中点,∠COB=60°,
17.如图,C、D是半圆O上两点,AB是直径,若AD=CD=2,CB=4,则半圆的半径为______.
18.在平面直角坐标系xOy中,设点P的坐标为(n-1,3n+2),点Q是抛物线y=-x2+x+1上一点,则P,Q两点间距离的最小值为______.
三、解答题
19.解方程:
(1)x2+4x-1=0;
A.2+ B. + C. + D.2 +
10.已知二次函数y=ax2+bx+c的顶点D(-1,2),与x轴的一个交点A在(-3,0)和(-2,0)之间(不含端点),如图所示,有以下结论:①b2-4ac>0;②a+b+c<0;③c-a=2;④方程ax2+bx+c-2=0有两个相等的实数根,其中结论正确的个数有()
A. B. C. D.
3.对于一组数据-1,2,-1,4,下列结论不正确的是()
A.平均数是1B.众数是-1C.中位数是1.5D.方差是4.5
4.抛物线y=(x+2)2+1的对称轴是()
A.直线x=-1B.直线x=1C.直线x=2D.直线x=-2
5.生活中到处可见黄金分割的美,如图,在设计人体雕像时,使雕像的腰部以下 与全身 的高度比值接近0.618,可以增加视觉美感,若图中 为2米,则 约为()
4.D
【分析】
直接利用顶点式的特殊性可求对称轴.
【详解】
∵抛物线y=(x+2)2+1的顶点坐标是:(-2,1),
∴对称轴是:直线x=-2,
故选D.
【点睛】
本题主要考查抛物线的对称轴,属于二次函数的基础知识,难度较小.
5.A
【分析】
根据a:b≈0.618,且b=2即可求18,代入b=2,
A.1个B.2个C.3个D.4个
二、填空题
11.已知 ,则 =______.
12.想了解中央电视台《开学第一课》的收视率,适合的调查方式为______.(填“普查”或“抽样调查”)
13.某小区今年2月份绿化面积为6400m2,到了今年4月份增长到8100m2,假设绿化面积月平均增长率都相同,则增长率为___________.
①求二次函数的解析式;
②设点C关于x轴的对称点为C′,连接C′B,在线段C′B上是否存在一点P,使∠CPC′=3∠CBO,若存在,求点P的坐标;若不存在,请说明理由.
参考答案
1.B
【分析】
计算一元二次方程的判别式,逐一判断每个选项,即可.
【详解】
A.x2+x+1=0,∆=12-4×1×1=-3<0,该方程没有实数根,
2.A
【分析】
根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.
【详解】
根据题意可得:在4个小球中,其中标有正数的有2个,分别是2,3,
故从中随机地摸取一个小球,则这个小球所标数字是正数的概率为:2÷4= .
故选:A.
【点睛】
本题考查了概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种等可能的结果,那么事件A的概率P(A)= .
27.如图,平面直角坐标系xOy中,矩形OABC如图放置,点B(4,3),E,F分别为OA,BC边上的中点,动点P从点 出发以每秒2个单位速度沿EO方向向点O运动,同时,动点Q从点F出发以每秒1个单位速度沿FB方向向点B运动.当一个点到达终点时,另一个点随之停止.连接EF、PQ,且EF与PQ相交于点M,连接AM.
24.如图,在平行四边形ABCD中,∠ABC的平分线交AC于点E,交AD于点F,交CD的延长线于点G.
(1)求证:△ABE∽△CGE;
(2)若AF=2FD,求 的值.
25.如图,AB是⊙O的一条弦,点C是⊙O外一点,OC⊥OA,OC交AB于点P、交⊙O于点Q,且CP=CB=2.
(1)求证:BC是⊙O的切线;
(2)x2+10=7x.
20.已知关于x的一元二次方程x2﹣6x+2m+1=0有实数根.
(1)求实数m的取值范围;
(2)若方程的两个实数根为x1,x2,且x1x2+x1+x2=15,求m的值.
21.甲、乙两个家庭准备到美丽的太湖景区游玩,各自随机选择到“灵山”、“拈花湾”、“鼋头渚”三个景点旅游.假设上述三个景点中的每一个景点被选到的可能性相同.
(2)若∠A=22.5°,求图中阴影部分的面积.
26.我区“绿色科技公司”研发了一种新产品,该产品的成本为每件3000元.在试销期间,营销部门建议:①购买不超过10件时,每件销售价为3600元;②购买超过10件时,每多购买一件,所购产品的销售单价均降低5元,但最低销售单价为3200元.根据以上信息解决下列问题:
(1)直接写出:购买这种产品件时,销售单价恰好为3200元;
(2)设购买这种产品x件(其中x>10,且x为整数),该公司所获利润为y元,求y与x之间的函数表达式;
(3)在试销期间销售人员发现:当购买产品的件数超过10件时,会出现随着数量的增多,公司所获利润反而减少这一情况.为使销售数量越多,公司所获利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)
A.1.24米B.1.38米C.1.42米D.1.62米
6.如图是小刘做的一个风筝支架示意图,已知BC∥PQ,AB:AP=2:5,AQ=20cm,则CQ的长是( )
A.8cmB.12cmC.30cmD.50cm
7.二次函数y=x2-(m-1)x+4的图像与x轴有且只有一个交点,则m的值为()
A.1或-3B.5或-3C.-5或3D.以上都不对
23.如图,在边长为1小正方形的网格中,△ABC的顶点A、B、C均落在格点上,请用无刻度的直尺按要求作图.(保留画图痕迹,不需证明)
(1)如图①,点P在格点上,在线段AB上找出所有符合条件的点Q,使△APQ和△ABC相似;
(2)如图②,在AC上作一点M,使以M为圆心,MC为半径的⊙M与AB相切,并直接写出此时⊙M的半径为.
【详解】
解:长24cm的木条与三角形木架的最长边相等,要满足两边之和大于第三边,则长24cm的木条不能作为一边,
设从24cm的木条上截下两段长分别为xcm,ycm(x+y≤24),
由于长12cm的木条不能与15cm的一边对应,否则x+y>24cm,