重铬酸钾法测定铁矿石中铁的含量

合集下载

铁矿石中铁含量测定方案

铁矿石中铁含量测定方案

重铬酸钾法测定铁矿石中铁的含量(无汞法)一、实验目的1. 掌握重铬酸钾法测定亚铁盐中铁含量的原理和方法;2. 了解氧化还原指示剂的作用原理和使用方法。

二.原理:经典的重铬酸钾法测定铁时,每一份试液需加入饱和氯化汞溶液10mL,这样约有480mg 的汞排入下水道,而国家环境部门规定汞的允许排放量是0.05mg·L-1,因此,实验中的排放量是大大超过允许排放量的。

实际上,汞盐沉积在底泥和水质中,造成严重的环境污染,有害于人的健康。

近年来研究了无汞测铁的许多新方法,如新重铬酸钾法,硫酸铈法和EDTA 法等。

本法是新重铬酸钾法。

新重铬酸钾法是在经典的有汞重铬酸钾法的基础上,去掉氯化汞试剂,采用钨酸钠作为指示剂指示Fe3+还原Fe2+的方法。

试样用硫-磷混酸溶剂后,先用氯化亚锡还原大部分Fe3+,继而用三氯化钛定量还原剩余部分的Fe3+,当Fe3+定量还原成Fe2+之后,过量一滴三氯化钛溶液,即可使溶液中作为指示剂的六价钨(无色的磷钨酸)还原为蓝色的五价钨化合物,俗称“钨蓝”,故使溶液呈现蓝色。

滴入重铬酸钾溶液,使钨蓝刚好褪色,以消除少量还原剂的影响。

“钨蓝”的结构式较为复杂定量还原Fe3+时,不能单用氯化亚锡,因为在此酸度下,氯化亚锡不能很好的还原W(Ⅵ)为W(V),故溶液无明显颜色变化。

采用SnCl2-TiCl3联合还原Fe3+为Fe2+,过量一滴TiCl3与Na2WO4作用即显示“钨蓝”而指示。

如果单用TiCl3为还原剂也不好,尤其是试样中铁含量高时,则使溶液中引入较多的钛盐,当加水稀释试液时,易出现大量的四价钛沉淀,影响测定。

在无汞测定铁实验中常用SnCl2-TiCl3联合还原,反应式如下:2Fe3++SnCl42-+2Cl-=2Fe2++SnCl62-Fe3++Ti3++H2O=Fe2++TiO2++2H+试液中Fe3+已经被还原为Fe2+,加入二苯胺磺酸钠指示剂,用K2Cr2O7标准溶液滴定溶液呈现稳定的紫色即为终点。

铁矿石中铁含量测定方案

铁矿石中铁含量测定方案

重铬酸钾法测定铁矿石中铁的含量(无汞法)一、实验目的1. 掌握重铬酸钾法测定亚铁盐中铁含量的原理和方法;2. 了解氧化还原指示剂的作用原理和使用方法。

二.原理:经典的重铬酸钾法测定铁时,每一份试液需加入饱和氯化汞溶液10mL,这样约有480mg的汞排入下水道,而国家环境部门规定汞的允许排放量是0.05mg L-1,因此,实验中的排放量是大大超过允许排放量的。

实际上,汞盐沉积在底泥和水质中,造成严重的环境污染,有害于人的健康。

近年来研究了无汞测铁的许多新方法,如新重铬酸钾法,硫酸铈法和EDTA法等。

本法是新重铬酸钾法。

新重铬酸钾法是在经典的有汞重铬酸钾法的基础上,去掉氯化汞试剂,采用钨酸钠作为指示剂指示 Fe3 +还原Fe2 +的方法。

试样用硫-磷混酸溶剂后,先用氯化亚锡还原大部分Fe3 + ,继而用三氯化钛定量还原剩余部分的 Fe3 + ,当Fe3 +定量还原成 Fe2 +之后,过量一滴三氯化钛溶液,即可使溶液中作为指示剂的六价钨(无色的磷钨酸)还原为蓝色的五价钨化合物,俗称"钨蓝”,故使溶液呈现蓝色。

滴入重铬酸钾溶液,使钨蓝刚好褪色,以消除少量还原剂的影响。

“钨蓝”的结构式较为复杂定量还原Fe3+时,不能单用氯化亚锡,因为在此酸度下,氯化亚锡不能很好的还原W( W ) 为W(V),故溶液无明显颜色变化。

采用SnCI2-TiCI3联合还原Fe3 +为Fe2 +,过量一滴TiCI3与Na2WO4 作用即显示“钨蓝”而指示。

如果单用 TiCI3为还原剂也不好,尤其是试样中铁含量高时,则使溶液中引入较多的钛盐,当加水稀释试液时,易出现大量的四价钛沉淀,影响测定。

在无汞测定铁实验中常用 SnCI2-TiCI3联合还原,反应式如下:2Fe3++SnCI 42-+2CI -=2Fe 2+ +SnCI 62-Fe3++Ti 3++H 2O=Fe 2+ +TiO 2+ +2H +试液中Fe3 +已经被还原为 Fe2 + ,加入二苯胺磺酸钠指示剂,用K2Cr2O7标准溶液滴定溶液呈现稳定的紫色即为终点。

铁矿石中铁含量的测定(重铬酸钾法)

铁矿石中铁含量的测定(重铬酸钾法)

铁矿石中铁含量的 测定(重铬酸钾法)
四、 实验步骤
(1)0.02 mol·dm-3K2Cr2O7 称取1.4~1.5 g已在150~180 ℃烘2小时,放在干燥器中冷
却至室温的K2Cr2O7于烧杯中,加蒸馏水溶解后,移入到250 mL 容量瓶中,用水稀释到刻度混匀。
铁矿石中铁含量的 测定(重铬酸钾法)
分析化学
铁矿石中铁含量的 测定(重铬酸钾法)
一、 实验目的
3.
2.
掌握滴定终点的判断。
1.
掌握铁矿石中全铁的测定原理。
掌握铁矿石中全铁的测定原理。
铁矿石中铁含量的 测定(重铬酸钾法)
二、 实验原理
铁矿石经硫磷混酸及硝酸溶解后,首先用SnCl2溶液还原大部分 Fe3+。为了控制SnCl2的用量,加入SnCl2使溶液呈浅黄色(说明这时 尚有少量Fe3, 为使反应完全,TiCl3要过量,而过量的TiCl3溶液用K2Cr2O7标准溶液 除去,此时Na2WO4溶液作为指示剂。其反应式为
(2)铁含量的测定
称取0.2~0.3 g试样置于250 mL锥形瓶中,用少量水润湿加 入浓盐酸溶液15 mL,盖上表面皿,低温加热溶解后,用少量水 洗表面皿及瓶壁,加热至沸腾,摇匀。趁热滴加10%SnCl2,至溶 液由黄色变为浅黄色,将溶液冷却到室温,并加水100 mL,加10 滴Na2WO4(25%)溶液,再滴加TiCl3至溶液呈蓝色,滴加K2Cr2O7 标准溶液至溶液刚好变为无色(或加2滴0.1%CuSO4溶液,放置至 无色),迅速加入10 mL硫磷混酸,摇匀,加5滴0.2%的二苯胺磺 酸钠,立即用重铬酸钾标准溶液滴定至紫色即为终点。根据滴定 结果,计算铁矿石中铁的含量。
滴定反应为
Fe3+ Fe3+/Fe2+电对的电极电势,使滴定突跃范围增大,用二苯胺磺酸钠 指示剂能正确地指示终点。

铁矿石中全铁含量测定方法分析

铁矿石中全铁含量测定方法分析

铁矿石中全铁含量测定方法分析在钢铁工业中,铁矿石是至关重要的原材料,而准确测定铁矿石中全铁的含量对于评估矿石质量、优化冶炼工艺以及控制生产成本都具有极其重要的意义。

本文将对常见的铁矿石中全铁含量测定方法进行详细分析。

一、重铬酸钾滴定法重铬酸钾滴定法是测定铁矿石中全铁含量的经典方法之一。

其基本原理是将铁矿石样品用酸溶解,使其中的铁全部转化为二价铁离子。

然后,在酸性条件下,用过量的重铬酸钾标准溶液将二价铁氧化为三价铁,最后以二苯胺磺酸钠为指示剂,用硫酸亚铁铵标准溶液滴定过量的重铬酸钾,从而计算出全铁的含量。

该方法的优点是准确度高、重现性好,适用于各种类型铁矿石中全铁含量的测定。

但也存在一些不足之处,比如操作过程较为繁琐,需要进行多次加热和滴定,耗时较长;同时,使用的重铬酸钾具有一定的毒性,对环境和操作人员的健康有一定影响。

二、氯化亚锡氯化汞重铬酸钾滴定法这种方法是在重铬酸钾滴定法的基础上进行改进的。

首先用盐酸和氟化钠溶解样品,然后加入氯化亚锡将大部分三价铁还原为二价铁。

接着,加入氯化汞氧化过量的氯化亚锡,最后用重铬酸钾标准溶液滴定二价铁,计算全铁含量。

此方法相较于传统的重铬酸钾滴定法,简化了操作步骤,缩短了分析时间。

然而,氯化汞是一种剧毒物质,对环境和人体危害极大,需要在操作过程中特别小心,严格控制其使用和排放。

三、EDTA 配位滴定法EDTA 配位滴定法也是常用的测定铁矿石中全铁含量的方法之一。

在酸性条件下,将铁矿石样品溶解,用还原剂将铁全部还原为二价铁。

然后,加入过量的 EDTA 标准溶液与二价铁配位,再以二甲酚橙为指示剂,用锌标准溶液滴定剩余的 EDTA,从而计算出全铁的含量。

EDTA 配位滴定法的优点是操作相对简便,分析速度较快,且试剂毒性较小。

但该方法的选择性相对较差,容易受到其他金属离子的干扰,因此在测定前需要对样品进行预处理,以消除干扰。

四、原子吸收光谱法原子吸收光谱法是一种基于物质对特定波长光的吸收特性来测定元素含量的方法。

铬酸钾法测定铁矿石中铁的含量

铬酸钾法测定铁矿石中铁的含量

铁元素在铁矿石中的重要性
01
铁元素是钢铁行业的主要原料, 用于生产各种钢材、铸件和机械 零件等。
02
铁矿石中铁的含量直接影响其工 业价值和市场需求,因此准确测 定铁含量对于评估矿石质量和市 场价格具有重要意义。
02
铬酸钾法测定原理
铁与铬酸钾的反应原理
铁与铬酸钾在强酸性溶液中发生氧化 还原反应,生成亚铁离子和铬离子。
提高生产效率
准确的铁含量测定有助于合理安排生产计划,提高生产效率。
促进环保和安全生产
通过合理利用铁矿石资源,减少对环境的破坏和降低安全生产风险。
THANKS
感谢观看
实验操作流程
01
02
03
04
酸溶
将铁矿石样品溶解于酸中,生 成铁离子。
氧化
加入氧化剂,将铁离子氧化为 高价态。
滴定
加入铬酸钾指示剂,用重铬酸 钾标准溶液滴定,指示剂变色
时停止滴定。
结果计算
根据滴定的体积和浓度计算铁 的含量。
04
结果分析
数据记录与处理
数据记录
在实验过程中,应准确记录每个步骤 中的数据,包括铁矿石样品的质量、 滴定剂的体积、实验温度和时间等。
数据处理
对实验数据进行整理、计算和校准, 确保数据的准确性和可靠性。可以采 用表格或图表等形式呈现数据,以便 于分析和比较。
结果计算与误差分析
结果计算
根据实验数据,按照铬酸钾法测铁的公式计算铁矿石中铁的含量。具体计算方 法可以参考相关文献或标准方法。
误差分析
对实验结果进行误差分析,包括系统误差和随机误差。系统误差可以通过实验 条件的控制和校准来减小,随机误差可以通过增加实验次数和取平均值等方法 来减小。

铁矿石中全铁含量的测定(无汞定铁法)——重铬酸钾法

铁矿石中全铁含量的测定(无汞定铁法)——重铬酸钾法

实验九铁矿石中全铁含量的测定(无汞定铁法)——重铬酸钾法、实验目的:1. 掌握基准物K2Cr2O7标准溶液的配制方法。

2. 了解铁矿石的溶解方法。

3. 理解甲基橙既是氧化剂又是指示剂的原理与条件。

4. 掌握K2Cr2O7法测全铁量的原理和方法。

5. 学习二苯胺磺酸钠的使用原理二、实验原理铁矿石的溶解方法:铁矿石的溶解方法是根据铁矿石的组成来决定的。

例如:含硅酸盐用氟化物助溶;磁铁矿用二氯化锡助溶;含硫或有机物先灼烧(550℃~600℃)去掉S和C(SO2↑、CO2↑)后,再用HCL溶;还有碱熔融法等。

本实验所用的铁矿石用浓HCL溶,基本上就可以完全溶完。

例: Fe3O4 + 8HCL == 2FeCL3 + FeCL2 + 4H2O溶解过程温度应保持80℃~90℃。

温低溶解慢、溶不完,温高FeCL3↑。

2、试样的预处理:(1) Fe(Ⅲ)的还原:用浓HCl 溶液分解铁矿石后,在热HCl 溶液中,以甲基橙为指示剂,用SnCl2 将Fe3+还原至Fe2+,并过量1 滴(只能过量1~2滴)。

经典方法是用HgCl2 氧化过量的SnCl2,除去Sn2+的干扰,但HgCl2 造成环境污染,本实验采用无汞定铁法。

还原反应为2FeCl4- + SnCl42- + 2Cl-= 2FeCl42- + SnCl62+(2) 除去过量的SnCl42-:SnCl42- 耗Cr2O72-所以必须除去。

使用甲基橙指示SnCl2 还原Fe3+的原理是:Sn2+将Fe3+还原完后,过量的Sn2+可将甲基橙还原为氢化甲基橙而褪色,指示了还原的终点,剩余的Sn2+还能继续使氢化甲基橙还原成N,N-二甲基对苯二胺和对氨基苯磺酸钠,反应为:(CH3)2NC6H4N=NC6H4SO3Na→(CH3)2NC6H4NH-NHC6H4SO3Na→(CH3)2NC6H4H2N + NH2C6H4SO3Na以上反应是不可逆的,不但除去了过量的Sn2+,而且甲基橙的还原产物不消耗K2Cr2O7。

铁矿石中铁量的测定 重铬酸钾滴定法

铁矿石中铁量的测定 重铬酸钾滴定法第 1 页 共 3 页1 主题内容与适用范围本规程规定了铁矿石中铁量的测定。

本规程适用于铁矿石中铁量的测定,测定范围:20.00%~70.00%。

2 方法原理试样用酸分解,在0.5~2.0mol/L 盐酸介质中,采用氯化亚锡还原大部分三价铁,用三氯化钛还原剩余三价铁,钛被氧化为四价,过量的三价钛以钨兰指示,用K 2Cr 2O 7溶液氧化,随着三价钛浓度降低,钨兰逐渐消褪,钨兰完全消失即过量的三价钛被氧化完全,在硫磷混酸的存在下,用二苯胺磺酸钠指示剂,K 2Cr 2O 7标准溶液滴定。

3 试剂除非另有说明,在分析中仅使用确认为分析纯的试剂和纯水。

3.1 盐酸(ρ1.19 g/mL)。

3.2 磷酸(ρ1.69 g/mL)。

3.3 饱和氟氢化铵溶液。

3.4 硝酸(ρ1.42 g/mL)。

3.5 硫酸(ρ1.84 g/mL)。

3.6 硫磷混酸(1+1):在2000mL 烧杯中,小心倒入500mL 磷酸(3.2)边搅拌边加入500mL 硫酸(3.4),冷却备用。

3.7 硫磷混酸:将150mL 硫酸在搅拌下慢慢加入700mL 水中,冷却后加入150mL 磷酸,用水稀至1L 。

混匀。

3.8 氯化亚锡溶液(100g/L ):称取10g 氯化亚锡加20mL 盐酸,加热溶解,以水稀释至100mL ,应贮存在加有少量锡粒的棕色玻璃瓶中。

3.9 三氯化钛溶液:取10mL 三氯化钛溶液(市售约15%的三氯化钛溶液),加95mL(1+1)盐酸,摇匀,加入约0.5g 分析铝片,备用。

此溶液一般为现配现用。

3.10 钨酸钠溶液(100g/l ):称取10克钨酸钠(NaWO42H2O )溶于适量水中加10mL 磷酸,水稀释至100mL ,摇匀。

3.11 二苯胺磺酸钠指示剂(5g/L):称取0.5g 二苯胺磺酸钠,溶于加有0.1无水碳酸钠的100mL 水中。

此溶液一般只能使用一周。

3.12 1/6重铬酸钾标准溶液[ =0.05000mol/L]。

铁矿石中全铁含量测定方法分析(一)

铁矿石中全铁含量的测定(重铬酸钾容量法)基本原理:在酸性溶液中,用氯化亚锡将三价铁还原为二价铁,加入氯化高汞以除去过量的氯化亚锡,以二苯胺磺酸钠为指示剂,用重铬酸钾标准溶液滴定至紫色。

反应方程式:2Fe 3+ + Sn 2+ + 6Cl ―—→ 2Fe 2+ + SnCl 62―Sn 2+ + 4Cl ― + 2HgCl 2 —→ SnCl 62―+ Hg 2Cl 2↓ 6Fe 2+ + Cr 2O 72- + 14H + —→ 6Fe 3+ + 2Cr 3+ + 2Cr 3+ + 7H 2O计算结果:()m V m V Fe 2.01000020.0%=⨯⨯=此法的优点是:过量的氯化亚锡容易除去,重铬酸钾溶液比较稳定,滴定终点的变化明显,受温度的影响(30℃以下)较小,测定的结果比较准确。

一、硫—磷混酸溶样1、药品及试剂①(2+3)硫磷混合酸② 重铬酸钾标准溶液:1.00 mL 此溶液相当于0.0020g 铁。

称取1.7559g 预先在150℃烘干1h 的重铬酸钾(基准试剂)于250 mL 烧杯中,以少量水溶解后移入1L 容量瓶中,用水定容。

③ 氯化亚锡溶液:10%称取10g 氯化亚锡溶于20 mL 盐酸中,用水稀释至100 mL 。

④ 氯化高汞饱和溶液:5%⑤ 二苯胺磺酸钠指示剂:0.5%⑥ 氟化钠2、分析步骤:准确称取0.2g 试样于250mL 锥形瓶中,用少许水润湿,摇匀。

加入10mL (2+3)硫磷混合酸及0.5g 氟化钠,摇匀。

在高温电炉上加热溶解完全,取下冷却,加入15mL 盐酸,低温加热至近沸并维持3~5min ,溶液变澄清,取下趁热滴加氯化亚锡溶液至铁(Ⅲ)离子的黄色消失,并过量2滴,用水冲洗杯壁。

在水槽中冷却,加入10mL 氯化高汞饱和溶液,摇动后放置2~3 min ,加水至120mL 左右,冷却后加入5滴0.5%二苯胺磺酸钠指示剂,用重铬酸钾标准溶液滴定至紫色。

与试样分析的同时进行空白试验。

铁矿石中铁含量的测定——氧化还原滴定法(重铬酸钾法)

实验记录本、实验报告
4
三、知识准备
❖ 粉碎到一定粒度的铁矿石用热的盐酸分解:
Fe2O3+6H+
2Fe3++3H2O
❖ 试样分解完全后,在体积较小的热溶液中,加入SnCl2将大部分Fe3+还原 为Fe2+,溶液由红棕色变为浅黄色,然后再以Na2WO4为指示剂,用TiCl3 将剩余的Fe3+全部还原成Fe2+,当Fe3+定量还原为Fe2+之后,过量1~2滴
2Fe2+ + SnCl62- Fe2++TiO2++2H+
2021/12/24
5
三、知识准备
❖ 此时试液中的Fe3+已被全部还原为Fe2+,加入硫-磷混酸 和二苯胺磺酸钠指示剂,用标准重铬酸钾溶液滴定至溶液 呈稳定的蓝紫色即为终点,在酸性溶液中,滴定Fe2+的反 应式如下
Cr2O72-+6Fe2++14H+
在HCl溶液中用K2Cr2O7滴定Fe2+。
❖ (4)虽然Cr2O72-本身显橙色,但一方面此颜色不鲜明, 指示的灵敏度差,另一方面其还原产物Cr3+常呈绿色,对 橙色有掩盖作用,所以不能采用自身指示剂的方法来指示终 点,而需外加指示剂。通常采用二苯胺磺酸钠为重铬酸钾法 的指示剂。
❖ 重铬酸钾法最重要的应用是测定铁的含量。另外,通过 Cr2O72-与Fe2+的反应,还可以测定其他氧化性或还原性物 质的含量。例如,土壤中有机质的测定,可先用一定量过量 的K2Cr2O7将有机质氧化,然后再以Fe2+标准溶液返滴剩余 的K2Cr2O7。
1.将实验结果填写在实验数据表格中,给 出结论并对结果进行评价; 2.写出检验报告

铁矿石中全铁含量的测定

铁矿石中全铁含量的测定(重铬酸钾容量法)铁矿石一般能被盐酸在低温电炉上加热分解,如残渣为白色,表明试样分解完全,若残渣有黑色或其它颜色,是因为铁的硅酸盐难溶于盐酸,可加入氢氟酸或氟化钠再加热使试样分解完全,SiO 2+4HF==SiF 4↑+2H 2OMSiO 3+4HF+2HCl==MCl 2+SiF 4↑+2H 2O还可以加入少量磷酸,以消除溶液中铁的黄色对终点的干扰同时降低Fe 3+/Fe 2+电位,增大终点突跃范围,使反应更完全。

磁铁矿的分解速度很慢,可用硫-磷混合酸(1+2)在高温电炉上加热分解,但应注意加热时间不能太长,以防止生成焦磷酸盐。

部分铁矿石试样的酸分解较困难,宜采用碱熔法分解试样,常用的熔剂有碳酸钠、过氧化钠、氢氧化钠和过氧化钠-碳酸钠(1+2)混合熔剂等,在银坩埚、镍坩埚、高铝坩埚或石墨坩埚中进行。

碱熔分解后,再用盐酸溶液浸取。

基本原理:在酸性溶液中,用氯化亚锡将三价铁还原为二价铁,加入氯化汞以除去过量的氯化亚锡,以二苯胺磺酸钠为指示剂,用重铬酸钾标准溶液滴定至紫色。

反应方程式:2Fe 3+ + Sn 2+ + 6Cl -—→ 2Fe 2+ + SnCl 62―Sn 2+ + 4Cl - + 2HgCl 2 —→ SnCl 62― + Hg 2Cl 2↓6Fe 2+ + Cr 2O 72- + 14H + —→ 6Fe 3+ + 2Cr 3+ + 2Cr 3+ + 7H 2O计算结果:()m V m V Fe 2.01000020.0%=⨯⨯=此法的优点是:过量的氯化亚锡容易除去,重铬酸钾溶液比较稳定,滴定终点的变化明显,受温度的影响(30℃以下)较小,测定的结果比较准确。

一、硫—磷混酸溶样1、药品及试剂①(2+3)硫磷混合酸②重铬酸钾标准溶液: mL此溶液相当于铁。

称取预先在150℃烘干1h的重铬酸钾(基准试剂)于250 mL烧杯中,以少量水溶解后移入1L容量瓶中,用水定容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重铬酸钾法测定铁矿石中铁的含量(无汞法)
一.原理:
经典的重铬酸钾法测定铁时,每一份试液需加入饱和氯化汞溶液10mL ,这样约有480mg 的汞排入下水道,而国家环境部门规定汞的允许排放量是0.05mg·L -1,因此,实验中的排放量是大大超过允许排放量的。

实际上,汞盐沉积在底泥和水质中,造成严重的环境污染,有害于人的健康。

近年来研究了无汞测铁的许多新方法,如新重铬酸钾法,硫酸铈法和EDTA 法等。

本法是新重铬酸钾法。

新重铬酸钾法是在经典的有汞重铬酸钾法的基础上,去掉氯化汞试剂,采用钨酸钠作为指示剂指示Fe 3+还原Fe 2+的方法。

试样用硫-磷混酸溶剂后,先用氯化亚锡还原大部分Fe 3
+,继而用三氯化钛定量还原剩余部分的Fe 3+,当Fe 3+定量还原成Fe 2+之后,过量一滴三氯化钛溶液,即可使溶液中作为指示剂的六价钨(无色的磷钨酸)还原为蓝色的五价钨化合物,俗称“钨蓝”,故使溶液呈现蓝色。

滴入重铬酸钾溶液,使钨蓝刚好褪色,以消除少量还原剂的影响。

“钨蓝”的结构式较为复杂。

磷钨酸还原为钨蓝的反应可表示如下:
PW 12O 40
3 -+e --e -PW 12O 40
4 -+e --e -PW 12O 40
5 -12-磷钨酸根离子
钨 蓝 定量还原Fe 3+时,不能单用氯化亚锡,因为在此酸度下,氯化亚锡不能很好的还原W(Ⅵ)
为W(V),故溶液无明显颜色变化。

采用SnCl 2-TiCl 3联合还原Fe 3+为Fe 2+,过量一滴TiCl 3
与Na 2WO 4作用即显示“钨蓝”而指示。

如果单用TiCl 3为还原剂也不好,尤其是试样中铁含量高时,则使溶液中引入较多的钛盐,当加水稀释试液时,易出现大量的四价钛沉淀,影响测定。

在无汞测定铁实验中常用SnCl 2-TiCl 3联合还原,反应式如下: 2Fe 3++SnCl 42-+2Cl -=2Fe 2++SnCl 62-
+++++++=++2H TiO Fe O H Ti Fe 22233
试液中Fe 3+已经被还原为Fe 2+
,加入二苯胺磺酸钠指示剂,用K 2Cr 2O 7标准溶液滴定溶液呈现稳定的紫色即为终点。

二.试剂:
(1) K 2Cr 2O 7标准溶液c (1/6 K 2Cr 2O 7)=0.1000mol·L -1
(2) 硫磷混酸:将200mL 浓硫酸缓慢加入到500mL 去离子水中,再加入300mL 浓磷酸中,充分搅拌均匀,冷却后使用。

(3) 浓HNO 3
(4) HCl (1+1)
(5) Na 2WO 4 25%水溶液:称取25g Na 2WO 4溶于适量水中(若浑浊则应过滤),加入2~5mL 浓H 3PO 4,加水稀释至100mL 。

(6) SnCl 2溶液10%:称取10g SnCl 2·2H 2O 溶于40mL 浓的热HCl ,加水稀释至100mL 。

(7) TiCl 3 1.5%:量取10mL 原瓶装TiCl 3溶液,用(1+4)的HCl 稀释至100mL 。

加入少量石油醚,使之浮在TiCl 3溶液的表面上,用以隔绝空气,避免TiCl 3氧化。

(8) 二苯胺磺酸钠指示剂0.2%:
三.实验步骤:
(1) K 2Cr 2O 7标准溶液c (1/6 K 2Cr 2O 7)=0.1000mol·L -1的配制:采用固定称量法。

准确称取
1.2258g K 2Cr 2O 7于一只干净的小烧杯中,加水溶解,定量转入250mL 容量瓶中,加水稀释至刻度,充分摇匀。

(2) 准确称取0.15~0.2g 试样置于250mL 的锥形瓶中,滴加几滴水润湿样品,摇匀后,加入10mL 硫磷混酸(如试样含硫化物高时则同时加入浓硝酸1mL )置于电炉上加热分解试
样。

先用小火或低温加热,然后提高温度,加热至冒SO 3白烟①。

加入10mL (1+1)HCl ,
此时,试液应该清亮,残渣为白色或浅色时示试样分解完全②。

取下锥形瓶稍冷,趁热滴加
SnCl 2溶液,使大部分的Fe 3+还原为Fe 2+,此时试液变为浅黄色③,加入10滴Na 2WO 4溶液,
再用TiCl 3溶液滴至呈稳定的蓝色(“钨蓝”30秒内不褪色),再加入80mL 去离子水,用K 2Cr 2O 7标准溶液滴至“钨蓝”刚好褪尽(此时不计读数),然后加入5滴二苯胺磺酸钠指示剂,用K 2Cr 2O 7标准溶液滴定至溶液呈现稳定的紫色为终点。

计算铁含量。

四.计算:
铁含量的计算:
%10010006)((%)722⨯⨯⨯⨯⨯=
S Fe O Cr K W M V c Fe
c ——K 2Cr 2O 7的浓度
V ——K 2Cr 2O 7的体积
M Fe ——铁的摩尔质量
W S ——试样的质量
五.思考题:
1. 分解试样时,为什么要加入硫-磷混酸?
2. 先用SnCl 2 和TiCl 3作还原剂的目的是什么?若不慎加入过量的SnCl 2 或TiCl 3怎么办?
3. 怎样才能合理的配制SnCl 2溶液?如要久置,则应如何配制?
注:① 一定要冒白烟,因为硫酸的分解温度338℃,比硝酸的分解温度125℃高的多。

只要开始冒白烟,则说明硝酸已赶尽了。

但冒白烟不宜过长,否则磷酸易形成焦磷酸盐粘底,包夹试样,影响分析结果。

② 若试样采用硫酸高铁铵,则不必加入硝酸,也不必高温加热至冒白烟,亦可能没有残渣出现。

③ SnCl 2溶液应小心滴加至黄色明显变浅,若过量则结果偏高。

如不慎过量,可滴加2%高锰酸钾溶液至浅黄色。

相关文档
最新文档