色温图谱
一张图看懂“色温”的通用范围标准!摄影白平衡其实就这么简单

一张图看懂“色温”的通用范围标准!摄影白平衡其实就这么
简单
色温以'开尔文'为单位,通常用k表示。
摄影中所说的色温与我们日常说的温度或者摄氏度没有关系,它是对照片色调冷暖的一种描述。
在相机中,我们可以用白平衡来调节照片的色温,一般相机提供了6种或者更多的白平衡预设,让照片展示出各种不同的色调。
下图描述了不同环境下色温的差异,大家可以收藏作为参考。
由于光源的不同,照片的色温会有冷暖之分。
一般自然光的色温会在4500K左右,数值越高照片会越冷,数值越低照片越暖。
下面的图片中,我们可以将光源分为钠灯,白炽灯,卤素灯,自然光等等。
可以看到不同的灯光下,它们的色温是不同的。
我们一般会将相机的白平衡设置为自动模式,也就是AWB自动白平衡,特别是环境光线经常变化的情况下,如果使用手动设置白平衡,可能会让你错过一些最佳拍摄时机。
我们可以在后期对照片的白平衡进行调整,效果是一样的。
值得一提的是,不同的白平衡可以创造出极具创意的效果,大家可以多多尝试,这其实很简单。
今天的课就到这里,喜欢的朋友,欢迎朋友圈转发文章,谢谢。
色温对照表

色温对照表色温对照表拍摄时色温的设置(对照表)拍摄时色温的设置(对照表)烛焰1500 -1800*日落前光色偏红,色温降至2200)家用白灯 2500-300060瓦的充气钨丝灯 2800100瓦的钨丝灯 29501000瓦的钨丝灯 3000 (日出后40分钟光色较黄)500瓦的投影灯 2865500瓦钨丝灯 31753200K的泛光灯 3200琥珀闪光信号灯 3200R32反射镜泛光灯 3200锆制的浓弧光灯 3200反射镜泛光灯 3400暖色的白荧光灯 3500清晰闪光灯信号 3800冷色的白荧光灯 4500白昼的泛光灯 4800(下午阳光雪白上升4800~5800)白焰碳弧灯 5000 (阳光直射下)M2B闪光信号灯 5100晴天 5200*正午的日光 5400高强度的太阳弧光灯 5550夏季的直射太阳光 5800早上10点到下午3点的直射太阳光6000*(摄影拍片黄金时间)蓝闪光信号灯 6000白昼的荧光灯 6500(阴天下6500~9000)正午晴空的太阳光 6500*(阴天正午时分约6500)阴天的光线 6800-7000 *高速电子闪光管 7000来自灰蒙天空的光线 7500-8400来自晴空蓝天的光线 10000-20000*在水域上空的晴朗蓝天 20000-27000*注:光源~以K (开尔文)为单位(K数为高越偏蓝调)色温(Color Temperature),单位:开尔文[Kelvin] 定义:•当光源所发出的颜色与“黑体”在某一温度下辐射的颜色相同时,“黑体”的温度就称为该光源的色温。
“黑体”的温度越高,光谱中蓝色的成份则越多,而红色的成份则越少。
色温是衡量一种光源“有多么热”或者“有多么冷”的指标,也是表示一种光源“白得程度”、“黄得程度”或者“蓝得程度”的指标。
•暖色<3300K;中间色3300至5000K;冷色>5000K。
如:海洋、无云的天空、雪地阴影、晴天里的阴影、室内、雨天、阴天(色温在9000-20000K)拍摄时色温的设置(对照表)烛焰 1500 -1800*(日落前光色偏红,色温降至2200)家用白灯 2500-300060瓦的充气钨丝灯 28001000瓦的钨丝灯 3000 (日出后40分钟光色较黄)500瓦的投影灯 2865500瓦钨丝灯 31753200K的泛光灯 3200琥珀闪光信号灯 3200R32反射镜泛光灯 3200锆制的浓弧光灯 3200反射镜泛光灯 3400暖色的白荧光灯 3500清晰闪光灯信号 3800冷色的白荧光灯 4500白昼的泛光灯 4800(下午阳光雪白上升4800~5800)白焰碳弧灯 5000 (阳光直射下)彩色胶片还可以分为日光型和灯光型两大类。
色温图谱

NOTE:Δ色温=实测色温-计算色温(根据相对色温线)结论:1.根据实际测试的色标可看出:不在色温线上面的色坐标点,可以通过相对色温线的方式求出该点色温.2.向下延长各个相对色温线,基本交汇在一点(X:0.33 Y:0.20).依此点坐标: 2500K相对色温线与X轴的夹角约为30度.25000K相对色温线与2500K相对色温线之间的夹角约为90度.250000K相对色温线与2000K相对色温线之间的夹角约为100度.具体见上图所示.3.根据上图白光色坐标分布图与相对色温线的关系,现在许多分光参数表是根据色温方式划分各个BIN等级(色标分布图是参照早期日亚白光色标分布图制作).这样分当然具有一定的好处。
4.工厂色标分布图所对应的的色温范围为:4000K~16000K.5.采用白光计算机(T620)测试出的色温值与根据相对色温线所计算出的色温值有一定的差别,机台测试出的色温值只能做一个参考值.根据相对色温线所计算出的色温值与机台测试的色温值之间的差别详见上表Δ色温值.相关色温8000-4000K的白光LED的发射光谱和色品质特性摘要:文章报告和分析了8000K、6400K、5000K和4000K四种色温的白光LED的发射光谱、色品质和显色性等特性,它们与工作条件密切相关。
随着正向电流IF的增加,色品坐标x和y值逐渐减小,色温增大,发生色漂移,而光通量呈亚线性增加,光效逐渐下降。
由于在白光LED中发生光转换过程,产生光吸收的辐射传递,致使白光中InGaN芯片的蓝色EL光谱的形状和发射峰发生变化。
白光LED的特性在很大程度上受InGaN蓝光LED芯片性能的制约。
人们可以实现8000-4000K四种色温白光LED,显色指数高,且制作的白光LED的色容差可以达到很小,实现优质的白光照明光源。
从上世纪90年代末到现在,白光发光二极管的出现和快速发展,引起人们极大的热情,白光LED具有低压、低功耗、高可靠,长寿命及固体化等优点。
色温对照表

色温对照表拍摄时色温的设置(对照表)烛焰1500 —1800*日落前光色偏红,色温降至2200)家用白灯 2500—3000 60瓦的充气钨丝灯 2800100瓦的钨丝灯 29501000瓦的钨丝灯 3000 (日出后40分钟光色较黄)500瓦的投影灯 2865500瓦钨丝灯 31753200K的泛光灯 3200琥珀闪光信号灯 3200R32反射镜泛光灯 3200锆制的浓弧光灯 3200反射镜泛光灯 3400暖色的白荧光灯 3500清晰闪光灯信号 3800冷色的白荧光灯 4500白昼的泛光灯 4800(下午阳光雪白上升4800~5800)白焰碳弧灯 5000 (阳光直射下)M2B闪光信号灯 5100晴天5200*正午的日光 5400高强度的太阳弧光灯 5550夏季的直射太阳光 5800早上10点到下午3点的直射太阳光6000*(摄影拍片黄金时间)蓝闪光信号灯 6000白昼的荧光灯6500(阴天下6500~9000)正午晴空的太阳光 6500*(阴天正午时分约6500)阴天的光线 6800-7000 *高速电子闪光管 7000来自灰蒙天空的光线 7500—8400来自晴空蓝天的光线 10000-20000*在水域上空的晴朗蓝天 20000—27000*注:光源以K (开尔文)为单位,(K数为高越偏蓝调)色温(Color Temperature),单位:开尔文[Kelvin]定义:当光源所发出的颜色与“黑体”在某一温度下辐射的颜色相同时,“黑体"的温度就称为该光源的色温。
“黑体”的温度越高,光谱中蓝色的成份则越多,而红色的成份则越少。
色温是衡量一种光源“有多么热”或者“有多么冷”的指标,也是表示一种光源“白得程度”、“黄得程度”或者“蓝得程度”的指标。
暖色〈3300K;中间色3300至5000K;冷色>5000K。
如:海洋、无云的天空、雪地阴影、晴天里的阴影、室内、雨天、阴天(色温在9000—20000K)拍摄时色温的设置(对照表)烛焰1500 —1800*(日落前光色偏红,色温降至2200)家用白灯2500-3000 60瓦的充气钨丝灯2800100瓦的钨丝灯29501000瓦的钨丝灯3000 (日出后40分钟光色较黄)500瓦的投影灯2865500瓦钨丝灯31753200K的泛光灯3200琥珀闪光信号灯3200R32反射镜泛光灯3200锆制的浓弧光灯3200反射镜泛光灯3400暖色的白荧光灯3500清晰闪光灯信号3800冷色的白荧光灯4500白昼的泛光灯4800(下午阳光雪白上升4800~5800)白焰碳弧灯5000 (阳光直射下)M2B闪光信号灯5100彩色胶片还可以分为日光型和灯光型两大类。
各种灯光的色温表(K值)资料

各种灯光的色温表(K值)各种照明灯的亮度差别关于亮度和节能比较:1W LED=3W CFL(节能灯)=15W白炽灯3W LED=8W CFL(节能灯)=25W白炽灯4W LED=11W CFL(节能灯)=40W白炽灯8W LED=15W CFL(节能灯)=75W白炽灯12W LED=20W CFL(节能灯)=100W白炽灯各种灯光的色温表(K值)色温是衡量光线色彩的定值,表示光源光谱质量最通用的指标。
K<3300时为暖色光(偏黄橙),K>3300时为冷色光(偏青),K>6000的几乎是白光了!以下是各种灯光的色温值,方便制作不同的光源效果!以K为单位的光色度对照表色温:光源发射光的颜色与黑体在某一温度下辐射光色相同时,黑体的温度称为该光源的色温。
因为在部分光源所发出的光通称为白光,故光源的色表温度或相关色温度即用以指称其光色相对白的程度,以量化光源的光色表现。
根据Max Planck的理论,将一具完全吸收与放射能力的标准黑体加热,温度逐渐升高光度亦随之改变;CIE色座标上的黑体曲线显示黑体由红棗橙红棗黄棗黄白棗白棗蓝白的过程黑体加温到出现与光源相同或接近光色时的温度,定义为该光源的相关色温度,称色温,以绝对温度K(Kelvin,或称开氏温度)为单位(K=℃+273.15)因此,黑体加热至呈现红色时温度约为527℃即800K其他温度影响光色变化。
光色愈偏蓝,色温愈高;偏红则色温愈低。
一天当中光的光色亦随时间变化;日出后40分钟光色较黄色温3000K;下午阳光雪白,上升至4800-5800K;阴天正午时分则约6500K;日落前光色偏红,色温又降至2200K。
因相关色温度事实上是以黑体辐射接近光源光色时,对该光源光色表现的评价值,并非一种精确的颜色对比,故具相同色温值的二光源,可能在光色外观上仍有些许差异。
仅凭色温无法了解光源对物体的显色能力,或在该光源下特体颜色的再现如何。
光源色温不同,光色也不同,色温在3300K以下有稳重的气氛,温暖的感觉;色温在3000-5000K为中间色温,有爽快的感觉;色温在5000K以上有冷的感觉,不同光源的不同光色组成最佳环境。
各种灯光的色温表(K值)资料

各种灯光的色温表(K值)各种照明灯的亮度差别关于亮度和节能比较:1W LED=3W CFL(节能灯)=15W白炽灯3W LED=8W CFL(节能灯)=25W白炽灯4W LED=11W CFL(节能灯)=40W白炽灯8W LED=15W CFL(节能灯)=75W白炽灯12W LED=20W CFL(节能灯)=100W白炽灯各种灯光的色温表(K值)色温是衡量光线色彩的定值,表示光源光谱质量最通用的指标。
K<3300时为暖色光(偏黄橙),K>3300时为冷色光(偏青),K>6000的几乎是白光了!以下是各种灯光的色温值,方便制作不同的光源效果!以K为单位的光色度对照表色温:光源发射光的颜色与黑体在某一温度下辐射光色相同时,黑体的温度称为该光源的色温。
因为在部分光源所发出的光通称为白光,故光源的色表温度或相关色温度即用以指称其光色相对白的程度,以量化光源的光色表现。
根据Max Planck的理论,将一具完全吸收与放射能力的标准黑体加热,温度逐渐升高光度亦随之改变;CIE色座标上的黑体曲线显示黑体由红棗橙红棗黄棗黄白棗白棗蓝白的过程黑体加温到出现与光源相同或接近光色时的温度,定义为该光源的相关色温度,称色温,以绝对温度K(Kelvin,或称开氏温度)为单位(K=℃+273.15)因此,黑体加热至呈现红色时温度约为527℃即800K其他温度影响光色变化。
光色愈偏蓝,色温愈高;偏红则色温愈低。
一天当中光的光色亦随时间变化;日出后40分钟光色较黄色温3000K;下午阳光雪白,上升至4800-5800K;阴天正午时分则约6500K;日落前光色偏红,色温又降至2200K。
因相关色温度事实上是以黑体辐射接近光源光色时,对该光源光色表现的评价值,并非一种精确的颜色对比,故具相同色温值的二光源,可能在光色外观上仍有些许差异。
仅凭色温无法了解光源对物体的显色能力,或在该光源下特体颜色的再现如何。
光源色温不同,光色也不同,色温在3300K以下有稳重的气氛,温暖的感觉;色温在3000-5000K为中间色温,有爽快的感觉;色温在5000K以上有冷的感觉,不同光源的不同光色组成最佳环境。
不同色温光谱
不同色温光谱
不同色温光谱是指不同颜色的光所对应的色温。
色温是用来描述光源颜色的一个物理量,单位是开尔文(K)。
一般来说,较低的色温对应着较暖的光,而较高的色温对应着较冷的光。
常见的色温光谱可以分为以下几种:
1. 暖白光(2700K-3000K):这种光色温较低,呈现出偏黄的色调,类似于传统的白炽灯光。
适合用于营造温馨、舒适的氛围,常见于家庭、酒店等场所。
2. 白光(4000K-4500K):这种光色温介于暖白光和冷白光之间,呈现出中性的白色光。
适合用于办公室、商业场所等需要清晰明亮环境的地方。
3. 冷白光(5000K-6500K):这种光色温较高,呈现出偏蓝的色调,类似于自然日光的颜色。
适合用于需要提高警觉性和注意力的环境,如医院手术室、学校教室等。
不同色温的光源在照明设计中有不同的应用场景和效果。
选择适合的色温可以根据具体需求来进行调整,以达到所期望的照明效果。
色彩色温色调PPT课件
色彩中颜料调配三原色混合色为黑色
三基色
三基色最早是现象二极管的基础色调,在光学现象方面中运用 红(R)、绿(G)、蓝(B)
三基色的混合色是白色
间色
任意两个原色相混合所得的新色。红+黄=橙, 蓝+黄=绿,红+蓝=紫,等量相加产生的橙、 绿、紫为标准三个原色混合的比例不同,间 色也随之产生变化。
。。。。
拍摄 拍摄 拍摄
色彩
色彩是一个广泛的名次,不仅仅涵盖于摄影, 在绘画、设计、服装、美术、化妆等行业也有涉及
说到色彩,必须先要了解色彩的三种属性
饱和度(纯度) 色相 明度(色彩的亮度)
色相
通俗易懂,就是色彩的样貌
纯度(饱和度)
纯度通常是指色彩的鲜艳度。从科学的角度看,一种 颜色的鲜艳度取决于这一色相发射光的单一程度。人 眼能辨别的有单色光特征的色,都具有一定的鲜艳度。 不同的色相不仅明度不同,纯度也不相同。
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
99
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
这是摄影方面一个最晦涩难懂的地方,单单从文字来理解,需要你们强大的 思维能力,更加需要你们的实际操作上手的经验,当你们实际拍摄过后,再 来看我之前的那些话就会豁然开朗,就像发现了桃花源一样
色温对照表
色温对照表光源色温 K数DM 值日出时200050日出後或日落前20min210048日出後或日落前30min240042日出後或日落前40min290035日出後或日落前1hr450022日出後或日落前3hr540019平均中午日光540019阴天6500-800015-13萤光灯700014电子闪光灯550018蓝色闪光灯泡540019白色闪光灯泡380026照相用泛光灯340029照相用钨丝灯320031家庭用500W灯泡300033家庭用100W灯泡290035led色温的基本概念在摄影上,由于拍摄场景光线能量的不同,也会造成色彩的变化,色温较低时,场景的色调偏向橙红,色温较高时,场景的色调偏蓝,以下,仅就色温的定义及特性做一解说。
色温的定义色温指的是光波在不同的能量下,人类眼睛所感受的颜色变化。
在色温的计算上,是以 Kelvin 为单位,黑体幅射的0° Kelvin= 摄氏 -273 ° C 做为计算的起点。
将黑体加热,随着能量的提高,便会进入可见光的领域,例如,在2800 ° K 时,发出的色光和灯泡相同,我们便说灯泡的色温是2800 ° K。
可见光领域的色温变化,由低色温至高色温是由橙红--> 白--> 蓝。
色温的特性1. 在高纬度的地区,色温较高,所见到的颜色偏蓝。
2. 在低纬度的地区,色温较低,所见到的颜色偏红。
( <---- 低色温 ------------------ 高色温 ----> )3. 在一天之中,色温亦有变化,当太阳光斜射时,能量被( 云层、空气)吸收较多,所以色温较低。
当太阳光直射时,能量被吸收较少,所以色温较高。
4.Windows 的 sRGB 色彩模型是以6500 ° K 做为标准色温,以D65 表示之。
5. 清晨的色温大约在4400 ° K。
6. 高山上色温大约在6000 ° K。
常见色温表
常见色温表常见色温表朝霞3000K黄昏4000K夏季的直射太阳光5800K早上10点到下午3点的直射太阳光6000K 正午晴空的太阳光6500K阴天的光线6800-7000K来自灰蒙天空的光线7500-8400K来自晴空蓝天的光线10000-20000K在水域上空的晴朗蓝天20000-27000K月夜6700K左右聚光灯3200K烛光1500K-1850K新闻灯3200K三基色日光灯3200K商场日光灯4500K家用白灯2500K-3000K冷色的白荧光灯4500K白昼的泛光灯4800K阳光十六阴天八多云十一日幕四乌云压顶五点六雪天落雨同日幕阳光灿烂直射阳光下ISO, T(快门), F(光圈)100, 1/100, 16100, 1/200, 11100, 1/400, 8100, 1/800, 5.6100, 1/1600, 4多云天气户外阳光下ISO, T(快门), F(光圈)100, 1/100, 11100, 1/200, 8100, 1/400, 5.6100, 1/800, 4100, 1/1600, 2.8阴天户外天光下ISO, T(快门), F(光圈)100, 1/100, 8100, 1/200, 5.6100, 1/400, 4100, 1/800, 2.8100, 1/1600, 2下雨时或下雨前户外ISO, T(快门), F(光圈)100, 1/100, 5.6100, 1/200, 4100, 1/400, 2.8100, 1/800, 2100, 1/1600, 1.4快门表:1/100、1/200、1/400、1/800、1/1600、1/3200、1/6400(按一档变化,曝光减一半)光圈表:1、1.4、2、2.8、4、5.6、8、11、16、22(按一档变化,曝光减一半)盘算方式就是:当ISO不变时,快门减少一档(即快门速度乘1/2),则光圈增添一档该法则要依据空气污染和时光做调整,以艳阳16为例,在现在的冬天只能在上午九点半到下午三点半之间使用,而上午八点半到九点半要用8――11的样子,自行试验了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2000-2500K 2500-3000K 3000-3500K 3500-4000K 4000-4500K 4500-5500K 5500-6500K 6500-7000K 7000-10000K 10000-25000K-------CIE1931NO.X Y实测色温(K)计算色温(K)Δ色温(K)10.26750.2809146101400061020.28200.30019655900065530.30270.32077572700057240.31720.356260816300-21950.31370.33526622650012270.30230.311882687100116880.29160.296093108500810相关色温8000-4000K的白光LED的发射光谱和色品质特性结论:1.根据实际测试的色标可看出:不在色温线上面的色坐标点,可以通过相对色温线的方式求出该点色温.2.向下延长各个相对色温线,基本交汇在一点(X:0.33 Y:0.20).依此点坐标: 2500K相对色温线与X轴的夹角约为30度.25000K相对色温线与2500K相对色温线之间的夹角约为90度.250000K相对色温线与2000K相对色温线之间的夹角约为100度.具体见上图所示.3.根据上图白光色坐标分布图与相对色温线的关系,现在许多分光参数表是根据色温方式划分各个BIN等级(色标分布图是参照早期日亚白光色标分布图制作).这样分当然具有一定的好处。
4.工厂色标分布图所对应的的色温范围为:4000K~16000K.5.采用白光计算机(T620)测试出的色温值与根据相对色温线所计算出的色温值有一定的差别,机台测试出的色温值只能做一个参考值.根据相对色温线所计算出的色温值与机台测试的色温值之间的差别详见上表Δ色温值.摘要:文章报告和分析了8000K、6400K、5000K和4000K四种色温的白光LED 的发射光谱、色品质和显色性等特性,它们与工作条件密切相关。
随着正向电流IF的增加,色品坐标x和y值逐渐减小,色温增大,发生色漂移,而光通量呈亚线性增加,光效逐渐下降。
由于在白光LED中发生光转换过程,产生光吸收的辐射传递,致使白光中InGaN芯片的蓝色EL光谱的形状和发射峰发生变化。
白光LED的特性在很大程度上受InGaN蓝光LED芯片性能的制约。
人们可以实现8000-4000K四种色温白光LED,显色指数高,且制作的白光LED的色容差可以达到很小,实现优质的白光照明光源。
从上世纪90年代末到现在,白光发光二极管的出现和快速发展,引起人们极大的热情,白光LED具有低压、低功耗、高可靠,长寿命及固体化等优点。
其量大的吸引力和期望是作为继白炽灯泡、荧光灯及高强度气体放电灯(HID)后的第四代照明新光源——具有庞大的照明市场和显著的节能前景的光源,是符合环保、节能要求的绿色照明光源。
因此,受到日美和欧洲各国政府和商家的重视,他们制定发展规划和目标,且大集团公司在技术和资金上进行联合和重组。
2003年6月我国政府也推出“半导体照明工程”,以期大力推动我国白光LED的发展。
尽管短短的几年来,白光LED的研发和应用取得举世瞩目的成绩,但目前还存在诸多问题,只能用于一些特殊的领域中。
我们注意到,目前普通的白光LED与用作照明光源白光LED的概念是有质的差异,并不是越“白”越好。
人们对用作照明的白光光源有着严格的要求,国际和我国早已制定标准。
照明光源有六个严格的标准色温区:6400K、5000K、4000K、3450K、2900K及2700K及其相应的色域,照明光源的色品质参数是相互关联的。
必须同时得到满中,方可称为合格的照明光源。
尽管目前作为照明光源——白光LEDs还没有国际CIE标准及中国的国家标准,但是应当参照国际CIE和中国国家标准来要求和指导白光LEDs新照明光源的发展和应用。
迄今有关不同色温度,高显色性白光LED的色品质和光谱特性报道欠缺。
本文按照国家照明光源标准,报告和分析所研发的8000-4000K不同色温的白光LED的发射光谱、色品质及光电特性。
1、实现相关色温原理和实验从市场上可以很方便地购得多家公司提供的不同等级的InGaN蓝光LED芯片。
这些芯片样品可分为发射波长455-460nm、460-465nm及465-470nm;光强一般在40mcd以上。
蓝芯片尺寸大多为320X320um左右。
依据发光学光转换和色度学原理,采用蓝光LED芯片和可被蓝光有效激发的荧光粉有机组合成白光LED技术实现白光。
荧光粉选择是多样性的,可以是一种黄色荧光粉或黄色和红色混合荧光粉。
调控各发光颜色强度比,实现各种色温的白光。
将含有荧光粉的优质高透过率树脂胶仔细涂覆在蓝芯片周围,用常规的封装工艺和环氧树脂封装成常规Ф5mm子弹型和半球型白光LED。
白光LED的发射光谱,色品技及其他光电特性由浙大三色仪器有限公司生产的型号为SPR-920D型光谱辐射分析仪测试记录。
该仪器配有一个0.5m的积分球及直流电源。
所有实验均在室温下进行,白光LED的发射光谱在正向电流IF=20mA 下测试。
2、不同色温白光LED的光谱特性2.1 8000K的白光LED 7000-10000K白光呈现发蓝高色温的白光。
在照明光源标准中没有这个标准。
它是不能有作普通家庭照明光源的。
这种高色温发蓝的白光LED可以用于要求不严的特殊照明和指示中,有一定用途。
图1给出相关色温为8070K的半球Ф5白光LED的发射光谱。
它是由InGaN蓝光LED 的电致发光光谱和稀土YAG:Ce体系黄色荧光体被蓝光激发的光致发光光谱所组成,两光谱的本质是不同的。
这样构成相关色温为8070K的发蓝的白光光谱,色品坐标x=0.2979,y=0.2939,在黑体轨迹的附近。
2.2 6400K的白光LED 图2是在正向电流IF=20mA下的色温为6450K的白光LED的发射光谱。
它是属于色温为6400K的日光色。
是目前照明光源使用的最广泛的色温之一。
其光谱所组成。
和图1光谱相比,黄成份的光谱增强,色温降低。
此时白光LED中的蓝光EL光谱和只有InGaN LED的蓝光光谱相比是有差异的,因为发生荧光体高效的吸收蓝光和光转换的辐射传递。
而这种光吸收(激发)与荧光体的激发光谱密切相关。
由于这种荧光体光转换过程致使白光LED中的蓝光光谱的能量分布、发射峰以及半高宽等性质发生变化。
所涂覆的荧光粉越多,蓝色光谱变化越严重,在低色温的白光LED中更为明显。
该白光LED的色品坐标X=0.3146,Y=0.3360,它们落在CIE标准色度图6400K标准色温的色容差图的最内圈,其色容差1.9,很满意,显色指数Ra为82,完全符合照明光源的要求。
2.3 5000K的白光LED 色温5118K的白光LED的发射光谱(如图3所示),它属于标准色温为5000K的中性白光。
光谱性质和上述相同,只是光谱中的黄成份的比例增加。
该白光LED的色品坐标X=0.3422,Y=0.3543,其色容差在5000K标准色温的色域中为2.1,很满意,Ra=81。
完全符合照明光源的光色参数要求。
若要提高显色指数Ra,需要增加光谱中的红成份,可能牺牲光效。
此外,在IF=20mA下,白光LED的光转换倍数高达4.9倍。
这里所说的光转换倍数(B)定义是在某一正向电流IF和不同的色温下,是不同的。
2.4 4000K的白光LED 迄今有关符合照明光源标准要求的4000K 白光LED光谱和色品质的报告很少。
这是因为仅用稀土YAG:Ce体系黄色荧光体难以制作合乎要求的Tc≤4000K的白光LED,显色指数低,色品质差。
为此,需要加入适量的红色荧光体,补足光谱中红成份。
图4为我们开发4019K白光LED 的发射光谱,它属于标准的色温为4000K的冷白色。
光谱中黄和橙成份增加,相对光谱中蓝成份的比例进一步下降。
该白光LED的色品坐标X=0.3810,Y=0.3815,在标准4000K色温的色容差的最内圈中,其色容差为0.6,显色指数Ra=82。
色品质甚佳,完全符合照明光的严格要求。
3、白光LED的性质与IF的关系3.1 色品坐标光源的色品坐标是一个重要参数。
图5给出5000K白光LED在不同正向电流IF驱动下的色品坐标X和Y值的变化曲线。
这条曲线给绘在标准6400K色温的色容差图中,具有直观动态感。
其中纵坐标为Y 值,横坐标为X值,而上横坐标为IF(mA)。
显然,随IF增加,色品坐标X和Y值逐渐偏离,到IF=70,80mA时,偏离非常严重。
3.2 相关色温由上述色品坐标X和Y值随IF的变化,指明发生色漂移,这必然在相关色温中也呈现反映。
图6表示白光LED在不同IF工作下的相关色温变化规律。
显然,随着IF增加,相关色温Tc(K)逐渐增加,由日光色变为蓝白色。
这是因为随正向电流IF的增加,白光LED的发射光谱,特别是InGaN LED蓝芯片的发射光谱发生很大变化,导致白光的发光颜色、色品质等性能改变。
3.3 白光LED的光通和光效制作的白光LED的光通(Φ)和光效(η)随施加的正向电流IF的变化曲线(如图7所示)。
光通呈亚线性增加,趋向饱和,而光效逐渐下降。
白光LED的光效下降与Taguchi等人的结果是一致的。
白光LED的光通和光效的这种变化,在不同色温的白光LED中是一致的。
对这种小功率白光LED来说,既要照顾光通量,又要考虑光效,故一般选择在IF=20mA下工作。
早期Nakamura等人已指出,InGaN/AlGaN DH蓝光LED的光输出功率随IF增加呈亚线性增加。
我们认为,引起白光效随IF增加逐渐降低的因素是多方面的。
首先,蓝光InGaN芯片的发光效率随IF增加而逐渐降低的因素是多方面的。
首先,蓝光InGaN芯片的发光效率随IF增加而逐渐下降;第二,随着IF增加,P-N结温快速升高,结温和环境温度上升,对半导体蓝光芯片和荧光粉的发光将产生严重的温度猝灭;第三,由于在白光LED中发生蓝光→黄光光转换过程,产生光吸收的辐射传递,不仅使白光光谱中的蓝芯片的EL的发射光谱形状和发射峰发生变化,而且蓝光效率下降在荧光体的光效下降和光衰程度似乎比InGaN蓝芯片更快。
实际上是荧光体的发光效率受蓝芯片下降的“诛连”和强烈的制约。
4、结束语综上所述,采用蓝光LED芯片和荧光体有机结合是可以成功地开发出8000-4000K不同色温段,显色指数高,色品质优良,符合照明光源CIE严格标准要求的白光LED。
制作的白光LED的色容差可以达到很小。
8000K、6400K、5000K和4000K四种色温的白光LED的发射光谱、色品坐标、显色性等光色特性与工作条件密切相关。
随着白光LED的正向电流增加,色品坐标X和Y值逐渐减小,而相关色温逐步增大,致使色漂移;而光通量呈亚线性增加,光效却逐渐下降。