高一物理万有引力-知识点+例题(12种类型,153道试题,视频点播)

合集下载

(完整word版)高中物理万有引力定律知识点总结和典型例题

(完整word版)高中物理万有引力定律知识点总结和典型例题

万有引力定律人造地球卫星『夯实基础知识』1.开普勒行星运动三定律简介(轨道、面积、比值)丹麦天文学家第必定律:全部行星都在椭圆轨道上运动,太阳则处在这些椭圆轨道的一个焦点上;第二定律:行星沿椭圆轨道运动的过程中,与太阳的连线在单位时间内扫过的面积相等;第三定律:全部行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等.即r3k T 2开普勒行星运动的定律是在丹麦天文学家弟谷的大批观察数据的基础上归纳出的,给出了行星运动的规律。

2.万有引力定律及其应用(1)内容:宇宙间的全部物体都是互相吸引的,两个物体间的引力大小跟它们的质量成积成正比,跟它们的距离平方成反比,引力方向沿两个物体的连线方向。

MmF G(1687年)r 2G 6.67 10 11 N m 2 / kg 2叫做引力常量,它在数值上等于两个质量都是1kg 的物体相距1m 时的互相作使劲, 1798 年由英国物理学家卡文迪许利用扭秤装置测出。

万有引力常量的测定——卡文迪许扭秤实验原理是力矩均衡。

实验中的方法有力学放大(借助于力矩将万有引力的作用见效放大)和光学放大(借助于平面境将渺小的运动见效放大)。

万有引力常量的测定使卡文迪许成为“能称出地球质量的人”:对于地面周边的物体m,有mg G m E mR E2(式中 R E为地球半径或物体到地球球心间的距离),可获得m E gR E2。

G(2)定律的合用条件:严格地说公式只合用于质点间的互相作用,当两个物体间的距离远远大于物体自己的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离.对于平均的球体,r 是两球心间的距离.当两个物体间的距离无量凑近时,不可以够够再视为质点,万有引力定律不再合用,不可以够够依公式算出 F 近为无穷大。

(3) 地球自转对地表物体重力的影响。

ωF 心NO′mOF引mg甲重力是万有引力产生的,因为地球的自转,因此地球表面的物体随处球自转时需要向心力.重力其实是万有引以以以下图,在纬度为 的地表处, 万有引力的一个分力充任物体随处球一同绕地轴自转所需的向心力F向=mRcos ·ω2(方向垂直于地轴指向地轴) ,而万有引力的另一个分力就是平常所说的重力mg ,其方向与支持力 N 反向,应竖直向下,而不是指向地心。

高中物理高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案).docx

高中物理高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案).docx

高中物理高考物理万有引力定律的应用常见题型及答题技巧及练习题( 含答案 )一、高中物理精讲专题测试万有引力定律的应用1.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量.(引力常量为G)【答案】【解析】设两颗恒星的质量分别为m1 、m2,做圆周运动的半径分别为r1、 r2,角速度分别为w ,w.根据题意有12w1=w2①(1 分)r +r =r ②( 1 分)12根据万有引力定律和牛顿定律,有G③( 3分)G④( 3 分)联立以上各式解得⑤(2分)根据解速度与周期的关系知⑥(2分)联立③⑤⑥式解得(3 分)本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解2.“天舟一号”货运飞船于2017 年 4 月 20 日在海南文昌航天发射中心成功发射升空,完成了与天宫二号空间实验室交会对接。

已知地球质量为M ,半径为R,万有引力常量为G。

(1)求质量为m 的飞船在距地面高度为h 的圆轨道运行时的向心力和向心加速度大小。

(2)若飞船停泊于赤道上,考虑地球的自转因素,自转周期为小物体所受重力大小G0。

T0,求飞船内质量为m0的(3)发射同一卫星到地球同步轨道时,航天发射场一般选取低纬度还是高纬度发射基地更为合理?原因是什么?【答案】 (1)(2)(3)借助接近赤道的低纬度发射基地更为合理,原因是低纬度地区相对于地心可以有较大线速度,有较大的初动能【解析】【详解】(1)根据万有引力定律和牛顿第二定律有解得(2)根据万有引力定律及向心力公式,有及解得(3)借助接近赤道的低纬度发射基地更为合理,原因是低纬度地区相对于地心可以有较大线速度,有较大的初动能。

高中物理万有引力定律的应用题20套(带答案)含解析

高中物理万有引力定律的应用题20套(带答案)含解析

高中物理万有引力定律的应用题20套(带答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.地球的质量M=5.98×1024kg ,地球半径R=6370km ,引力常量G=6.67×10-11N·m 2/kg 2,一颗绕地做圆周运动的卫星环绕速度为v=2100m/s ,求: (1)用题中的已知量表示此卫星距地面高度h 的表达式 (2)此高度的数值为多少?(保留3位有效数字) 【答案】(1)2GMh R v=-(2)h=8.41×107m 【解析】试题分析:(1)万有引力提供向心力,则解得:2GMh R v=- (2)将(1)中结果代入数据有h=8.41×107m 考点:考查了万有引力定律的应用2.2019年3月3日,中国探月工程总设计师吴伟仁宣布中国探月工程“三步走”即将收官,我国对月球的探索将进人新的征程。

若近似认为月球绕地球作匀速圆周运动,地球绕太阳也作匀速圆周运动,它们的绕行方向一致且轨道在同一平面内。

(1)已知地球表面处的重力加速度为g ,地球半径为R ,月心地心间的距离为r ,求月球绕地球一周的时间T m ;(2)如图是相继两次满月时,月球、地球和太阳相对位置的示意图。

已知月球绕地球运动一周的时间T m =27.4d ,地球绕太阳运动的周期T e =365d ,求地球上的观察者相继两次看到满月满月的时间间隔t 。

【答案】(1) 322m r T gR= (2)29.6 【解析】 【详解】(1)设地球的质量为M ,月球的质量为m ,地球对月球的万有引力提供月球的向心力,则222m MmG mr r T π⎛⎫=⋅ ⎪⎝⎭地球表面的物体受到的万有引力约等于重力,则02GMm m g R= 解得 322m r T gRπ= (2)相继两次满月有,月球绕地心转过的弧度比地球绕日心转过的弧度多2π,即2m e t t ωπω=+而2m mT πω=2e eT πω=解得 29.6t =天3.某课外小组经长期观测,发现靠近某行星周围有众多卫星,且相对均匀地分布于行星周围,假设所有卫星绕该行星的运动都是匀速圆周运动,通过天文观测,测得离行星最近的一颗卫星的运动半径为R 1,周期为T 1,已知万有引力常量为G 。

高中物理万有引力定律的应用题20套(带答案)

高中物理万有引力定律的应用题20套(带答案)

高中物理万有引力定律的应用题20套(带答案)一、高中物理精讲专题测试万有引力定律的应用1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求:(1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F Rm-(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】(1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l在最高点:222mv F mg l += ① 在最低点:211mv F mg l-= ② 由机械能守恒定律,得221211222mv mg l mv =⋅+ ③ 由①②③,解得126F F g m-= (2)2GMmmg R= 2GMm R =2mv R两式联立得:12()6F F Rm-(3)在星球表面:2GMmmg R = ④ 星球密度:MVρ=⑤ 由④⑤,解得128F F GmRρπ-=点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度.2.已知地球的自转周期和半径分别为T 和R ,地球同步卫星A 的圆轨道半径为h .卫星B 沿半径为r (r <h )的圆轨道在地球赤道的正上方运行,其运行方向与地球自转方向相同.求:(1)卫星B 做圆周运动的周期;(2)卫星A 和B 连续地不能直接通讯的最长时间间隔(信号传输时间可忽略).【答案】(1)3/2()r T h (2)3/23/23/2π()r h r -(arcsin R h+arcsin Rr )T 【解析】试题分析:(1)设卫星B 绕地心转动的周期为T′,地球质量为M ,卫星A 、B 的质量分别为m 、m′,根据万有引力定律和圆周运动的规律有:2Mm G h =mh 224T π① 2Mm G r '=m′r 224T π'② 联立①②两式解得:T′=3/2()rT h③(2)设卫星A 和B 连续地不能直接通讯的最长时间间隔t ,在时间间隔t 内,卫星A 和B 绕地心转过的角度分别为α和β,则:α=t T ×2π,β=tT '×2π ④ 若不考虑卫星A 的公转,两卫星不能直接通讯时,卫星B 的位置应在下图中B 点和B′点之间,图中内圆表示地球的赤道.由图中几何关系得:∠BOB′=2(arcsinR h+arcsin Rr ) ⑤由③式知,当r <h 时,卫星B 比卫星A 转得快,考虑卫星A 的公转后应有:β-α=∠BOB′ ⑥由③④⑤⑥式联立解得:t =3/23/23/2()r h r π-(arcsin R h+arcsin Rr )T 考点:本题主要考查了万有引力定律的应用和空间想象能力问题,属于中档偏高题.3.某航天飞机在地球赤道上空飞行,轨道半径为r ,飞行方向与地球的自转方向相同,设地球的自转角速度为ω0,地球半径为R ,地球表面重力加速度为g ,在某时刻航天飞机通过赤道上某建筑物的上方,求它下次通过该建筑物上方所需的时间. 【答案】203t gR r ω=- 或者202t gR r ω=-【解析】 【分析】 【详解】试题分析:根据人造卫星的万有引力等于向心力,列式求出角速度的表达式,卫星再次经过某建筑物的上空,比地球多转动一圈.解:用ω表示航天飞机的角速度,用m 、M 分别表示航天飞机及地球的质量,则有22Mm Gmr rω= 航天飞机在地面上,有2mMG R mg = 联立解得22gR rω=若ω>ω0,即飞机高度低于同步卫星高度,用t 表示所需时间,则ωt -ω0t =2π 所以202t gR r ω=- 若ω<ω0,即飞机高度高于同步卫星高度,用t 表示所需时间,则ω0t -ωt =2π 所以202t gR r ω=-. 点晴:本题关键:(1)根据万有引力提供向心力求解出角速度;(2)根据地球表面重力等于万有引力得到重力加速度表达式;(3)根据多转动一圈后再次到达某建筑物上空列式.4.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x =v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.5.宇航员在某星球表面以初速度2.0m/s 水平抛出一小球,通过传感器得到如图所示的运动轨迹,图中O 为抛出点。

【高中物理】万有引力定律知识点及练习

【高中物理】万有引力定律知识点及练习

【高中物理】万有引力定律知识点及练习一.万有引力定律――归纳为四点:“一个定义式、两大思路、三个宇宙速度、四个结论”二.练习1.2021年9月25日至28日我国成功实施了“神舟”七号载入航天飞行并实现了航天员首次出舱。

飞船先沿椭圆轨道飞行,后在远地点343千米处点火加速,由椭圆轨道变成高度为343千米的圆轨道,在此圆轨道上飞船运行周期约为90分钟。

下列判断正确的是()a.飞船变轨前后的机械能成正比b.飞船在圆轨道上时航天员出舱前后都处于失重状态c.飞船在此圆轨道上运动的角度速度大于同步卫星运动的角速度d.飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度解析:因为飞船燃烧变轨,消耗了能量,前后的机械能不动量,故a不恰当。

飞船在圆轨道上时万有引力来提供向心力,故航天员出舱前后都处于失重状态,b正确。

飞船在此圆轨道上运动的周期90分钟大于同步卫星运动的周期24小时,根据所述,飞船在此圆轨道上运动的角度速度大于同步卫星运动的角速度,c恰当。

飞船变轨前通过椭圆轨道远地点时只有万有引力来提供加速度,变轨后沿圆轨道运动也是只有万有引力来提供加速度,所以相等,d不正确。

练2.据报导,我国数据中继卫星“天链一号ol星”于2021年4月25日在西昌卫星发射中心升空升空,经过4次变轨掌控后,于5月1日顺利定点在东经770赤道飞过的同步轨道。

关于顺利定点后的“天链一号01星”,以下观点恰当的就是()a.运行速度大于7.9km/sb.距地面高度一定,相对地面恒定c.绕地球运行的角速度比月球绕地球运行的角速度大d.contribution加速度与恒定在赤道上物体的contribution加速度大小成正比解析:地球的第一宇宙速度为7.9km/s,是所有绕地卫星中环绕速度最大的。

“天链一号ol星”在同步轨道,即同步卫星。

又因其轨道半径大于近地卫星的轨道半径,故由知其速度小于第一宇宙速度,a不正确。

同步卫星的周期t与地球进动周期相同,故轨道半径就是定值,b恰当。

高中物理万有引力定律知识点总结与典型例题精选

高中物理万有引力定律知识点总结与典型例题精选

第五章 万有引力定律第一单元 万有引力定律及其应用基础知识一.开普勒运动定律(1)开普勒第一定律:所有的行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上.(2)开普勒第二定律:对于每一个行星而言,太阳和行星的连线在相等的时间内扫过的面积相等.(3)开普勒第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等.二.万有引力定律(1)内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比.(2)公式:F =G 221rm m ,其中2211/1067.6kg m N G ⋅⨯=-,称为为有引力恒量。

(3)适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离.对于均匀的球体,r 是两球心间的距离. 注意:万有引力定律把地面上的运动与天体运动统一起来,是自然界中最普遍的规律之一,式中引力恒量G 的物理意义是:G 在数值上等于质量均为1千克的两个质点相距1米时相互作用的万有引力.三、万有引力和重力重力是万有引力产生的,由于地球的自转,因而地球表面的物体随地球自转时需要向心力.重力实际上是万有引力的一个分力.另一个分力就是物体随地球自转时需要的向心力,如图所示,由于纬度的变化,物体做圆周运动的向心力F 向不断变化,因而表面物体的重力随纬度的变化而变化,即重力加速度g 随纬度变化而变化,从赤道到两极逐渐增大.通常的计算中因重力和万有引力相差不大,而认为两者相等,即m 2g =G 221r m m , g=GM/r 2常用来计算星球表面重力加速度的大小,在地球的同一纬度处,g 随物体离地面高度的增大而减小,即g h =GM/(r+h )2,比较得g h =(h r r +)2·g在赤道处,物体的万有引力分解为两个分力F 向和m 2g 刚好在一条直线上,则有F =F 向+m 2g ,所以m 2g=F 一F 向=G 221rm m -m 2R ω自2 因地球目转角速度很小G 221r m m » m 2R ω自2,所以m 2g= G 221rm m 假设地球自转加快,即ω自变大,由m 2g =G 221rm m -m 2R ω自2知物体的重力将变小,当G 221rm m =m 2R ω自2时,m 2g=0,此时地球上物体无重力,但是它要求地球自转的角速度ω自.四.天体表面重力加速度问题设天体表面重力加速度为g,天体半径为R ,由mg=2Mm G R 得g=2M G R ,由此推得两个不同天体表面重力加速度的关系为21212212g R M g R M =*五.天体质量和密度的计算原理:天体对它的卫星(或行星)的引力就是卫星绕天体做匀速圆周运动的向心力.G 2r mM =m 224T πr ,由此可得:M=2324GT r π;ρ=VM =334R M π=3223RGT r π(R 为行星的半径)由上式可知,只要用实验方法测出卫星做圆周运动的半径r 及运行周期T ,就可以算出天体的质量M .若知道行星的半径则可得行星的密度 规律方法1、万有引力定律的基本应用【例1】如图所示,在一个半径为R 、质量为M 的均匀球体中,紧贴球的边缘挖去一个半径为R/2的球形空穴后,对位于球心和空穴中心连线上、与球心相距d 的质点m 的引力是多大?分析 把整个球体对质点的引力看成是挖去的小球体和剩余部分对质点的引力之和,即可得解.【例2】某物体在地面上受到的重力为160 N ,将它放置在卫星中,在卫星以加速度a =½g 随火箭加速上升的过程中,当物体与卫星中的支持物的相互压力为90 N 时,求此时卫星距地球表面有多远?(地球半径R =6.4×103km,g 取10m/s 2)【例3】有人利用安装在气球载人舱内的单摆来确定气球的高度。

高中物理万有引力定律的应用题20套(带答案)及解析

高中物理万有引力定律的应用题20套(带答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r,周期为T,引力常量为G,行星半径为求:(1)行星的质量M;(2)行星表面的重力加速度g;(3)行星的第一宇宙速度v.【答案】(1)(2)(3)【解析】【详解】(1)设宇宙飞船的质量为m,根据万有引力定律求出行星质量(2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.2.土星是太阳系最大的行星,也是一个气态巨行星。

图示为2017年7月13日朱诺号飞行器近距离拍摄的土星表面的气体涡旋(大红斑),假设朱诺号绕土星做匀速圆周运动,距离土星表面高度为h。

土星视为球体,已知土星质量为M,半径为R,万有引力常量为.G求:()1土星表面的重力加速度g;()2朱诺号的运行速度v;()3朱诺号的运行周期T 。

【答案】()()()()21?2?3?2GM GM R h R h R R h GM π+++ 【解析】【分析】土星表面的重力等于万有引力可求得重力加速度;由万有引力提供向心力并分别用速度与周期表示向心力可求得速度与周期。

【详解】(1)土星表面的重力等于万有引力:2Mm Gmg R = 可得2GM g R = (2)由万有引力提供向心力:22()Mm mv G R h R h=++ 可得:GM v R h=+ (3)由万有引力提供向心力:()222()()GMm m R h R h Tπ=++ 可得:()2R h T R h GMπ+=+3.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G )【答案】【解析】设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为w 1,w 2.根据题意有w 1=w 2 ① (1分)r 1+r 2=r ② (1分)根据万有引力定律和牛顿定律,有G③ (3分) G ④ (3分) 联立以上各式解得⑤ (2分)根据解速度与周期的关系知⑥ (2分)联立③⑤⑥式解得(3分)本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解4.某航天飞机在地球赤道上空飞行,轨道半径为r ,飞行方向与地球的自转方向相同,设地球的自转角速度为ω0,地球半径为R ,地球表面重力加速度为g ,在某时刻航天飞机通过赤道上某建筑物的上方,求它下次通过该建筑物上方所需的时间. 【答案】203t gR r ω=-或者202t gR r ω=- 【解析】【分析】【详解】试题分析:根据人造卫星的万有引力等于向心力,列式求出角速度的表达式,卫星再次经过某建筑物的上空,比地球多转动一圈.解:用ω表示航天飞机的角速度,用m 、M 分别表示航天飞机及地球的质量,则有 22Mm G mr rω= 航天飞机在地面上,有2mM GR mg = 联立解得22gR rω= 若ω>ω0,即飞机高度低于同步卫星高度,用t 表示所需时间,则ωt -ω0t =2π 所以202t gR r ω=- 若ω<ω0,即飞机高度高于同步卫星高度,用t 表示所需时间,则ω0t -ωt =2π 所以202t gR r ω=-. 点晴:本题关键:(1)根据万有引力提供向心力求解出角速度;(2)根据地球表面重力等于万有引力得到重力加速度表达式;(3)根据多转动一圈后再次到达某建筑物上空列式.5.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大?(3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g s v H L=-201[1]42()s T mg H L L =+- 【解析】【分析】【详解】 (1)由万有引力等于向心力可知22Mm v G m R R= 2Mm G mg R= 可得2v g R= 则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t = 解得0024g sv H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.6.为了探测月球的详细情况,我国发射了一颗绕月球表面飞行的科学实验卫星.假设卫星绕月球做圆 周运动,月球绕地球也做圆周运动.已知卫星绕月球运行的周期为 T0,地球表面重力加速度为 g ,地球半径为 R0,月心到地心间的距离为 r0,引力常量为 G ,求: (1)月球的平均密度;(2)月球绕地球运行的周期.【答案】(1)203GT π(2) T = 【解析】【详解】(1)月球的半径为R ,月球质量为M ,卫星质量为m 由于在月球表面飞行,万有引力提供向心力:22204mM G m R R T π= 得23204R M GT π= 且月球的体积V =43πR 3 根据密度的定义式 M V ρ=得232023043 43R GT GT R ππρπ== (2)地球质量为M 0,月球质量为M ,月球绕地球运转周期为T 由万有引力提供向心力2202004 r GM M M r Tπ= 根据黄金代换GM 0=gR 02得T =7.2018年11月,我国成功发射第41颗北斗导航卫星,被称为“最强北斗”。

万有引力练习题(含答案)

万有引力练习题一.选择题(本题共8小题,每小题6分,共48分,在每小题给出的四个选项中,有的小题只有一个选项正确;有的小题有多个选项正确。

全部选对的得4分,选对但不全的得2分,有选错或不答的得0分。

把正确答案填到答案纸上) 1.关于万有引力的说法,正确的是( )。

A.万有引力只是宇宙中各天体之间的作用力B.万有引力是宇宙中具有质量的物体间普遍存在的相互作用力C.地球上的物体以及地球附近的物体除受到地球对它们的万有引力外还受到重力作用D.太阳对地球的万有引力大于地球对太阳的万有引力 2. 关于万有引力定律,下列说法中正确的是( )A.万有引力定律是牛顿在总结前人研究成果的基础上发现的B.万有引力定律适宜于质点间的相互作用 …C.公式中的G 是一个比例常数,是有单位的,单位是N·m 2/kg 2D.任何两个质量分布均匀的球体之间的相互作用可以用该公式来计算,r 是两球球心之间的距离3.假设行星绕恒星的运动轨道是圆,则其运行周期T 的平方与其运行轨道半径R 的三次方之比为常数,那么该常数的大小( )A.只与行星的质量有关B.只与恒星的质量有关C.与行星及恒星的质量都有关D.与恒星的质量及行星的速率有关4.设地球是半径为R 的均匀球体,质量为M ,若把质量为m 的物体放在地球的中心,则物体受到的地球的万有引力大小为( )。

A.零B.无穷大 2Mm RD.无法确定5.对于万有引力定律的表达式221rm Gm F,下列说法中正确的是( ).(A)公式中G 为引力常量,它是由实验测得的,而不是人为规定的 (B)当r 趋于零时,万有引力趋于无限大 *(C)两物体受到的引力总是大小相等的,而与m 1、m 2是否相等无关 (D)两物体受到的引力总是大小相等、方向相反,是一对平衡力6.地球质量大约是月球质量的81倍,在登月飞船通过月、地之间的某一位置时,月球和地球对它的引力大小相等,该位置到月球中心和地球中心的距离之比为( )A. 1︰27B. 1︰9C. 1︰3D. 9︰17.火星的质量和半径分别约为地球的 110和 12,地球表面的重力加速度为g ,则火星表面的重力加速度约为( )A .0.2 gB .0.4 gC .2.5 gD .5 g8.一名宇航员来到一个星球上,如果星球的质量是地球质量的一半,它的直径也是地球直径的一半,那么这名宇航员在该星球上所受到的万有引力大小是他在地球上所受万有引力的( )。

高考物理万有引力定律的应用题20套(带答案)含解析

高考物理万有引力定律的应用题20套(带答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远?【答案】(1)2,16(2)速度之比为2【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2MmGmg R = a 卫星2224aGMm m R R T π= 解得2a RT gπ= b 卫星2224·4(4)bGMm m R R T π= 解得16b RT gπ= (2)卫星做匀速圆周运动,F F =引向,a 卫星22a mv GMm R R=解得a GMv R=b 卫星b 卫星22(4)4Mm v G m R R= 解得v 4b GM R=所以 2abV V = (3)最远的条件22a bT T πππ-= 解得87R t gπ=3.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍.【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x =v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.4.双星系统由两颗彼此相距很近的两个恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的共同质量中心做周期相同的匀速圆周运动。

高中物理万有引力定律的应用题20套(带答案)及解析


【详解】
试题分析:根据人造卫星的万有引力等于向心力,列式求出角速度的表达式,卫星再次经
过某建筑物的上空,比地球多转动一圈.
解:用 ω 表示航天飞机的角速度,用 m、M 分别表示航天飞机及地球的质量,则有
G
Mm r2
mr
2
航天飞机在地面上,有
G
mM R2
mg
联立解得
gR2 r2
若 ω>ω0,即飞机高度低于同步卫星高度,用 t 表示所需时间,则 ωt-ω0t=2π
【答案】(1) v02 2h
(2) v0
R 2h
【解析】
本题考查竖直上抛运动和星球第一宇宙速度的计算.
(1) 设该星球表面的重力加速度为 g′,物体做竖直上抛运动,则 v02 2gh
解得,该星球表面的重力加速度 g v02 2h
(2) 卫星贴近星球表面运行,则 mg m v2 R
解得:星球上发射卫星的第一宇宙速度 v
【答案】(1) 4
L3 (2) 5Gm
3Gm L3
【解析】
【分析】
(1)两侧的星由另外两个星的万有引力的合力提供向心力,列式求解周期;
(2)对于任意一个星体,由另外两个星体的万有引力的合力提供向心力,列式求解角速
度;
【详解】
(1)对两侧的任一颗星,其它两个星对它的万有引力的合力等于向心力,则:
Gm2 (2L)2
联立③⑤⑥式解得
(3 分)
本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相 同,由万有引力提供向心力列式求解
2.我国发射的“嫦娥一号”探月卫星沿近似于圆形的轨道绕月飞行.为了获得月球表面全貌 的信息,让卫星轨道平面缓慢变化.卫星将获得的信息持续用微波信号发回地球.设地球 和月球的质量分别为 M 和 m,地球和月球的半径分别为 R 和 R1,月球绕地球的轨道半径 和卫星绕月球的轨道半径分别为 r 和 r1,月球绕地球转动的周期为 T.假定在卫星绕月运行 的一个周期内卫星轨道平面与地月连心线共面,求在该周期内卫星发射的微波信号因月球 遮挡而不能到达地球的时间(用 M、m、R、R1、r、r1 和 T 表示,忽略月球绕地球转动对遮 挡时间的影).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西省南昌市2015-2016学年度第一学期期末试卷(江西师大附中使用)高三理科数学分析一、整体解读试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。

试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。

1.回归教材,注重基础试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。

2.适当设置题目难度与区分度选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。

3.布局合理,考查全面,着重数学方法和数学思想的考察在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。

包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。

这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。

二、亮点试题分析1.【试卷原题】11.已知,,A B C 是单位圆上互不相同的三点,且满足AB AC →→=,则AB AC →→⋅的最小值为( )A .14-B .12-C .34-D .1-【考查方向】本题主要考查了平面向量的线性运算及向量的数量积等知识,是向量与三角的典型综合题。

解法较多,属于较难题,得分率较低。

【易错点】1.不能正确用OA ,OB ,OC 表示其它向量。

2.找不出OB 与OA 的夹角和OB 与OC 的夹角的倍数关系。

【解题思路】1.把向量用OA ,OB ,OC 表示出来。

2.把求最值问题转化为三角函数的最值求解。

【解析】设单位圆的圆心为O ,由AB AC →→=得,22()()OB OA OC OA -=-,因为1OA OB OC ===,所以有,OB OA OC OA ⋅=⋅则()()AB AC OB OA OC OA ⋅=-⋅-2OB OC OB OA OA OC OA =⋅-⋅-⋅+ 21OB OC OB OA =⋅-⋅+设OB 与OA 的夹角为α,则OB 与OC 的夹角为2α所以,cos 22cos 1AB AC αα⋅=-+2112(cos )22α=--即,AB AC ⋅的最小值为12-,故选B 。

【举一反三】【相似较难试题】【2015高考天津,理14】在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==则AE AF ⋅的最小值为 .【试题分析】本题主要考查向量的几何运算、向量的数量积与基本不等式.运用向量的几何运算求,AE AF ,体现了数形结合的基本思想,再运用向量数量积的定义计算AE AF ⋅,体现了数学定义的运用,再利用基本不等式求最小值,体现了数学知识的综合应用能力.是思维能力与计算能力的综合体现. 【答案】2918【解析】因为1,9DF DC λ=12DC AB =,119199918CF DF DC DC DC DC AB λλλλλ--=-=-==, AE AB BE AB BC λ=+=+,19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+,()221919191181818AE AF AB BC AB BC AB BC AB BCλλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭19199421cos1201818λλλλ++=⨯++⨯⨯⨯︒2117172992181818λλ=++≥+= 当且仅当2192λλ=即23λ=时AE AF ⋅的最小值为2918. 2.【试卷原题】20. (本小题满分12分)已知抛物线C 的焦点()1,0F ,其准线与x 轴的交点为K ,过点K 的直线l 与C 交于,A B 两点,点A 关于x 轴的对称点为D . (Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设89FA FB →→⋅=,求BDK ∆内切圆M 的方程. 【考查方向】本题主要考查抛物线的标准方程和性质,直线与抛物线的位置关系,圆的标准方程,韦达定理,点到直线距离公式等知识,考查了解析几何设而不求和化归与转化的数学思想方法,是直线与圆锥曲线的综合问题,属于较难题。

【易错点】1.设直线l 的方程为(1)y m x =+,致使解法不严密。

2.不能正确运用韦达定理,设而不求,使得运算繁琐,最后得不到正确答案。

【解题思路】1.设出点的坐标,列出方程。

2.利用韦达定理,设而不求,简化运算过程。

3.根据圆的性质,巧用点到直线的距离公式求解。

【解析】(Ⅰ)由题可知()1,0K -,抛物线的方程为24y x =则可设直线l 的方程为1x my =-,()()()112211,,,,,A x y B x y D x y -,故214x my y x =-⎧⎨=⎩整理得2440y my -+=,故121244y y m y y +=⎧⎨=⎩则直线BD 的方程为()212221y y y y x x x x +-=--即2222144y y y x y y ⎛⎫-=- ⎪-⎝⎭令0y =,得1214y yx ==,所以()1,0F 在直线BD 上.(Ⅱ)由(Ⅰ)可知121244y y m y y +=⎧⎨=⎩,所以()()212121142x x my my m +=-+-=-,()()1211111x x my my =--= 又()111,FA x y →=-,()221,FB x y →=-故()()()21212121211584FA FB x x y y x x x x m →→⋅=--+=-++=-,则28484,93m m -=∴=±,故直线l 的方程为3430x y ++=或3430x y -+=213y y -===±,故直线BD 的方程330x -=或330x -=,又KF 为BKD ∠的平分线,故可设圆心()(),011M t t -<<,(),0M t 到直线l 及BD 的距离分别为3131,54t t +--------------10分 由313154t t +-=得19t =或9t =(舍去).故圆M 的半径为31253t r +== 所以圆M 的方程为221499x y ⎛⎫-+= ⎪⎝⎭【举一反三】【相似较难试题】【2014高考全国,22】 已知抛物线C :y 2=2px(p>0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF|=54|PQ|.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.【试题分析】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理,弦长公式的应用,解法及所涉及的知识和上题基本相同. 【答案】(1)y 2=4x. (2)x -y -1=0或x +y -1=0. 【解析】(1)设Q(x 0,4),代入y 2=2px ,得x 0=8p,所以|PQ|=8p ,|QF|=p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p ,解得p =-2(舍去)或p =2,所以C 的方程为y 2=4x.(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m≠0). 代入y 2=4x ,得y 2-4my -4=0. 设A(x 1,y 1),B(x 2,y 2), 则y 1+y 2=4m ,y 1y 2=-4.故线段的AB 的中点为D(2m 2+1,2m), |AB|=m 2+1|y 1-y 2|=4(m 2+1).又直线l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0.设M(x 3,y 3),N(x 4,y 4),则y 3+y 4=-4m,y 3y 4=-4(2m 2+3).故线段MN 的中点为E ⎝ ⎛⎭⎪⎫2m2+2m 2+3,-2m ,|MN|=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2.由于线段MN 垂直平分线段AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE|=|BE|=12|MN|,从而14|AB|2+|DE|2=14|MN|2,即 4(m 2+1)2+⎝ ⎛⎭⎪⎫2m +2m 2+⎝ ⎛⎭⎪⎫2m 2+22=4(m 2+1)2(2m 2+1)m 4,化简得m 2-1=0,解得m =1或m =-1, 故所求直线l 的方程为x -y -1=0或x +y -1=0.三、考卷比较本试卷新课标全国卷Ⅰ相比较,基本相似,具体表现在以下方面: 1. 对学生的考查要求上完全一致。

即在考查基础知识的同时,注重考查能力的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养,既考查了考生对中学数学的基础知识、基本技能的掌握程度,又考查了对数学思想方法和数学本质的理解水平,符合考试大纲所提倡的“高考应有较高的信度、效度、必要的区分度和适当的难度”的原则. 2. 试题结构形式大体相同,即选择题12个,每题5分,填空题4 个,每题5分,解答题8个(必做题5个),其中第22,23,24题是三选一题。

题型分值完全一样。

选择题、填空题考查了复数、三角函数、简易逻辑、概率、解析几何、向量、框图、二项式定理、线性规划等知识点,大部分属于常规题型,是学生在平时训练中常见的类型.解答题中仍涵盖了数列,三角函数,立体何,解析几何,导数等重点内容。

3. 在考查范围上略有不同,如本试卷第3题,是一个积分题,尽管简单,但全国卷已经不考查了。

四、本考试卷考点分析表(考点/知识点,难易程度、分值、解题方式、易错点、是否区分度题)。

相关文档
最新文档