数学建模典型例题

合集下载

数学建模题目及答案

数学建模题目及答案

09级数模试题1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。

试作合理的假设并建立数学模型说明这个现象。

(15分)解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。

因此对这个问题我们假设 :(1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的(4)方桌的腿只要有一点接触地面就算着地。

那么,总可以让桌子的三条腿是同时接触到地面。

现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。

以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A 、B 、C 、D 处,A 、B,C 、D的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A 、B ,C 、D 平行。

当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。

容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。

为消除这一不确定性,令 ()f θ为A 、B 离地距离之和,()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。

由假设(1),()f θ,()g θ均为θ的连续函数。

又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(∀θ)。

不妨设(0)0f =,(0)0g >g (若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为:已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。

证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。

作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。

数学建模例题题

数学建模例题题

数学建模试题一、传染病模型医学科学的发展已经能够有效地预防和控制许多传染病,但是仍然有一些传染病暴发或流行,危害人们的健康和生命。

社会、经济、文化、风俗习惯等因素都会影响传染病的传播,而最直接的因素是:传染者的数量及其在人群中的分布、被传染者的数量、传播形式、传播能力、免疫能力等。

一般把传染病流行范围内的人群分成三类:S类,易感者(Susceptible),指未得病者,但缺乏免疫能力,与感染者接触后容易受到感染;I类,感病者(Infective),指染上传染病的人,它可以传播给S类成员;R类,移出者(Removal),指被隔离或因病愈而具有免疫力的人。

要求:请建立传染病模型,并分析被传染的人数与哪些因素有关?如何预报传染病高潮的到来?为什么同一地区一种传染病每次流行时,被传染的人数大致不变?二、线性规划模型—销售计划问题某商店拟制定某种商品7—12月的进货、售货计划,已知商店仓库最大容量为1500件,6月底已存货300件,年底的库存以不少于300件为宜,以后每月初进货一次,假设各月份该商品买进、售出单价如下表。

要求:若每件每月的库存费用为0.5元,问各月进货、售货各为多少件,才能使净收益最多?建立数学模型,并用软件求解。

【注】线性规划在MATLAB的库函数为:linprog。

语法为:x = linprog(f,A,b)x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options)[x,fval,exitflag,output,lambda] = linprog(...)例如:线性规划目标函数的系数:f = [-5; -4; -6]约束方程的系数及右端项:A = [1 -1 13 2 43 2 0];b = [20; 42; 30];lb = zeros(3,1);调用线性规划程序linprog求解,得:[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb);x= 0.000015.00003.0000三、一阶常微分方程模型—人口模型与预测 下表列出了中国1982-1998年的人口统计数据,取1982年为起始年(0=t ),1016540=N 万人,200000=m N 万人。

全国数学建模例题

全国数学建模例题

全国数学建模例题
以下是一个全国数学建模竞赛的例题:
题目:某地区近年来发生了多起自然灾害,为了更好地预防和应对灾害,需要对该地区的边坡进行稳定性评估。

边坡的稳定性评估可通过计算其稳定性指数来衡量,稳定性指数高表示边坡稳定,稳定性指数低表示边坡存在倾覆的风险。

现有一座边坡,其高度为H,坡度为α,坡面上分布有多个点,每个点的坡面高度记为hi(i=1,2,3,...,n)。

已知边坡的重力稳定系数为K,稳定性指数计算公式如下:
SI = Σ(K⋅hi⋅cos(α))^2 - H^2
请你们设计一个数学模型,利用给定的数据计算该边坡的稳定性指数,并分析稳定性指数与边坡参数的关系。

要求:
1. 给出稳定性指数计算公式的推导过程;
2. 设计算法和程序,输入边坡的参数(H, α, hi)和重力稳定系数K,输出稳定性指数SI;
3. 分析稳定性指数与边坡参数的关系,并给出相应的结论和建议。

请根据以上要求给出你们的建模方案和解答步骤。

以上是一个示例的全国数学建模竞赛题目,实际的题目内容和难度会因年份和级别的不同而有所变化。

在数学建模竞赛中,参赛者需要运用数学知识和建模技巧,解决现实问题并给出合理的建议和结论。

数学建模国赛题目

数学建模国赛题目

数学建模国赛题目一、关于校园生活类- 逻辑:同学们在食堂排队打饭的时候,总是希望能尽快拿到食物。

这里面涉及到食堂窗口的数量、每个窗口打饭的速度(比如打不同菜品的复杂程度、工作人员的熟练程度等)、同学们到达食堂的时间分布等因素。

可以通过建立数学模型,来分析怎样安排窗口的服务或者调整同学们的排队方式,能让整体的排队等待时间最短,就像指挥一场让大家都能快速填饱肚子的战斗。

- 逻辑:在宿舍里,每个舍友用电用水的习惯都不太一样。

有人喜欢长时间开着电脑,有人洗澡特别久,水电费总是一笔糊涂账。

通过收集每个舍友的电器使用时长、用水次数和时长等数据,建立数学模型,来找出到底谁在水电费上贡献最大,就像侦探破案一样,揭开隐藏在宿舍里的“耗能大户”的神秘面纱。

二、环境保护类- 逻辑:城市里种了很多小树苗来美化环境,但是有些树苗活不了多久就夭折了。

这可能和种植的土壤质量、浇水的频率和量、周围的空气污染程度、光照等因素有关。

我们要建立一个数学模型,就像给小树苗当医生一样,找出影响它们存活的关键因素,然后提出提高树苗存活率的最佳方案,让城市里能有更多茁壮成长的绿树。

- 逻辑:城市每天都会产生大量的垃圾,这些垃圾要从各个小区、街道收集起来,然后运到垃圾处理厂。

但是垃圾车的行驶路线、垃圾收集点的分布、不同区域垃圾产量的不同等因素都会影响垃圾处理的效率。

我们要像给垃圾规划一场旅行一样,建立数学模型找到垃圾从产生地到处理厂的最优路径,让垃圾能够高效地被处理,减少对城市环境的污染。

三、经济与商业类- 逻辑:校园小卖部里的商品琳琅满目,但是怎么给这些商品定价可是个大学问。

如果定价太高,同学们就不买了;定价太低,又赚不到钱。

这里面要考虑商品的进价、同学们的消费能力、不同商品的受欢迎程度等因素。

通过建立数学模型,就像寻找宝藏的密码一样,找到能让小卖部利润最大化的定价策略。

- 逻辑:现在有很多网红店,门口总是排着长长的队伍。

这背后可能是因为独特的营销策略、美味的食物或者时尚的装修。

(完整word版)数学建模型

(完整word版)数学建模型

(一题,二题选一)1.某厂生产甲乙两种口味的饮料,每白箱甲饮料需用原料6千克,工人10名,可获利10万元;每白箱乙饮料需用原料5千克,工人20名,可获利9万元.今工厂共有原料60千克,工人150名,乂由丁其他条件所限甲饮料产量不超过800箱. 问如何安排生产计划,即两种饮料各生产多少使获利最大.进一步讨论:1)若投资0.8万元可增加原料1千克,问应否作这项投资.2)若每100箱甲饮料获利可增加1万元,问应否改变生产计划.一、基本假设:1?饮料生产过程中,所要到的饮料量不会发生变化。

2?饮料活力的多少是稳定不变的。

3?原料的价格不会发生变化。

二、符号说明:某厂生产的甲饮料x白箱,生产的乙饮料y白箱。

三、分析与建立模型⑵目标函数:maxz=10x 9y约束条件:⑴原料的供应:6x 5y •壬60⑵劳动力的供应:10x • 20y三150⑶附加约束项:x・£8⑷非负约束:x_0,y_0所以模型为:maxz=10x 9y,6x +5y <6010x +20y §50\ <8、x,y 芝0四、模型求解㈠MTATLA由案:编写M文件如下:f=[-10 -9];A=[6 5;10 20;1 0];b=[60;150;8];Aeq=[];beq=[];vlb=zeros(2,0); vub=[];[x,fval]=linprog(f,A,b,Aeq,beq,vlb,vub)结果:6.42864.2857 fval = -102.8571所以当 X I =6.4286,X 2= 4.2857 时有最优值 max z=102.8571.㈡Lingo 方案: 结果:Global optimal salution found iteration: Objective value :结论:白箱。

可使该厂获利最大值为102.8571万元。

问题的解答1) 若投资0.8万元可增加原料1千克,问应否作这项投资. 2) 若每100箱甲饮料获利可增加1万元,问应否改变生产计划.做灵敏度分析:Ranges in nrhicli the Stasis is unchanged:Otojeerive Coefficient RangesC urrentAlloTTStbleAllcjtratoleVariable Value Keduced CostX 6.428571 0.000000 Y 4.235714 0.000000 Row Slack or SurplusDual Price 1 102.8571 L 000000 2 0.000000 L 5714293 0.cooooo 0.5714286E-(I14 1.571429 0.0000005 6*428571 0.000000 64. 2857140.000000该工厂制定的一个生产计划,生产的甲饮料6.43白箱,生产的乙饮料 102.8571Model Title:某工厂甲乙两种饮料的生产计划4.29Y 9.000000 11,00000 □ * 6666667Ri^h'thand Side RangesRow Cutrenv Al loir able AllowableRHS Increase Decrease2 60.oooao S.500000 22,SOODO3 150.0000 90.00000 22,000004s.oooooo INFINITY57142950*0 6* 42B571 INFINITY60.0 4.285714 INFINITY结果告诉我们:这个线性规划的最优解为x=6.43,y=4.29,最优质为z=102.8571, 即生产甲饮料6.43白箱,生产乙饮料4.29白箱时,可获最大利润102.8571万元。

数学建模例题和答案

数学建模例题和答案

数学建模例题和答案
题目:
一个汽车公司拥有两个工厂,分别生产两种型号的汽车,A型和B型,每种型号的汽车都有一定的销售价格。

现在,该公司需要在两个工厂中生产A型和B型汽车,使得总收入最大。

答案:
1、建立数学模型
设A型汽车在第一个工厂生产的数量为x,在第二个工厂生产的数量为y,A型汽车的销售价格为a,B型汽车的销售价格为b,则该公司的总收入可以表示为:
总收入=ax+by
2、确定目标函数
由于题目要求使得总收入最大,因此可以将总收入作为目标函数,即:
最大化Z=ax+by
3、确定约束条件
由于两个工厂的生产能力有限,因此可以设置约束条件:
x+y≤M,其中M为两个工厂的总生产能力
4、求解
将上述模型转化为标准的数学规划模型:
最大化Z=ax+by
s.t. x+y≤M
x≥0,y≥0
由于该模型是一个线性规划模型,可以使用数学软件进行求解,得到最优解:
x=M,y=0
即在第一个工厂生产M件A型汽车,在第二个工厂不生产B型汽车,此时该公司的总收入最大,为Ma。

数学建模简单例题

数学建模简单例题

数学建模简单例题
近年来,数学建模迅速发展,成为数学教育的重要组成部分。

不仅如此,数学建模也在实际应用中扮演着重要角色。

以下是举出的一些简单例题,介绍如何应用数学建模解决实际问题。

例1:汽车路线优化
假设有A、B、C三个城市,从A到B需要经历200公里,从B到C需要经历300公里。

同时,存在有限路段,要求尽可能明确最短路径。

此时,可以建立一个图,将A、B、C三个城市看作三个顶点,再建立若干边,表示每条路径的距离,再使用迪杰斯特拉算法,计算出最短路径。

例2:工厂设备调配
假想一家公司有3台生产设备,每台设备有不同的生产能力和每日最大生产量,要求给出每天各台设备的最优配置,以达到每日最大生产量。

给定三台设备的生产能力和每日最大生产量,建立这个问题的数学模型,可以采用最短路径算法的思想,建立一张图,把每台设备看成一个顶点,再建立若干边,表示每台设备的最大生产能力,最后根据路径的长度,计算出各台设备的最优配置。

以上是两个简单的数学建模例题,为了解决具体实际问题,数学建模不仅仅可以使用上述算法,还可以使用线性规划、最优化、反问题等方法来解决实际问题。

本文就介绍了数学建模的一些基础原理,
并举出了几个例子,希望能对读者有所帮助。

数学建模题目及答案-数学建模100题

数学建模题目及答案-数学建模100题

数学建模题目及答案-数学建模100题假设每个宿舍的委员数与该宿舍的学生数成比例,即每个宿舍的委员数为该宿舍学生数除以总学生数的比例乘以10.则A宿舍应分配的委员数为235/1000×10=2.35,但委员数必须为整数,所以可以向上取整,即A宿舍分配3个委员。

同理,B宿舍应分配的委员数为333/1000×10=3.33,向上取整为4个委员;C宿舍应分配的委员数为432/1000×10=4.32,向下取整为4个委员。

因此,A宿舍分配3个委员,B宿舍分配4个委员,C宿舍分配3个委员,剩下的委员数(10-3-4-3=0)为0.按照各宿舍人数占总人数的比例分配各宿舍的委员数。

设A宿舍、B宿舍、C宿舍的委员数分别为x、y、z人。

根据题意,我们可以列出以下方程组:x + y + z = 10x/10 = 235/1000y/10 = 333/1000z/10 = 432/1000其中,小数部分最大的整数进1,其余取整数部分。

解方程组得到x=3,y=3,z=4.因此,A宿舍、B宿舍、C宿舍的委员数分别为3、3、4人。

一家饲养场每天投入5元资金用于饲料、设备、人力,预计每天可使一头80公斤重的生猪增加2公斤。

假设生猪出售的市场价格为每公斤8元,每天会降低0.1元。

我们设在第t天出售这样的生猪(初始重80公斤的猪)可以获得的利润为z元。

根据题意,我们可以列出以下方程:每头猪投入:5t元产出:(8-0.1t)(80+2t)元利润:Z = 5t +(8-0.1t)(80+2t)=-0.2 t^2 + 13t +640我们可以求得二次函数的顶点,即t=32.5时,Z取得最大值851.25元。

因此,该饲养场应该在第33天出售这样的生猪,以获得最大利润。

一家奶制品加工厂用牛奶生产A1、A2两种奶制品,1桶牛奶可以在设备甲上用12小时加工成3公斤A1,或者在设备乙上用8小时加工成4公斤A2.市场需求量与生产量相等,每公斤A1获利24元,每公斤A2获利16元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、人体重变化某人的食量是10467焦/天,最基本新陈代谢要自动消耗其中的5038焦/天。

每天的体育运动消耗热量大约是69焦/(千克•天)乘以他的体重(千克)。

假设以脂肪形式贮存的热量100% 地有效,而1千克脂肪含热量41868焦。

试研究此人体重随时间变化的规律。

一、问题分析人体重W(t)随时间t变化是由于消耗量和吸收量的差值所引起的,假设人体重随时间的变化是连续变化过程,因此可以通过研究在△t时间内体重W的变化值列出微分方程。

二、模型假设1、以脂肪形式贮存的热量100%有效2、当补充能量多于消耗能量时,多余能量以脂肪形式贮存3、假设体重的变化是一个连续函数4、初始体重为W0三、模型建立假设在△t时间内:体重的变化量为W(t+△t)-W(t);身体一天内的热量的剩余为(10467-5038-69*W(t))将其乘以△t即为一小段时间内剩下的热量;转换成微分方程为:d[W(t+△t)-W(t)]=(10467-5038-69*W(t))dt;四、模型求解d(5429-69W)/(5429-69W)=-69dt/41686W(0)=W0解得:5429-69W=(5429-69W0)e(-69t/41686)即:W(t)=5429/69-(5429-69W0)/5429e(-69t/41686)当t趋于无穷时,w=81;二、投资策略模型一、问题重述一家公司要投资一个车队并尝试着决定保留汽车时间的最佳方案。

5年后,它将卖出所有剩余汽车并让一家外围公司提供运输。

在策划下一个5年计划时,这家公司评估在年i 的开始买进汽车并在年j的开始卖出汽车,将有净成本a ij(购入价减去折旧加上运营和维修成本)ij请寻找什么时间买进和卖出汽车的最便宜的策略。

二、问题分析本问题是寻找成本最低的投资策略,可视为寻找最短路径问题。

因此可利用图论法分析,用Dijkstra算法找出最短路径,即为最低成本的投资策略。

三、条件假设除购入价折旧以及运营和维护成本外无其他费用;四、模型建立二511 7 三 64166 13 8 四一912 8 1120五10六运用Dijikstra算法1 2 3 4 5 6 0 4 6 9 12 20 6 9 12 209 12 20 12 2020 可发现,在第二次运算后,数据再无变化,可见最小路径已经出现即在第一年买进200辆,在第三年全部卖出,第三年再买进200第六年全部卖出。

三、飞机与防空炮的最优策略一、问题重述:红方攻击蓝方一目标,红方有2架飞机,蓝方有四门防空炮,红方只要有一架飞机突破蓝方的防卫则红方胜。

其中共有四个区域,红方可以其中任意一个接近目标,蓝方可以任意布置防空炮,但一门炮只能防守一个区域,其射中概率为1。

那么双方各采取什么策略?二、问题分析该问题显然是红方与蓝方的博弈问题,因此可以用博弈论模型来分析本问题。

1、对策参与者为两方(红蓝两方)2、红军有两种行动方案,即两架飞机一起行动、两架飞机分开行动。

蓝军有三种防御方案,即四个区域非别布置防空炮(记为1-1-1-1)、一个区域布置两架一个没有另外两个分别布置一个(记为2-1-1-0)、两个区域分别布置两架飞机另外两个没有(记为2-2-0-0)。

显然是不需要在某个区域布置3个防空炮的。

三、问题假设:(1)红蓝双方均不知道对方的策略。

(2)蓝方可以在一个区域内布置3,4门大炮,但是大炮数量大于飞机的数量,而一门大炮已经可以击落一架飞机,因而这种方案不可取。

(3)红方有两种方案,一是让两架飞机分别通过两个区域去攻击目标,另一种是让两架飞机通过同一区域去攻击目标。

(4)假设蓝方四门大炮以及红方的两架飞机均派上用场,且双方必须同时作出决策。

四、模型建立由此可得赢得矩阵蓝方为A,红方为BA= 1 00.75 0.500.50 0.83B= 0 0.25 0.51 0.5 0.17没有鞍点,故用混合策略模型解决本问题设蓝方采取行动i 的概率为 xi(i=1,2,3),红方采取行动j 的概率为y j(j=1,2),则蓝方与红方策略集分别为:S1={x=(x1,x2,x3)0< xi<1,∑xi=1},S2={y=(y1,y2)0< yi<1,∑yi=1}。

五、模型求解下列线性规划问题的解就是蓝军的最优混合策略x* Max v10*x 1+0.25*x 2+0.5*x 3 >v1 x 1+0.5*x 2+0.17*x 3 >v1 x 1+x 2+x 3 =1 xi<=1下列线性规划问题的解就是红军的最优混合策略y* Min v2 y 2 <v20.25*y 1+0.5*y 2 <v2 0.5*y 1+0.17* y 2 <v2 y 1+y 2= 1 yi<=1四、雷达计量保障人员分配开展雷达装备计量保障工作中,合理分配计量保障人员是提高计量保障效能的关键。

所谓合理分配是指将计量保障人员根据其专业特长、技术能力分配到不同的工作岗位上,并且使得所有人员能够发挥出最大的军事效益。

现某雷达团共部署12种型号共16部雷达,部署情况及计量保障任务分区情况如表所示:说明:1.保障任务分区域进行保障;2.B 、H 、L 型雷达分为两个保障任务,分别为B 1、B 2、H 1、H 2、L 1、L2,其它雷达为一个保障任务;3.同一区域多部相同雷达等同于一部雷达的保障任务;4.不同区域的相同雷达看作不同保障任务;5.每个保障人员只能保障一个任务;6.每个保障任务只由一个保障人员完成。

雷达的重要性由其性能和所担负的作战任务共同决定,即使同一型号的雷达在不同区域其重要性也可能不同。

各雷达的重要性如下表所示(表中下标表示雷达所在保障区域):该雷达团修理所现在有10名待分配计量保障人员,他们针对不同保障任务的计量保障能力量化指标如下表所示:问题:如何给该团三个营分配计量保障人员,使他们发挥最大军事效益?一、问题分析:该问题是人员指派问题,目的是得到最大效益。

根据保障能力测试与雷达重要性定义出效益矩阵,用0—1整数规划方法来求解,得到最大效益矩阵。

二、模型假设1.保障任务分区域进行保障;2.B 、H 、L 型雷达分为两个保障任务,分别为B 1、B 2、H 1、H 2、L 1、L 2,其它雷达为一个保障任务;3.同一区域多部相同雷达等同于一部雷达的保障任务; 4.不同区域的相同雷达看作不同保障任务; 5.每个保障人员只能保障一个任务; 6.每个保障任务只由一个保障人员完成。

三、模型建立根据题目列出保障人员能力量化指标矩阵:⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=007.09.03.08.04.002.05.03.06.08.08.06.08.03.07.02.06.07.03.07.03.04.06.07.08.07.05.06.03.05.05.07.04.02.02.01.02.02.0001.02.02.02.06.01.006.04.02.08.05.03.03.06.03.0003.03.04.03.002.0004.09.05.02.01.08.08.08.08.06.08.08.008.06.07.08.06.08.005.07.03.03.03.03.07.07.05.03.003.06.03.07.06.07.08.05.02.02.07.02.02.05.08.06.02.002.05.005.05.0007.05.04.03.04.04.004.07.04.06.04.0000009.005.05.05.05.05.005.05.05.05.05.05.0005.005.09.08.07.0006.04.04.03.09.07.06.07.08.04.07.003.08.0A 根据题目,设保障任务的重要性向量),...,,(21i b b b B =,bi 表示第i 个任务的重要性。

列出保障任务重要性向量:[]7.07.06.08.09.07.06.09.09.07.08.07.07.07.08.09.09.08.0=B 我们用二者的乘积表示效益矩阵:T *=B A R 。

我们设元素rij 表示第i 个人完成j 件事的效益,Xij 表示第i 个人去保障第j 件任务,如果是,其值为1,否则为0。

利用这一个矩阵和0-1规划,我们就可以列出方程:∑∑===m j ni ij ij x r Z 11*max∑==mij ijx1∑=<=ni ij x 11,m<=nmodel: sets: M/1..10/; N/1..18/:a;allowed(M,N):b,r,x; endsets data:a=0.8 0.9 0.9 0.8 0.7 0.7 0.7 0.8 0.7 0.9 0.9 0.6 0.7 0.9 0.8 0.6 0.7 0.7; b=0.8 0.3 0 0.7 0.4 0.8 0.7 0.6 0.7 0.9 0.3 0.4 0.4 0.6 0 0 0.7 0.8 0.9 0.5 0 0.5 0 0 0.5 0.5 0.9 0.5 0.5 0.5 0 0.5 0.5 0.5 0.5 0.5 0 0.9 0 0 0 0 0 0.4 0.6 0.4 0.7 0.4 0 0.4 0.4 0.3 0.4 0.5 0.4 0 0 0.5 0.5 0 0.5 0.2 0 0.2 0.6 0.8 0.5 0.2 0.2 0.7 0.2 0.2 0.7 0.8 0.7 0.6 0.7 0.3 0.6 0.3 0 0.3 0.5 0.7 0.7 0.3 0.3 0.3 0.3 0.7 0.5 0 0.8 0.6 0.8 0.7 0.6 0.8 0 0.8 0.8 0.6 0.8 0.8 0.8 0.8 0.1 0.2 0.5 0.9 0.4 0 0 0.2 0 0.3 0.4 0.3 0.3 0 0 0.3 0.6 0.3 0.3 0.5 0.8 0.2 0.4 0.6 0 0.1 0.6 0.2 0.2 0.2 0.1 0 0 0.2 0.2 0.1 0.2 0.2 0.4 0.7 0.5 0.5 0.3 0.6 0.5 0.7 0.8 0.7 0.6 0.4 0.3 0.7 0.3 0.7 0.6 0.2 0.7 0.3 0.8 0.6 0.8 0.8 0.6 0.3 0.5 0.2 0 0.4 0.8 0.3 0.9 0.7 0 0; enddatamax=sum(allowed(i,j):x(i,j)*r(i,j)); for(M(i):for(N(j):r(i,j)=a(j)*b(i,j)));for(M(i):sum(N(j):x(i,j))=1);for(N(j):sum(M(i):x(i,j))<=1);for(M(i):for(N(j):bin(x(i,j)))); End解得最大效益为6.63,分配方案为:第5、7、8号保障人员分配到区域1,其中8号承担A型,5、7号承担B1,B2型;第1、2、3、4、9号保障人员分配到区域2,其中第9号保障人员承担F型2号G型,1、3号承担H1,H2型,4号I型;第6、10号保障人员分配到区域3,6号F型、10号J型。

相关文档
最新文档