张力控制的目的就是保持线

合集下载

恒张力控制

恒张力控制

控制原理图—速度模式
谷城县人民医院
控制原理图—速度模式
控制方法:速度值=理论计算值+PID修正值
F F理论+F
相关信息: 卷径 线速度 张力反馈PID 机械齿轮比 电机级数
谷城县人民医院
控制原理图—转矩模式
谷城县人民医院
T=(F*D)/(2*G);
张力控制方案
1张力闭环速度控制(BW/VE) 2张力开环转矩控制(VE) 3张力闭环转矩控制(VE)
谷城县人民医院
张力闭环速度控制
BW/VE系列支持
谷城县人民医院
张力开环转矩模式
VE系列支持
谷城县人民医院
张力闭环转矩模式
VE系列支持
谷城县人民医院
张力控制功能模块
1线速度检测模块 2卷径计算模块 3PID模块 4张力锥度控制 5断带检测 6智能启动
谷城县人民医院
1线速度检测
谷城县人民医院
在张力控制系统中,准确的测量线速度是很重要的,只有一种方案 可以不用线速度信号:即选用直接控制电机的转矩且卷径来源不 选线速度计算法。
谷城县人民医院
08-42卷径来源选择(线速度/AVI/ACI/AUI/485 /厚度积分 (编码器在收卷轴/编码器在马达侧)) 08-43最大卷径 08-44空卷卷径 08-45初始卷径设定选择( AVI/ACI/AUI/485 ) 08-46初始卷径设定值0 08-47初始卷径设定值1 08-48初始卷径设定值2
08-29/08-30/08-31 P1/I1/D1 (对应空卷卷径/低频)
08-32/08-33/08-34 P2/I2/D2 (对应满卷卷径/最高操作频 率)
08-35张力控制回授方式(正回授/负回授)

MD收放卷张力控制

MD收放卷张力控制
1、通过控制电机转速实现。 2、通过控制电机输出转矩实现。
张力控制基础--什么是张力控制系统?
什么是张力控制系统?
张力控制系统就是为实现张力控制而 必须的系统构成。 典型的张力控制系统包括: 1、张力控制器(含专用变频器) 2、张力检测器 3、磁粉制动器或离合器。 功能: 能够持久地控制料带输送时的张力。 这种控制对机器的任何运行速度都必 须保持有效,包括机器的加速、减速 和匀速。即使在紧急停车情况下,它 也有能力保证料带不产生丝毫破损。
传动比
机械传动比=电机转速/卷轴转速 在张力控制时必须正确设定机械传动比。
皮带、齿轮(多极相乘)
最大线速度
牵引棍变频器最大频率时所能达到的线速度
来源 1、线速度和频率正比(模拟输出或脉冲输出) 2、检测时脉冲频率与线速度成正比(编码器或接
近开关) 直接影响卷径条件(线速度与传动比); 要正确设置最大线速度(FH-28,FH-29); 观察FH-30---线速度实际值;
线速度检测+变频器
线速度反馈 线速度输入 一般用于收卷,但必须方便安装速度反馈装置
磁粉制动/离合器+张力传感器+张力控制器
目前使用较为普遍,但仅限于开卷收卷场合
变频器 +张力传感器(调节辊)
线速度输入 张力输入
张力反馈
使用范围不受限,但必须方便安装传感器(调节辊)
变频器开环张力控制 速度反馈
式选择; Ø 可灵活改变收/放卷模式; Ø 丰富的卷径计算功能模块; Ø 灵活的转矩补偿、惯量补偿、张力锥度输出等功能模块

什么是张力控制?
在金属加工、纺织、造纸、橡胶、化工及电线电缆等工业中,当处理一些如纸张、薄片 、丝、布等长尺寸材料或产品时,都会用上卷壳及滚筒组成的加工生产线,这有一个 需要解决的问题:如何在卷筒直径从开始阶段至最后阶段逐渐变化的整个过程中,张 力和线速度的变化保持在所允许的范围内。以塑料薄膜为例,在放卷、收卷以及供料 过程中,薄膜上要保持一定的张力(或者称之为拉伸力),过大的张力会导致料膜变 形甚至断裂,而过小的张力又会使薄膜松弛,导致褶皱,这就要求在薄膜的处理过程 中要保持恒定的张力。 张力控制的作用就是:保持恒定的张力,抑制外来干扰引起的张力抖动。 有两种途径可解决此问题:

张力控制原理

张力控制原理

张力控制原理
张力控制原理是一种常用于控制系统中的原理,通过对控制对象的张力进行测量和调节,实现对系统的稳定控制。

张力控制原理广泛应用于纺织、印刷、包装、造纸等行业中的连续生产线中,以确保产品在生产过程中的牵引力、张力等参数控制在合适的范围内。

张力控制原理的基本思想是通过传感器对物体的张力进行实时测量,将测量结果反馈给控制器,再根据设定的控制算法进行调节,以实现对张力的精确控制。

其中的关键是如何准确地测量物体的张力。

常见的测量方法包括压力传感器、应变测量、光电传感器等。

在控制系统中,控制器根据测量到的张力数值与设定值之间的差异,通过控制执行机构的工作状态来调节张力,使其趋近或保持在设定值范围内。

控制器通常采用PID控制算法,即按照比例、积分、微分三个因素对误差进行调节。

这样可以快速响应、稳定控制系统,保证生产线的正常运行。

除了控制算法外,张力控制原理还需要配备合适的执行机构和传动装置。

常见的执行机构有电机、气缸等,通过调节工作状态来改变物体的张力。

而传动装置则用于将执行机构的动力传递给受控对象,主要包括传动带、链条、轮轴等。

在实际应用中,张力控制原理需要根据具体的控制对象和工作环境进行参数调整和优化。

同时,还需要考虑到系统的响应速度、稳定性、负载变化、环境扰动等因素,以保证控制效果和
系统性能的优良。

综上所述,张力控制原理是一种用于控制系统中的重要原理,通过测量和调节张力,实现对系统的稳定控制,并被广泛应用于众多行业中的连续生产线。

储纱器储线原理 -回复

储纱器储线原理 -回复

储纱器储线原理-回复标题:储纱器储线原理详解一、引言储纱器,作为一种在纺织工业中广泛应用的设备,其主要功能是储存和供应纱线,保证生产过程的连续性和稳定性。

理解储纱器的储线原理,对于优化生产流程,提高生产效率,以及解决可能出现的问题具有重要的意义。

本文将详细解析储纱器的储线原理,从基本结构、工作流程到影响因素,逐步进行解答。

二、储纱器的基本结构储纱器通常由主体框架、储纱盘、驱动装置、张力控制装置和导纱装置等部分组成。

1. 主体框架:是储纱器的基础支撑结构,承受整个设备的重量和运行时产生的各种力。

2. 储纱盘:是储纱器的核心部分,用于储存纱线。

储纱盘的设计和材质直接影响纱线的储存效果和设备的使用寿命。

3. 驱动装置:负责提供储纱盘旋转的动力,通常包括电机、传动带或齿轮等部件。

4. 张力控制装置:用于调节纱线的张力,确保纱线在输送过程中的稳定性和一致性。

5. 导纱装置:引导纱线进入和离开储纱器,防止纱线在输送过程中发生混乱或断裂。

三、储纱器的储线原理储纱器的储线原理主要涉及到纱线的卷绕、释放和张力控制三个环节。

1. 纱线的卷绕:当纱线从上游设备(如纺纱机)输送到储纱器时,通过驱动装置带动储纱盘旋转,纱线在储纱盘上按照一定的规律进行卷绕。

卷绕的方式主要有平行卷绕和交叉卷绕两种,具体方式取决于纱线的特性、储纱器的设计和生产需求。

2. 纱线的释放:当需要使用纱线时,储纱盘在驱动装置的带动下反向旋转,使纱线按照卷绕的相反顺序逐渐释放出来。

为了保证纱线的连续性和稳定性,释放速度应与卷绕速度相匹配,并通过张力控制装置进行调节。

3. 纱线的张力控制:张力控制是储纱器储线原理中的关键环节。

过大的张力可能导致纱线断裂,过小的张力则可能使纱线松散或产生波浪状。

张力控制装置通过感应纱线的张力变化,自动调整驱动装置的速度或改变纱线的路径长度,以维持纱线的恒定张力。

四、影响储纱器储线效果的因素1. 设备设计:储纱器的结构设计、储纱盘的形状和材质、驱动装置的性能等因素都会影响纱线的卷绕和释放效果。

收放卷张力控制定义及应用

收放卷张力控制定义及应用

收放卷张力控制定义及应用收放卷张力控制定义及应用张力控制是指能够持久地控制原料在设备上输送时的张力的能力。

这种控制对机器的任何运行速度都必须保持有效,包括机器的加速、减速和匀速。

即使在紧急停车情况下,也应有能力保证被分切物不破损。

张力控制的稳定与否直接关系到分切产品的质量。

若张力不足,原料在运行中产生漂移,会出现分切复卷后成品纸起皱现象;若张力过大,原料又易被拉断,使分切复卷后成品纸断头增多。

张力控制系统主要应用于对带材和线材生产线中的卷取机和开卷机的控制。

例如,为了提高产品质量,使所卷带材表面平整、厚度均匀和带卷紧而且齐,必须对卷取机(或开卷机)和压延机之间的张力进行控制,使之恒定。

控制张力的方法分为间接法和直接法两类。

间接法又可采用两种方式:一种是在保持驱动电动机的电枢电流恒定的条件下,通过调节使电动机的磁通量随带卷(或线卷)直径成比例地变化,维持张力的恒定;另一种方式是调节电动机电枢电压,使电枢电流随带卷直径成比例变化来保持张力恒定。

直接法是对张力的直接反馈控制。

用张力计测量实际的张力值,作为反馈信号,以控制张力恒定。

直接法的优点是控制系统简单,可避免卷径变化、速度变化和空载转矩等对张力的影响,精度较高。

缺点是张力计的响应速度较慢。

在实际工业生产中,间接法远比直接法应用为广。

所谓的张力控制,通俗点讲就是要能控制电机输出多大的力,即输出多少牛顿。

反应到电机轴即能控制电机的输出转距。

真正的张力控制不同于靠前后两个动力点的速度差形成张力的系统,靠速度差来调节张力的实质是对张力的PID控制,要加张力传感器。

而且在大小卷启动、停止、加速、减速、停车时的调节不可能做到象真正的张力控制的效果,张力不是很稳定。

肯定会影响生产出产品的质量。

闭环式全自动张力控制是由张力传感器直接测定料带的实际张力值,然后把张力数据转换成张力信号反馈回张力控制器,通过此信号与控制器预先设定的张力值对比,计算出控制信号,自动控制执行单元则使实际张力值与预设张力值相等,以达到张力稳定目的。

张力控制

张力控制

谢谢观看
直接张力控制和张力复合控制多应用于带材、箔材冷轧机或连续加工线的卷取机或其机架间、加工设备间的 张力控制上。
图1
(a)卷取机的控制系统; (b)轧机机架间的控制系统间接张力控制系统通过对形成张力的有关参量的检 测与控制和对张力扰动参量的检测和补偿,实现对张力的间接控制所构成的控制系统。
间接张力控制系统不使用张力计,构成方式灵活,种类繁多,在张力控制领域一直占据着统治地位,得到广 泛应用并不断发展。其主要形式有缠绕设备用的间接张力控制和连续加工设备用的间接张力控制两种。
作用
张力控制的作用有:①保证连续生产加工过程能正常进行,即保证被加工材料在连续生产线的各部位上秒流 量相等,从而达到既不堆料也不拉断的要求;②保证被加工产品的质量,如尺寸精度 (厚度、宽度、截面形状 等)、平直度、卷绕松紧、外形以及材质性能等达到标准要求。
系统
间接系统
直接系统
活套系统
通过张力检测环节 (张力检测传感器)实现对张力的闭环反馈控制的系统。卷取机和轧机机架间的直接张力 控制系统分别如图1 (a)、(b)所示。
实现直接张力控制,首先要有张力检测传感器(张力计)。它被装在张力测量机构的张力辊下(见图1)。张 力计实为压力计,现用的压力计有压磁式、感应式、电阻应变片式等多种型式。
直接张力控制大多用于张力调节范围大,精度要求高及易于安装张力计的场合,或在无法构成间接张力控制 系统时使用。
有时为了提高张力调节动态及静态性能,扩大张力调节范围,用间接张力控制实现粗调,起扰动补偿作用, 用直接张力控制实现精调,两者合在一起构成张力复合控制。
一般印刷机上的张力控制系统是在卷筒纸展卷时加上传感辊,传感辊安装在枢轴浮动的支架上,根据张力值 进行平衡。通过对一些因素的响应,改变支架和辊子在枢轴浮动的位置,这些因素包括纸卷直径改变、运行速度、 卷筒纸加速度和制动系统摩擦力的改变。支架的枢轴运动将信息传送出去,由此不停地调整制动力,以保持张力 平衡。

张力控制原理教程

张力控制原理教程

张力控制原理教程张力控制是一种常见的控制原理,广泛应用于工业生产中的张力控制设备。

本文将介绍张力控制原理的基本概念、应用领域以及实现方法等内容。

一、张力控制的基本概念张力控制是指通过对拉伸或收缩的材料施加力,使材料保持一定的张力水平。

张力控制的目的是确保材料在生产过程中的稳定运行,避免材料过松或过紧引起的问题。

二、张力控制的应用领域1.包装行业:在印刷、涂覆、贴合等过程中,需要对卷材进行张力控制,以确保产品质量和生产效率。

2.纺织行业:在纺纱、织造、印染等过程中,需要对纱线、织物进行张力控制,以避免出现断纱、断经等问题。

3.金属加工行业:在连续拉拔、连续铸轧、连续热轧等过程中,需要对金属带材进行张力控制,以保证产品的尺寸精度和表面质量。

4.纸张行业:在造纸、印刷等过程中,需要对纸张进行张力控制,以避免出现张力差、翘曲等问题。

5.电子行业:在印刷电路板、光纤制造等过程中,需要对薄膜、线材进行张力控制,以确保产品的可靠性和稳定性。

三、张力控制的实现方法1.传统方法:传统的张力控制方法主要通过机械装置来实现,如张力滚轮、张力锥轮等。

这些装置通过控制滚轮之间的接触压力来调节张力,但存在精度低、响应慢等缺点。

2.电气控制方法:电气控制方法通过检测材料的张力信号,并通过电动机或气缸等执行器来调节张力。

这种方法的优点是精度高、响应快,可实现自动化控制。

常见的电气控制方法包括PID控制、动态张力控制等。

3.光电控制方法:光电控制方法通过光电传感器检测材料的张力变化,并通过控制光源的亮度来调节张力。

这种方法可以较好地适应各种材料的张力控制,但对环境光线干扰比较敏感。

四、张力控制的关键技术1.传感器技术:张力传感器能够测量材料的张力,并将其转化为电信号。

关键是选用合适的传感器,如压电传感器、应变传感器等。

2.控制算法:张力控制的核心是控制算法,常见的控制算法有PID控制、神经网络控制等。

根据实际需求选择合适的控制算法,以实现稳定的张力控制。

本科毕业设计PLC张力控制系统的设计5

本科毕业设计PLC张力控制系统的设计5

绪论随着科学技术的不断进展,工业生产的自动化程度不断地提高,微处置器、运算机和数字通信技术的应用愈来愈普遍。

工业自动化的主要支柱之一——PLC 在工业生产上具有普遍的应用,如造纸业、纺织业、橡皮业、薄膜加工业等等。

而PLC张力控制在上述工业中具有关键的作用。

在一般的造纸厂、印刷厂、纺织漂染厂、食物厂等,当处置一些如纸张、薄片、丝、布等长尺寸材料或产品时,都会用上卷壳及滚筒组成的加工生产线,因此,放料作业的张力控制,便成为通用的基础技术。

张力控制的作用就是在料膜动态处置进程中,维持恒定的张力,抑制外来干扰引发的张力抖动。

以料膜为例,在放卷,收卷和供料进程中,料膜上要维持必然的张力(或称之为拉伸力),过大的张力会致使料膜变形乃至短裂,而过小的张力又会使料膜松弛,致使褶皱,或处置尺寸不准等弊病。

如此就要求在料膜的处置进程,要维持恒定的张力。

张力控制的作用就是在料膜动态处置进程中,维持恒定的张力,抑制外来干扰引发的张力抖动。

本设计利用了伺服电机,三菱变频器、普通电机、西门子可编程控制器(PLC)、角度传感器。

项目中对两部份张力控制所选用的电机不同,是因为考虑到了生产本钱的因素。

在卷膜传送部份,需要的控制要求高,因此选用在性能好但价钱高的伺服电机,而在卷纸回收部份,需要的控制要求比较低,因此选用了廉价但能知足生产要求的普通电机。

设计中的张力控制系统,在利用传感器上选择了角度传感器。

通过对传送卷膜、卷纸的可动辊与水平面的夹角的测量,来判断张力大小是不是发生转变。

把检测出转角的模拟量送入控制器——PLC中进行控制。

第一章:张力控制系统的初步熟悉张力控制系统概述1.1.1 张力控制在一般的造纸厂、印刷厂、纺织漂染厂、食物厂等当处置一些如塑料膜卷、纸张、薄片、丝、布长尺寸材料或产品时,都会用上卷壳及滚筒组成的加工生产线,因此,放料作业的张力控制,便成为通用的基础技术。

以料膜为例,在放卷,收卷和供料进程中,料膜上要维持必然的张力(或称之为拉伸力),过大的张力会致使料膜变形乃至短裂,而过小的张力又会使料膜松弛,致使褶皱,或处置尺寸不准等弊病。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在这种模式下,无需张力检测反馈装置,就可以获得更为稳定的张力控制效果,结构简洁,效果较好。

但变频器需工作在闭环矢量控制方式,必须安装测速电机或编码器,以便对电机的转速做精确测量反馈。

转矩的计算公式如下:T=(F×D)/(2×i)其中:T变频器输出转矩指令F张力设定指令i机械传动比D卷筒的卷径电机的转矩被计算出来后,用来控制变频器的电流环,这样就可以控制电机的输出转矩。

控制电机的输出转矩。

控制电机的输出转矩所以转矩计算非常重要。

这种控制多用在对张力精度要求不高的场合,在我鑫科公司就有广泛的应用。

如精带公司的脱脂机、气垫炉的收卷控制中都采用了这中控制模式。

二、转矩模式下转矩模式下的张力开环控制张力闭环控制是在张力开环控制的基础上增加了张力反馈闭环调节。

通过张力检测装置反馈张力信号与张力设定值构成PID闭环调节,调整变频器输出转矩指令,这样可以获得更高的张力控制精度。

其张力计算与开环控制相同。

不论采用张力开环模式还是闭环模式,在系统加、减速的过程中,需要提供额外的转矩用于克服整个系统的转动惯量。

如果不加补偿,将出现收卷过程加速时张力偏小,减速时张力偏大,放卷过程加速时张力偏大,减速时张力偏小的现象。

这种控制模式多用在造纸、纺织等卷取微张力控制的场合下。

在我公司尚无需这种控制。

卷径计算在所有的模式中都需要用到卷筒的卷径,大家知道,在生产过程中开卷机的卷径是在不断变小,卷取机的卷径在不断变大,也就是说转矩必须随着卷径的变化而变化,才能获得稳定的张力控制。

可见卷筒的卷径计算是多么地重要。

卷径的计算有两中途径:一种是通过外部将计算好的卷径直接传送给变频器,一般是在PLC中运算获得。

另一种是变频器自己运算获得,矢量控制型变频器都具有卷径计算功能,在大多数的应用中都是通过变频器自己运算获得。

这样可以减少PLC程序的复杂性和调试难度、降低成本。

变频器自己计算卷径的方法有三种:变频器自己计算卷径的方法有三种:1、速度计算法:、速度计算法:通过系统当前线速度和变频器输出频率计算卷径。

其公式如下:D=(i×V)/(π×n)D所求卷径I机械传动比n电机转速V线速度当系统运行速度较低时,材料线速度和变频器输出频率都较低,较小的检测误差就会使卷径计算产生较大的误差,所以要设定一个最低线速度,当材料线速度低于此值时卷径计算停止,卷径当前值保持不变。

此值应设为正常工作线速度以下。

多数应用场合下的变频器都使用这种方法进行卷径计算。

2、度积分法:、度积分法:根据材料厚度按卷筒旋转圈数进行卷径累加或递减,对于线材还需设定每层的圈数。

这种方法计算要求输入材料厚度,若厚度是固定不变的,可以在变频器中设定。

此方法在单一产品的生产场合被广泛应用。

若厚度是需要经常变化的,需要通过人机界面HMI或智能仪表将厚度信号传送到PLC,由PLC或仪表进行运算后再传送给变频器。

这种计算方法可以获得比较精确的卷径。

在一般的国产设备上应用较少,我公司的进口设备,气垫炉的收、放卷控制上就采用这种计算方式。

3、模拟量输入、当选用外部卷径传感器时,卷径信号通过模拟输入口输入给变频器。

由于卷径传感器的性能、价格、使用环境等原因,在国内鲜有使用。

结束语:结束语:矢量变频技术在卷取应用中的方法多种多样,在当前技术条件下,上述模式是最具有代表性的。

无论是设计还是维修,了解你所使用设备的工作模式和控制特点是非常重要的。

变频技术还在高速发展,新的理论和控制技术将不断涌现,控制模式还将继续推陈出新。

我们期待着更先进、更实用的技术不断出现,以此来改变我们的生活。

要了解这四种模式,需要先分别了解开环和闭环、速度和转矩模式的区别2、开环和闭环在变频器中是指是否有速度编码器反馈给变频器,如果没有,则为开环,此时变频器需选择无速度传感器矢量控制(简称:开环矢量),如果有则称为有速度传感器矢量控制(简称:闭环矢量)。

3、速度模式是指变频器以控制电机的转速为目的,此时电机的力矩必须为保持该速度而调整。

所以控制系统中外环为速度环,内环为电流环。

速度环的输出为电流环的给定(力矩给定),该电流环也称为转矩环。

采用开环速度,则电机的转子速度是通过电压、电流及电机模型计算出来的,所以其速度精度、速度响应肯定比闭环要差和慢,所以开环速度控制只用在对低频速度和转矩响应不高的场合。

闭环速度控制由于使用了编码器,速度、转子位置可以通过编码器直接测量,所以速度精度和响应远远超过开环,但增加了编码器带来了故障点和成本增加,所以有些对精度要求不高的场合不使用闭环速度控制,反之则必须使用闭环速度控制4、转矩模式是指变频器是以控制电机的输出力矩为目的,速度大小和外部负载有关,与转矩无关。

此时变频器一般无速度环,只有电流环,外部给定直接给电流环作为力矩设定。

为防止超速,许多高档变频器都带速度外环限制超速,这是一种增强型的转矩模式,此时速度环只起一个限制最大速度的作用,电流环依然起主导作用。

开环转矩在响应和精度方面比闭环要差,原因和速度模式是一样的。

4、开环速度、闭环速度应用最为广泛,闭环转矩模式一般用在张力控制居多,而开环转矩应用的比较少,目前也就是在个别传动如:双电机同轴、皮袋传输等有一些应用。

1.什么是张力控制:所谓的张力控制,通俗点讲就是要能控制电机输出多大的力,即输出多少牛顿。

反应到电机轴即能控制电机的输出转距。

2.真正的张力控制不同于靠前后两个动力点的速度差形成张力的系统,靠速度差来调节张力的实质是对张力的PID控制,要加张力传感器。

而且在大小卷启动、停止、加速、减速、停车时的调节不可能做到象真正的张力控制的效果,张力不是很稳定。

肯定会影响生产出产品的质量。

用变频器做恒张力控制的实质是死循环矢量控制,即加编码器反馈。

对收卷来说,收卷的卷经是由小到大变化的,为了保证恒张力,所以要求电机的输出转距要由小到大变化。

同时在不同的操作过程,要进行相应的转距补偿。

即小卷启动的瞬间,加速,减速,停车,大卷启动时,要在不同卷经时进行不同的转距补偿,这样就能使得收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。

二.张力控制变频收卷在纺织行业的应用及工艺要求1.传统收卷装置的弊端纺织机械如:浆纱机、浆染联合机、并轴机等设备都会有收卷的环节。

传统的收卷都是采用机械传动,因为机械的同轴传动对于机械的磨损是非常严重的,据了解,用于同轴传动部分的机械平均寿命基本上是一年左右。

而且经常要维护,维护的时候也是非常麻烦的,不仅浪费人力而且维护费用很高,给客户带来了很多的不便。

尤其是纺织设备基本上是开机后不允许中途停车的,如发生意外情况需要停车会造成很大的浪费。

在这种情况下,张力控制变频收卷开始逐渐取代传统的机械传动系统。

2.张力控制变频收卷的工艺要求*在收卷的整个过程中都保持恒定的张力。

张力的单位为:牛顿或公斤力。

*在启动小卷时,不能因为张力过大而断纱;大卷启动时不能松纱。

*在加速、减速、停止的状态下也不能有上述情况出现。

*要求将张力量化,即能设定张力的大小(力的单位),能显示实际卷径的大小。

3.张力控制变频收卷的优点*张力设定在人机上设定,人性化的操作,单位为力的单位:牛顿. *使用先进的控制算法:卷径的递归运算;空心卷径激活时张力的线性递加;张力锥度计算公式的应用;转矩补偿的动态调整等等. *卷径的实时计算,精确度非常高,保证收卷电机输出转矩的平滑性能好。

并且在计算卷径时加入了卷径的递归运算,在操作失误的时候,能自己纠正卷径到正确的数值。

*因为收卷装置的转动惯量是很大的,卷径由小变大时。

如果操作人员进行加速、减速、停车、再激活时很容易造成爆纱和松纱的现象,将直接导致纱的质量。

而进行了变频收卷的改造后,在上述各种情况下,收卷都很稳定,张力始终恒定。

而且经过PLC的处理,在特定的动态过程,加入一些动态的调整措施,使得收卷的性能更好。

*在传统机械传动收卷的基础上改造成变频收卷,非常简便而且造价低,基本上不需对原有机械进行改造。

改造周期小,基本上两三天就能安装调试完成。

*克服了机械收卷对机械磨损的弊端,延长机械的使用寿命。

方便维护设备。

三.变频收卷的控制原理及调试过程*卷径的计算原理:根据V1=V2来计算收卷的卷径。

因为V1=ω1*R1,V2=ω2*Rx.因为在相同的时间内由测长辊走过的纱的长度与收卷收到的纱的长度是相等的。

即L1/∆t=L2/∆t ,∆n1*C1=∆n2*C2/i(∆n1单位时间内牵引电机运行的圈数、∆n2单位时间内收卷电机运行的圈数、C1测长辊的周长、C2收卷盘头的周长、i减速比) ∆n1*π*D1=∆n2*π*D2/i D2=∆n1*D1*i/∆n2,因为∆n2=∆P2/P2(∆P2收卷编码器产生的脉冲数、P2收卷编码器的线数). ∆n1=∆P1/P1取∆n1=1,即测长辊转一圈,由霍尔开关产生一个信号接到PLC.那么D2=D1*i*P2/∆P2,这样收卷盘头的卷径就得到了. *收卷的动态过程分析:要能保证收卷过程的平稳性,不论是大卷、小卷、加速、减速、激活、停车都能保证张力的恒定.需要进行转矩的补偿.整个系统要激活起来,首先要克服静摩擦力所产生的转矩,简称静摩擦转矩,静摩擦转矩只在激活的瞬间起作用;正常运行时要克服滑动摩擦力产生地滑动摩擦转矩,滑动摩擦转矩在运行当中一直都存在,并且在低速、高速时的大小是不一样的。

需要进行不同大小的补偿,系统在加速、减速、停车时为克服系统的惯量,也要进行相应的转矩补偿,补偿的量与运行的速度也有相应的比例关系.在不同车速的时候,补偿的系数是不同的。

即加速转矩、减速转矩、停车转矩、激活转矩;克服了这些因素,还要克服负载转矩,通过计算出的实时卷径除以2再乘以设定的张力大小,经过减速比折算到电机轴.这样就分析出了收卷整个过程的转矩补偿的过程。

总结:电机的输出转矩=静摩擦转矩(激活瞬间)+滑动摩擦转矩+负载转矩.<1>在加速时还要加上加速转矩;<2>在减速时要减去减速转矩.<3>停车时,因为是通过程控减速至设定的最低速,所以停车转矩的补偿同减速转矩的处理. *转矩的补偿标准(1).静摩擦转矩的补偿:因为静摩擦转矩只在激活的瞬间存在,在系统激活后就消失了.因此静摩擦转矩的补偿是以计算后电机输出转矩乘以一定的百分比进行补偿. (2).滑动摩擦转矩的补偿:滑动摩擦转矩的补偿在系统运行的整个过程中都是起作用的.补偿的大小以收卷电机的额定转矩为标准.补偿量的大小与运行的速度有关系。

所以在程序中处理时,要分段进行补偿。

(3).加减速、停车转矩的补偿:补偿硬一收卷电机的额定转矩为标准,相应的补偿系数应该比较稳定,变化不大。

*计算当中的公式计算(1).已知空芯卷径Dmin=200mm,Dmax=1200mm;线速度的最大值Vmax=90m/min,张力设定最大值Fmax=50kg(约等于500牛顿);减速比i=9;速度的限制如下:因为:V=π*D*n/i(对于收卷电机)=>收卷电机在空芯卷径时的转速是最快的.所以:90=**n/9=>n=1290r/min; (2).因为我们知道变频器工作在低频时,交流异步电机的特性不好,激活转矩低而且非线性.因此在收卷的整个过程中要尽量避免收卷电机工作在2HZ以下.因此:收卷电机有个最低速度的限制.计算如下:对于四极电机而言其同步转速为:n1=60f1/p=>n1=1500r/min. =>2HZ/5HZ=N/1500=>n=60r/min 当达到最大卷径时,可以求出收卷整个过程中运行的最低速.V=π*D*n/i=>Vmin=**60/9=min.张力控制时,要对速度进行限制,否则会出现飞车.因此要限速. (3).张力及转矩的计算如下:如果F*D/2=T/i,=>F=2*T*i/D对于22KW的交流电机,其额定转矩的计算如下:T=9550*P/n=>T=.所以Fmax=2*140*9/=4200N.(其中P为额定功率,n为额定转速). *调试过程:1.先对电机进行自整定,将电机的定子电感、定子电阻等参数读入变频器。

相关文档
最新文档