个连通分支的平面图

合集下载

17平面图及图的着色

17平面图及图的着色

17.1 平面图的基本概念一、平面图及平面嵌入定义17.1如果图G能以这样的方式画在曲面S上,即除顶点处外无边相交,则称G可嵌入曲面S.若G可嵌入平面,则称G是可平面图或平面图。

画出的无边相交的图称为G的平面嵌入。

无平面嵌入的图称为非平面图。

K1(平凡图),K2,K3,K4都是平面图,其中,K1,K2,K3本身就已经是平面嵌入,K4的平面嵌入为图17.1中(4)所示。

K5-e (K5删除任意一条边)也是平面图,它的平面嵌入可表示为图17.1中(5).完全二部图K1,n(n≥1), K2,n(n≥2),也都是平面图,其中标准画法画出的K1,n已经是平面嵌入,K2,3的平面嵌入可由图17.1中(6)给出。

图17.1中(1),(2),(3)分别为K4, K5-e, K2,3的标准画法。

请观看演示动画:(1)变(4)(2)变(5)(3)变(6)图17.1下文中所谈平面图,有时是指平面嵌入,有时则不是,这要看是研究平面图什么性质而定,请读者根据上下文加以区分。

当然有时也特别指出平面嵌入。

现在就应该指出,在研究平面图理论中居重要地位的两个图,这就是完全图K5和完全二部图K3,3,它们都不是平面图(将由定理17.10的推论得到证明)。

还有两个非常显然的事实,用下面定理给出。

定理17.1若图G是平面图,则G的任何子图都是平面图。

由定理17.1立刻可知,K n(n≤4)和K1,n(n≥1)的所有子图都是平面图。

定理17.2若图G是非平面图,则G的任何母图也都是非平面图。

推论K(n≥5)和K3,n(n≥3)都是非平面图。

n本推论由K5,K3,3不是平面图及定理17.2得证。

还有一个明显的事实也用定理给出。

定理17.3设G是平面图,则在G中加平行边或环后所得图还是平面图。

本定理说明平行边和环不影响图的平面性,因而在研究一个图是否为平面图时可不考虑平行边和环。

二、平面图的面与次数定义17.2设G是平面图(且已是平面嵌入),由G的边将G所在的平面划分成若干个区域,每个区域都称为G的一个面。

平面图

平面图

17.4 平面图的对偶图
实线边图为平面图,虚线边图为其对偶图。
17.4 平面图的对偶图
从定义不难看出G的对偶图G*有以下性质: G*是平面图,而且是平面嵌入。 G*是连通图。 若边 e 为 G中的环,则 G*与 e对应的边 e* 为桥,若 e 为桥, 则G*中与e对应的边e*为环。 在多数情况下,G*为多重图(含平行边的图)。
i 1 i 1 k k
(17.1)
由于每个Gi 有一个外部面,而G只有一个外部面,所以G的面数 k r ri k 1
i 1
于是,对(17.1)的两边同时求和得
2k (ni mi ri ) ni mi ri n m r k 1
17.3 平面图的判断
例17.1 证明彼得松图不是平面图。
证 明
将彼得松图顶点标顺序,见图 (1)所示。 在图中将边(a,f), (b,g), (c,h), (d,i), (e,j)收缩,
所得图为图 (2)所示,它是K5,
由定理17.1彼得松图,令 G'=G-{(j,g),(c,d)} G‘如图 (3)所示,易知它与K3,3同胚, 由定理17.15可知,G为非平面图。
17.4 平面图的对偶图
一、对偶图的定义 定义17.6 设G是某平面图的某个平面嵌入,构造G的对偶图 G*如下: 在G的面Ri中放置G*的顶点vi* 。
设e为G的任意一条边,
若 e 在 G 的面 Ri 与 Rj 的公共边界上,做 G* 的边 e* 与 e 相交, 且e*关联G*的位于Ri与Rj中的顶点vi*与vj*,即e*=(vi*,vj*) ,e*不与其它任何边相交。 若e为G中的桥且在面Ri的边界上,则e*是以Ri中G*的顶点 vi*为端点的环,即e*=(vi*,vi*)。

第五章_图论2

第五章_图论2
6
通路定理
[定理]通路定理 在n阶图G中,如果有顶点u到v (u v) 的通路,那么u到v必有一条长度小于等
于n1的基本通路。
7
通路定理证明
定理:在有n个顶点的图G中,如果有顶点u到v的通路,必有长 度不大于n-1的基本通路。
证明:(1)先证明u和v之间存在基本通路 若uv之间的通路P中有相同的顶点,则从P中删除相同顶点之间
路径,直到P中没有相同顶点,这样得到的路径为u和v之间的基 本通路。
(2) 再证基本通路长度不大于n-1 (反证法)设u和v之间的基本通路的长度≥n。 ∵ 一条边关联两个顶点, ∴长度≥n的基本通路上至少有n+1个顶点。 ∴至少有两个相同顶点在u和v之间的基本通路上,这与基本通路 的性质“任意两个顶点不同”相矛盾。
图G从vi点到vj点有通路当且仅当?
bij = 1
21
图的连通性与可达矩阵
有向图的连通性(n1): 设有向图G的可达矩阵为B
(1) G强连通 B中元素全为1 (2) G是单向连通的 B中所有关于主对角线对称
的两个元素中至少一个值为1
无向图的连通性(n1): 设无向图G的可达矩阵为B
G连通 B中元素全为1
[定义]基本通(回)路
结点各不相同的通路称为基本通路。 中间结点各不相同的回路称为基本回路。
A
基本通路:ACEBD
B
E
基本回路:ABCDEA
C
D
5
有向通(回)路
[定义]有向通(回)路 若通路v0v1 … vn各边是有向边,且vi-1和vi 分别是有向边的始点与终点,则称该通路为 有向通(回)路。
通路uxv相连。
由u和v的任意性,可知~G是连通的。
27

离散数学第10章习题答案

离散数学第10章习题答案

第10章习题答案1.解 (1)设G 有m 条边,由握手定理得2m =∑∈Vv v d )(=2+2+3+3+4=14,所以G 的边数7条。

(2)由于这两个序列中有奇数个是奇数,由握手定理的推论知,它们都不能成为图的度数列。

(3) 由握手定理得∑∈Vv v d )(=2m =24,度数为3的结点有6个占去18度,还有6度由其它结点占有,其余结点的度数可为0、1、2,当均为2时所用结点数最少,所以应由3个结点占有这6度,即图G 中至多有9个结点。

2.证明 设1v 、2v 、…、n v 表示任给的n 个人,以1v 、2v 、…、n v 为结点,当且仅当两人为朋友时其对应的结点之间连一条边,这样得到一个简单图G 。

由握手定理知∑=nk kv d 1)(=3n 必为偶数,从而n 必为偶数。

3. 解 由于非负整数列d =(d 1,d 2,…,d n )是可图化的当且仅当∑=ni i d 1≡0(mod 2),所以(1)、(2)、(3)、(5)能构成无向图的度数列。

(1)、(2)、(3)是可简单图化的。

其对应的无向简单图如图所示。

(5)是不可简单图化的。

若不然,存在无向图G 以为1,3,3,3度数列,不妨设G 中结点为1v 、2v 、3v 、4v ,且d(1v )=1,d(2v )=d(3v )=d(4v )=3。

而1v 只能与2v 、3v 、4v 之一相邻,设1v 与2v 相邻,于是d(3v )=d(4v )=3不成立,矛盾。

4.证明 因为两图中都有4个3度结点,左图中每个3度结点均与2个2度结点邻接,而右图中每个3度结点均只与1个2度结点邻接,所以这两个无向图是不同构的。

5. 解 具有三个结点的所有非同构的简单有向图共16个,如图所示,其中(8)~(16)为其生成子图。

6. 解 (1)G 的所有子图如图所示。

(1)(3)(5)(6)(9)(10)(13)(14)(2)图(8)~(18)是G 的所有生成子图。

图论课件第三章图的连通性

图论课件第三章图的连通性

Bellman-Ford算法
总结词
Bellman-Ford算法是一种用于查找带权图中单源最短路径的算法。
详细描述
Bellman-Ford算法的基本思想是从源节点开始,通过不断更新节点之间的距离,逐步找到从源节点到 其他节点的最短路径。该算法可以处理带有负权重的边,并且在图中存在负权重环的情况下也能正确 处理。
THANKS
感谢观看
Floyd-Warshall算法
总结词
Floyd-Warshall算法是一种用于查找所有节点对之间最短路 径的动态规划算法。
详细描述
Floyd-Warshall算法的基本思想是通过动态规划的方式,逐 步构建最短路径矩阵。该算法首先初始化一个距离矩阵,然 后通过一系列的转移操作,逐步更新距离矩阵,直到找到所 有节点对之间的最短路径。
欧拉回路
总结词
欧拉回路是指一个路径的起点和终点是同一点,且经过图中的每条边且仅经过 一次的路径,并且该路径闭合。
详细描述
欧拉回路是欧拉路径的一种特殊情况,它不仅满足欧拉路径的所有条件,而且 起点和终点是同一点,形成一个闭合的路径。在图论中,欧拉回路具有重要的 应用价值。
欧拉回路的判定
总结词
判断一个图是否存在欧拉回路是一个NP 难问题,目前没有已知的多项式时间复 杂度的算法。
连通度
总结词
连通度是描述图中任意两点之间可达性的度量,表示图中节点之间的连接紧密程度。
详细描述
在图论中,连通度是衡量图连通性的一个重要参数。对于一个无向图,连通度通常用K表示,表 示图中任意两点之间是否存在路径。对于有向图,连通度分为入度和出度,分别表示从一个节 点到另一个节点是否存在路径和从另一个节点到这个节点是否存在路径。

图论课件第六章平面图

图论课件第六章平面图

A6
A2
A5
A3
A4
7
第7页,本讲稿共35页
例子3:3间房子和3种设施问题
问题:要求把3种公用设施(煤气,水和电)分别用煤气管 道、水管和电线连接到3间房子里,要求任何一根线或管道 不与另外的线或管道相交,能否办到?
上面问题可以模型为如下偶图:
G
W
E
H1
H2
H3
问题转化为,能否把上面偶图画在平面上,使得边与边 之间不会交叉?
1、平面图的次数公式
12
第12页,本讲稿共35页
定理1 设G=(n, m)是平面图,则:
deg(f )2m
f
证明:对G的任意一条边e, 如果e是某面割边,那么由面 的次数定义,该边给G的总次数贡献2次;如果e不是割边, 那么,它必然是两个面的公共边,因此,由面的次数定义 ,它也给总次数贡献2次。于是有:
19
第19页,本讲稿共35页
所以, l (n2)4(62)8
l2
2
而m=9,这样有:
m l (n 2) l 2
所以,由推论2,K3,3是非平面图。
推论3 设G是具有n个点m条边ф个面的简单平面图, 则:
m3n6
20
第20页,本讲稿共35页
证明:情形1,G连通。 因为G是简单图,所以每个面的次数至少为3,即l=3 。于是,由推论2得:
如果把每个景点分别模型为一个点,景点间连线,当且 仅当两景点间要铺设空调管道。那么,上面问题直接对应 的图为:
A1
A6
A2
A5 A3
A4
于是,问题转化为:能否把上图画在平面上,使得边不 会相互交叉?
6
第6页,本讲稿共35页
通过尝试,可以把上图画为:

离散数学第十七章平面

离散数学第十七章平面

平面图(平面嵌入)的面与次数
几点说明
极大平面图
定义17.3 若在简单平面图G中的任意两个不相邻的顶点之间 加一条新边所得图为非平面图,则称G为极大平面图. 注意:若简单平面图G中已无不相邻顶点,G显然是极大平 面图,如K1(平凡图), K2, K3, K4都是极大平面图.
极大平面图的主要性质 定理17.5 极大平面图是连通的. 证明线索:否则,加新边不破坏平面性
定理17.13 设G为n(n3)阶m条边的极大平面图,则m=3n6. 证 由定理17.4, 欧拉公式及定理17.7所证. 定理17.14 设G 为简单平面图,则 (G)5. 证 阶数 n6,结论为真. 当n7 时,用反证法. 否则会推出2m6n m3n,这与定理17.12矛盾.
在l=3达到最大值,由定理17.11可知m3n6.
下面两图中,实线边图为平面图,虚线边图为其对偶图. 实例
对偶图的性质
G 的对偶图G*有以下性质: (1) G*是平面图,而且是平面嵌入. (2) G*是连通图 (3) 若边e为G中的环,则G*与e对应的边e*为桥,若e为桥,则G*中与e对应的边e*为环. (4) 在多数情况下,G*为多重图(含平行边的图). (5) 同构的平面图(平面嵌入)的对偶图不一定是同构的. 如上面的例子.
自对偶图
定义17.8 设G*是平面图G的对偶图,若G*G,则称G为自 对偶图. 轮图定义如下: 在n1(n4)边形Cn1内放置1个顶点,使这个顶点与Cn1 上的所有的顶点均相邻. 所得n 阶简单图称为n阶轮图. n为奇 数的轮图称为奇阶轮图,n为偶数的轮图称为偶阶轮图,常 将 n 阶轮图记为Wn. 轮图都是自对偶图. 图中给出了W6和W7. 请画出它们的对偶图, 从而说明它们都是自对偶图.

离散数学-东北师范大学考试及答案

离散数学-东北师范大学考试及答案

离散数学【部分判断题答案在选择题中】一、单项选择题【设】字开头1、【答案】82.【答案】163、【答案】4、【答案】D135.【答案】D.I208.【答案】A. 错误209.【答案】D210.【答案】C215.-【答案】D.都正确216.【答案】A. 错误 218.【答案】A. 错误10.设I 是整数集合,下列集合中( )关于数的加法和乘法构成整环。

A .{}I n n ∈ 2B .{}I n n ∈+ 12C .{}I n n n ∈≥ , 0 D .I 【答案】D11.设集合{}3 , 2 , 1=A ,{}5 , 4 , 3 , 2=B ,{}16 , 8 , 4 , 2=C ,{}4 , 3 , 2 , 1=D ,又规定偏序关系“|”是集合上的“整除”关系,则下列偏序集中( )能构成格。

A . , A B ., B C ., C D ., D【答案】C1.设集合{}3 , 2 , 1 , 0=E ,则下面集合与E 相等的是 。

A .{}03 =-∈x R x B .{}9 2-=∈x R x C .{}065 2=++∈x x R x D .{}30 ≤≤∈x N x 【答案】D2.设{}6 , 5 , 4 , 3 , 2 , 1=A ,R 是集合A 上的整除关系,下列叙述中错误的是 。

A .4,5,6全是A 的极大元 B .A 没有最大元 C .6是A 的上界 D .1是A 的最大下界 【答案】C3. 设{} 4 , 3 , 2 , 1=X ,{}d c b a Y , , , =,则下列关系中为从X 到Y 的映射是 。

A .{}c b a , 3 , , 2 , , 1 B .{b c b a , 4 , , , , 2 , , 1 C .{b a a , 3 , , 2 , , 1 D .{c b b b a , , , 4 , , 2 , , 1 , , 1【答案】B4. 设G 是4阶群,则其子群的阶不能是下面的 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m l ( n k 1) l2
11
与欧拉公式有关的定理
定理17.12 设G为n(n3)阶m条边的简单平面图,则m3n6. 证 设G有k(k1)个连通分支,若G为树或森林,当n3时, m3n6为真. 否则G中含圈,每个面至少由l(l3)条边围成 ,又 l 2 1 l2 l2 在l=3达到最大值,由定理17.11可知m3n6. 定理17.13 设G为n(n3)阶m条边的极大平面图,则m=3n6. 证 由定理17.4, 欧拉公式及定理17.7所证. 定理17.14 设G 为简单平面图,则 (G)5. 证 阶数 n6,结论为真. 当n7 时,用反证法. 否则会推出 2m6n m3n,这与定理17.12矛盾.
6
极大平面图的性质
定理17.7 设G为n(n3)阶极大平面图,则G的每个面的 次数均为3. 证明线索: (1) 由于n3, 又G必为简单 平面图可知,G每个面的 次数均3. (2) 因为G为平面图,又为极 大平面图. 可证G不可能 存在次数>3的面. 就给出的图讨论即可.
7
定理的应用
定理17.7中的条件也是极大平面图的充分条件. 定理17.7 设G为n (n3) 阶平面图,且每个面的次数均为3, 则G为极大平面图.
5
极大平面图
定义17.3 若在简单平面图G中的任意两个不相邻的顶点之间 加一条新边所得图为非平面图,则称G为极大平面图. 注意:若简单平面图G中已无不相邻顶点,G显然是极大平 面图,如K1(平凡图), K2, K3, K4都是极大平面图. 极大平面图的主要性质 定理17.5 极大平面图是连通的.
定理17.6 n(n3)阶极大平面图中不可能有割点和桥. 证明线索:由定理17.5及n3可知,G中若有桥,则一定有 割点,因而只需证无割点即可. 方法还是反证法.
3
平面图(平面嵌入)的面与次数
定义17.2 (1) G的面——由G的平面嵌入的边将平面化分成的区域 (2) 无限面或外部面——(可用R0表示)——面积无限的面 (3) 有限面或内部面(可用R1, R2, …, Rk等表示)——面积 有限的面 (4) 面 Ri 的边界——包围Ri的回路组 (5) 面 Ri 的次数——Ri边界的长度,用deg(Ri)表示
10
与欧拉公式有关的定理
定理17.10 设G为连通的平面图,且deg(Ri)l, l3,则 l m ( n 2) l2 证 由定理17.4及欧拉公式得
2m de g(Ri ) l r l ( 2 m n)
解得 m
l ( n 2) l2
i 1
r
推论 K5, K3,3不是平面图. 定理17.11 在具有k(k2)个连通分支的平面图中,

17.3 平面图的判断
1. 插入2度顶点和消去2度顶点 定义17.5 (1) 消去2度顶点v,见下图中,由(1) 到(2) (2) 插入2度顶点v,见下图中,从(2) 到(1) .
(1)
(2)
13
图的同胚
2. 收缩边e,见下图所示.
3. 图之间的同胚 定义17.6 若G1G2,或经过反复插入或消去2度顶点后所 得G1G2,则称G1与G2同胚. 右边两个图同胚
14
平面图判定定理
定理17.15 G是平面图 G中不含与K5或K3,3同胚的子图. 定理17.16 G是平面图 G中无可收缩为K5或K3,3的子图 例1 证明所示图(1) 与(2)均为非平面图. (1) (2)
右图(1),(2)分别为 原图(1), (2)的子图 与K3,3, K5同胚.
4
几点说明
若平面图G有k个面,可笼统地用R1, R2, …, Rk表示,不需 要指出外部面. 定义17.2(4) 中回路组是指:边界可能是初级回路(圈),可 能是简单回路,也可能是复杂回路. 特别地,还可能是非 连通的回路之并. 平面图有4个面, deg(R1)=1, deg(R2)=3, deg(R3)=2, deg(R0)=8. 请写各面的边界. 定理17.4 平面图各面次数之和等于边数的两倍.
(1)
(2)
(3)
(4)
在图中,(2)是(1) 的平面嵌入,(4)是(3)的平面嵌入.
2
几点说明及一些简单结论
一般所谈平面图不一定是指平面嵌入,上图中4个图都是平 面图,但讨论某些性质时,一定是指平面嵌入. 结论: (1) K5, K3,3都不是平面图(待证) (2) 设GG,若G为平面图,则G也是平面图(定理17.1) (3) 设GG,若G为非平面图,则G也是非平面图(定理 17.2),由此可知,Kn(n6),K3,n(n4) 都是非平面图. (4) 平行边与环不影响平面性.
(1)
(2)
(3)
上图中,只有(3)为极大平面图
8
极小非平面图
定义17.4 若在非平面图G中任意删除一条边,所得图G为平 面图,则称G为极小非平面图. 由定义不难看出: (1) K5, K3,3都是极小非平面图 (2) 极小非平面图必为简单图
图中所示各图都是极小非平面图.
9
17.2 欧拉公式
定理17.8 设G为n阶m条边r个面的连通平面图,则nm+r=2 (此公式称为欧拉公式) 证 对边数m做归纳法 m=0,G为平凡图,结论为真. 设m=k(k1)结论为真,m=k+1时分情况讨论. (1) G中无圈,则G为树,删除一片树叶,用归纳假设. (2) 否则,在某一个圈上删除一条边,进行讨论. 定理17.9 (欧拉公式的推广)设G是具有k(k2)个连通 分支的平面图,则nm+r=k+1 k 证明中对各连通分支用欧拉公式,并注意 r ri ( k 1) i 1 即可.
第十七章 平面图
本章的主要内容 平面图的基本概念 欧拉公式 平面图的判断 平面图的对偶图
1
17.1 平面图的基本概念
定义17.1 (1) G可嵌入曲面S——若能将G除顶点外无边相交地画在S上 (2) G是可平面图或平面图——G可嵌入平面 (3) 平面嵌入——画出的无边相交的平面图 (4) 非平面图——无平面嵌入的无向图
相关文档
最新文档