电动汽车用电机及其控制系统

合集下载

新能源汽车驱动电机与控制系统 第一章 电机基础知识

新能源汽车驱动电机与控制系统 第一章 电机基础知识

任务1:电机基础知识
信息交互
规划决策
16
(三)电磁学基础知识
励磁绕组:根据其供电方式可以分为直流励磁绕组和交流励磁绕组。直流励磁绕组的优点在于其 可靠性高,但需要使用整流器,转子上也存在集电环与刷子摩擦产生火花等安全隐患。而交流励 磁绕组相对来说更为简单,不需要整流器,且不存在集电环和刷子的问题。但其缺点在于其输出 磁通较弱,需要使用铁心轴,增加铁损
B
磁滞损耗 由磁滞所产生的能量损耗称为磁滞损耗Ph
10 任务1:电机基础知识
(一)新能源汽车驱动系统概述
传动机构 传动机构指的是将电机输出的扭矩和转 速传递到汽车的主轴上,从而驱动汽车 行驶的机构,主要包含减速器和差速器 的两个部件。
11 任务1:电机基础知识
(一)新能源汽车驱动系统概述
电机的分类
12 任务1:电机基础知识
(二)新能源汽车对驱动电机的性能要求
任务1:电机基础知识
信息交互
规划决策
17
(三)电磁学基础知识
电枢绕组:由一定数目的电枢线圈按一定的规律连接组成,他是直流电机的电路部分,也是感 生电动势,产生电磁转矩进行机电能量转换的部分。 电枢绕组分直流电枢绕组和交流电枢绕组两大类。它们分别用于直流电机和交流电机。
任务1:电机基础知识
信息交互
规划决策
(1)电机结构紧凑、尺寸小,封装尺寸有限,必须根据具体产品进行特殊设计。
(2)重量轻,以减轻车辆的整体重量。应尽量采用铝合金外壳,同时转速要高,以减轻整车的质
量,增加电机与车体的适配性,扩大车体可利用空间,从而提高乘坐的舒适性。
(3)可靠性高、失效模式可控,以保证乘车者的安全。
(4)提供精确的力矩控制,动态性能较好。

电机驱动系统(完整)

电机驱动系统(完整)

八、开关磁阻电机控制系统
1. 开关磁阻电机结构
定、转子为结构双凸结构。 定、转子齿满足错位原理, 即错开1/m转子齿距。 通电一周,转过一个转子齿。 需要转子位置传感器。
6/4极的开关磁阻电动机
2. 开关磁阻电动机工作原理
靠磁通收缩产生转矩
转矩:
开关磁阻电机的 转矩瞬时值正比于 电流的平方, 也正比于电感对转 子位置角的变化率。
+
+C
-C
PWM 输入
电动“1” 回馈制动“ 0”
驱动信号 输出
6. 无刷直流电机及其控制系统的优缺点
优点: 1. 具有直流电机的控制特性。 2. 控制相对简单。 3. 电机效率高,体积小。
缺点: 1. 由于永磁材料贵,电机价格较贵。 2. 过热容易导致永久性失磁。 3. 弱磁运行较困难。 4. 需要转子位置传感器。
功率变换器主电路
交流电机电枢绕组
六、无刷直流电机控制系统
1. 系统构成
三相功率 变换器
控制电路 控制器
永磁 同步电机
转子位置 传感器
自控式永磁 同步电机

2.无刷直流电机与永磁同步电机差别
B0(e0)
永磁同步电机
0
无刷直流电机
2π ωt
一对极下不同的气隙磁密分布图
3.无刷直流电机工作原理
有6个定子空间磁势。
A iA
根据转子位置传感器检
测到的转子位置和要求
FBA
FCA
转向来决定产生哪一个
X
磁势。
产生的平均转矩最大。 FBC
S
Z
iC
C
FAC
F0
N
FCB
Y
iB

汽车电动汽车用电机及控制器布置规范

汽车电动汽车用电机及控制器布置规范

电动汽车用电机及控制器布置规范1范围本蟒准规定了电动汽车用电机及控制器(以下荷称电机及控制器)及其相关附件的布置形式和布置原则°本标准适应于本公司生产的混合动力、纯电动等所有新能源车型.2规范性引用文件下列文件对于本文件的应用是必不“少的。

凡是注日期的引用文件,仪所注日期的版本适用于本文件。

凡是不注日期的引用文件,其量新版本(包括所有的修改单)适用于本文件。

Q/OC JT108-2008整车二维数模装配间隙设计3术语和定义Q/OC TU08—2008界定的术语和定义适用于本标?(L4布置形式4-1分类电机及控制器布置可简单分为前丘、后置,控制器一般布置在电机正上方。

4.2纯电动汽车本公司研发的纯电动汽车的电机布置一段为前置,其布置形式如下二a)纯电动汽车电机前过,电机与减速器同轴布:a,与整车ZX平面垂直,如图1所示:b)貌电动汽车控制器前置.为了接线方便和缩近堆束长度,控制群布置在电机接战盒位置的正上•方与整车ZX平面垂直,如图2所示工图1前置电机布置形式I图2前亘控翻器布克形式]<3混合动力汽车混合动力汽车的电机布置M以前置也可以后置,其布置形式如下,El)混合动力汽车电机前置,电机与发动机同轴布置与整车ZX平面垂直,如图3所示:b)混合动力汽车控制楼而置,为了接线方便和筋短缓束长度,同时要避让发动机及其附件J控制器布置在电机上方与整车ZX平面垂直,如图4所示Fc)混合动力汽车电机及控制器后置,为了实现四强功能,发动机前置,电驱动桥后:B・电机及控制器后置,电机与旗速器同轴布丘修整车ZX平面垂直.图3前五电机布适形式n图4前置控制赤布置形式II图5后置电机布置形式对于电机、控制器及其附件的布置,底保证工作川配J井能灌足整车布置的需要和整车性能的发挥;应保证机舱与发动机、变速器,底盘之间布置和设计的合理也电机及控制器的通风散热.诏音隔热良好,与其他零部件最小间隙合理、拆卸方便F同时还要保证安装T艺性、有足热的刚度和强度.一般从以下几个方面进行布置考出r动、除占间隙要求工装配工艺性要求;雄脩方便性等要求:。

新能源电动汽车的电机控制和调节

新能源电动汽车的电机控制和调节
集成化
电机控制系统正逐渐实现集成化, 将多个功能模块集成在一个控制器 中,降低系统的复杂性和成本。
02
电机控制策略
矢量控制
总结词
矢量控制是一种通过控制电机的输入电压或电流,实现电机转矩和磁通独立控制的电机控制策略。
详细描述
矢量控制通过将电机的输入电压或电流分解为转矩和磁通两个分量,分别进行控制,从而实现对电机 转矩和速度的高精度调节。这种控制策略广泛应用于高性能的电机控制系统,如新能源电动汽车的电 机控制系统。
调速系统
01
02
03
机械调速
通过改变电机输入轴与输 出轴之间的传动比实现调 速,具有结构简单、成本 低等优点。
电气调速
通过改变电机输入电压或 电流实现调速,具有调速 范围广、控制精度高等优 点。
智能调速
利用现代控制理论和技术 实现电机最优控制和节能 运行,具有自动化程度高 、节能效果好等优点。
电机驱动与调节系统的优化
能效管理系统的发展趋势
智能化管理
利用先进的传感器、通信和人工智能技术,实现能效管理的智能 化和自适应调节,提高管理效率和准确性。
集成化设计
将电机、电池、热管理系统等部件进行集成设计,优化整体能效 性能,降低系统复杂性和成本。
可再生能源利用
结合太阳能、风能等可再生能源,实现电动汽车的绿色能源供给 ,进一步提高能效和环保性能。
直接转矩控制
总结词
直接转矩控制是一种通过直接控制电机的转矩和磁通,实现对电机转矩和速度进行快速响应控制的电机控制策略 。
详细描述
直接转矩控制通过直接检测电机的转矩和磁通,并采用相应的控制算法,实现对电机转矩和速度的快速调节。这 种控制策略具有快速响应和鲁棒性强的特点,适用于需要高动态性能的电机控制系统,如新能源电动汽车的电机 控制系统。

新能源汽车概论课件 2.2认知新能源汽车电机及控制技术

新能源汽车概论课件 2.2认知新能源汽车电机及控制技术
13
任务2.2 认知新能源汽车电机及控制技术 五、驱动电机发展趋势
1.驱动电机的功率密度不断提高
驱动电机作为动力输出源,其自身的性能直接影响到了电动汽车的整体性能。除了需要 满足不同工况不同车型的需求,还要受车内空间的限制。这就需要电动轿车用电机向高性能 和小尺寸发展。不断提高电机本身的功率密度,用相对小巧的电机发挥出大的功率成为驱动 电机未来的发展趋势。永磁电机具有高转矩密度、高功率密度、高效率及高可靠性等优点。 我国具有世界最为丰富的稀土资源,因此高效节能、高性能、轻型化永磁电机是我国车用驱 动电机的发展方向。
14
任务2.2 认知新能源汽车电机及控制技术 五、驱动电机发展趋势
2.驱动电机高速化,回馈制动范围宽广高效化
通过提高电机的工作转速,减小电机的体积和质量,进而拓宽回馈制动的范围,采用适当 的变速系统及控制策略,可以使回馈制动的允许范围拓宽而适应更多工况,使整车节能更加 有效,延长行车里程。
15
任务2.2 认知新能源汽车电机及控制技术
电动汽车的再生制动发电系统组成
10
任务2.2 认知新能源汽车电机及控制技术 四、我国电机的应用
1.交流异步电机
2.开关磁阻电机
11
任务2.2 认知新能源汽车电机及控制技术 四、我国电机的应用
3.无刷直流电机
4.永磁同步电机
12
任务2.2 认知新能源汽车电机及控制技术 五、驱动电机发展趋势
1.驱动电机的功率密度不断提高 2.驱动电机高速化,回馈制动范围宽广高效化 3.驱动电机系统集成化和一体化 4.驱动电机控制系统数字化 5.开关磁阻电机市场化
5.开关磁阻电机市场化
未来为满足消费者对纯电动轿车的动力性、经济性需求,需要考虑到纯电动轿车的成本、效率 、续驶里程、100 km 能耗、最高速度等问题,在解决开关磁阻电机输出转矩脉动大的问题后,拥 有结构和控制简单、效率高、转速范围宽、成本低、质量轻等特点的开关磁阻电机将越来越会被汽 车企业重视,并运用在电动汽车上。

电动汽车的动力系统控制

电动汽车的动力系统控制

电动汽车的动力系统控制近年来,随着环保意识的日益增强和技术的不断进步,电动汽车已经成为了越来越多人的首选。

与传统燃油汽车相比,电动汽车的动力系统具有许多优点,比如零排放、噪声小、能源可再生等等。

但是,在电动汽车的控制系统中,也面临着许多的挑战,其中最核心的就是电动汽车的动力系统控制。

本文将就电动汽车的动力系统控制进行探讨。

首先,我们来了解一下电动汽车的动力系统组成,电动汽车的动力系统主要由电机、电池、逆变器、电控单元和变速器等组成。

其中最重要的两个部分就是电机和电池。

电机是电动汽车的心脏,它直接影响汽车的性能和动力输出,而电池则是电动汽车的“油箱”,它决定了汽车的续航里程和性能等方面。

这些组件的协调运作对于电动汽车来说至关重要。

接下来,我们重点关注电动汽车的电机控制系统。

电机控制系统是电动汽车动力系统控制的核心,其主要功能是将电池的电能转化为某种形式的机械能,从而驱动车辆运动。

为了实现不同速度之间的无级变速控制,电机控制系统通常采用多级换流电路和对应的调节算法使得电机可以输出可控电流、电压和频率等参数。

这种控制系统不仅可以控制汽车的速度,也可以改变发动机的转速和扭矩输出,使发动机更加高效。

在目前的电动汽车市场中,通常利用电机转矩和速度模型进行电机控制系统的开发。

传统PID调节方法是一种常用的电机控制算法,通过对电机转速和转矩进行反馈控制,可以控制电机的输出,从而实现精确的控制效果。

但是,当前也有一些新的控制方法不断涌现,比如基于人工智能技术的控制方法,这种控制方法可以更加智能化、自适应、高效。

此外,电动汽车的电池管理系统(BMS)也是电动汽车控制系统中非常重要的一部分。

其主要功能是对电池的性能、状态和安全性等进行监控和管理。

通过实时监控电池的充放电状态、过电流、过电压等异常情况,确保电池能够正常、安全的运行。

总体来看,电动汽车的动力系统控制是一个非常复杂的系统,它涉及了电机、电池、逆变器、控制单元和变速器等多个组件之间的协调和控制。

新能源电动汽车的电机技术与控制

新能源电动汽车的电机技术与控制

维护与保养
建立完善的维护和保养体系,定 期对电机控制系统进行检查和保 养,确保系统的稳定性和可靠性 。
电机控制系统的智能化与网络化
01
02
03
智能化控制
利用先进的算法和传感器 技术,实现电机控制系统 的智能化,提高系统的响 应速度和稳定性。
网络化协同控制
通过车载网络和云平台, 实现多个电机控制系统之 间的协同控制,提高整车 的性能和安全性。
关磁阻电机技术
开关磁阻电机技术是一种新型的电机 技术,具有结构简单、可靠性高、容 错能力强等优点。
开关磁阻电机通过改变相绕组的电流 方向和大小来改变磁场方向和大小, 从而实现旋转。控制方式包括角度控 制和电流斩波控制。
03 新能源电动汽车电机控制系统
电机控制系统组成与功能
电机控制器
负责接收来自车辆控制器的指令,根据指令输出相应的控制信号,驱 动电机运行。
人机交互
利用人机交互技术,使驾 驶员能够更加方便地控制 电机系统,提高驾驶的舒 适性和安全性。
05 新能源电动汽车电机技术的未来展望
高性能电机的研发与应用
总结词
随着新能源电动汽车技术的不断发展,高性能电机的研发与应用成为未来的重 要趋势。
详细描述
高性能电机具有更高的功率密度、更低的能耗和更长的使用寿命,能够提高新 能源电动汽车的效率和性能。未来,高性能电机将广泛应用于新能源公交车、 出租车、物流车等商用车领域,以及家用轿车领域。
新能源电动汽车的电机技术与控制
• 新能源电动汽车电机技术概述 • 新能源电动汽车的电机技术 • 新能源电动汽车电机控制系统
• 新能源电动汽车电机控制系统的 优化与挑战
• 新能源电动汽车电机技术的未来 展望

新能源汽车电机及控制技术答案

新能源汽车电机及控制技术答案

新能源汽车电机及控制技术答案1. 简介新能源汽车(NEV)是指采用新型能源作为驱动能源的汽车,其中电动汽车(Electric Vehicle, EV)是其中的一种主要类型。

而新能源汽车电机及控制技术是指用于驱动电动汽车的电动机及相关控制系统的技术。

2. 电机技术2.1 电动机类型电动汽车主要使用的电机类型包括直流电动机(DC Motor)、异步电动机(Asynchronous Motor)和永磁同步电动机(Permanent Magnet Synchronous Motor, PMSM)等。

•直流电动机:直流电动机是最早应用于电动汽车的电机类型之一,特点是结构简单、转速范围广、控制方便,但效率较低。

•异步电动机:异步电动机通过电动机与电动机控制器之间的交流电流实现转动。

它具有体积小、重量轻、安全可靠等特点,适用于中小型电动汽车。

•永磁同步电动机:永磁同步电动机通过电磁场产生转矩,并且由于没有电枢电阻,具有较高的效率。

它适用于纯电动汽车。

2.2 电机控制技术电动汽车的电机控制技术是保证电机正常运行和提高汽车性能的关键。

主要包括电机转速控制、转矩控制和电机启动控制等。

•电机转速控制:电机转速控制是通过改变电动机输入电压或电流来调节电机的转速。

常用的转速控制方法有电极励磁、层次电极励磁和PWM控制等。

•转矩控制:转矩控制是调节电机输出转矩的控制方法。

通过控制电机输入电流和/或转子磁通来实现。

转矩控制主要用于电机加速、制动和保护等方面。

•电机启动控制:电机启动是指将电机从静止状态转变为运动状态的过程。

常用的启动控制方法有直接启动、星三角启动和变压器启动等。

3. 电机控制系统电机控制系统是指将电机与车辆的其他部件进行协调和控制的系统。

典型的电机控制系统包括电力电子转换器、电机控制器和车辆控制系统等。

3.1 电力电子转换器电力电子转换器是将电动汽车电池的直流电转换为电机需要的交流电的装置。

常用的电力电子转换器包括整流器、逆变器和换流器等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电动汽车用电机及其控制系统
主要研究内容
充分考虑了电动车用感应电动机的高比功率、高效率、运行区域宽等特点,初步得出了适合于电动车用的感应电动机的优化设计方法。

对电机进行温度场的数值计算。

通过合理的优化结构设计,在满足机械强度的前提下尽量减小各零部件的体积和重量。

在实现跟随转速的力矩控制基础上,在提高控制速度、控制精度、CAN总线通讯速度及可靠性等方面开展了研究。

实现了电启机、电启车、电驱动、发动机单独驱动、混合驱动、再生制动六种工作模式。

采用具有CAN 接口的DSP做为控制器的CPU。

进行了磁通矢量调节的直接转矩控制器的开发,在控制算法和编程上更多的考虑混合动力车的工况要求。

仿真研究了直接力矩控制在混合动力车上的应用问题。

已在样车和小批下线车实用。

研究成果获省部级科技成果二等奖1项。

(1)水冷感应电机
(2)水冷永磁无刷电机
永磁同步式主驱动电机及其控制系统;最大转矩(60sec)150N•m;连续转矩(1hr)60 N•m;连续输出功率(1hr) 20kW
(3)交流同步式起动/发电机及其控制系统
最大转矩(60sec)45N•m;连续转矩(1hr) 15N•m;最大输出功率(60sec) 8kW;连续输出功率(1hr) 4kW
负责人:程树康
以上为哈尔滨工业大学的研究成果,不知有用否。

相关文档
最新文档