abaqus第十讲:准静态分析
Abaqus-中显示动力学分析步骤

Abaqus-中显示动力学分析步骤准静态分析——ABAQUS/Explicit准静态过程(guasi-static process)在过程进行的每一瞬间,系统都接近于平衡状态,以致在任意选取的短时间dt内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由一系列极接近平衡的状态所构成,这种过程称为准静态过程。
无限缓慢地压缩和无限缓慢地膨胀过程可近似看作为准静态过程。
准静态过程是一种理想过程,实际上是办不到的。
准静态原为一个热力学概念,在这里引用主要是指模型在加载的过程中任意时刻所经历的中间状态都可近似地视为静力状态,因此当加载过程进行得无限缓慢时,在各个时刻模型所处的状态就可近似地看作是静态,该过程便是准静态过程。
准静态啮合过程仿真主要考虑的是弧齿锥齿轮副在加载时的接触状态,以及齿面和齿根的应力变化规律,其前提是不考虑齿轮副惯性的影响。
ABAQUS/Explicit准静态分析显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。
当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。
由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。
在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit在求解某些类型的静态问题方面比ABAQUS/Standard更容易。
在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。
此外,当模型很大时,显式过程比隐式过程需要较少的系统资源。
将显式动态过程应用于准静态问题需要一些特殊的考虑。
根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。
因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。
但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。
Abaqus-中显示动力学分析步骤

准静态分析——ABAQUS/Explicit准静态过程(guasi-static process)在过程进行的每一瞬间,系统都接近于平衡状态,以致在任意选取的短时间dt内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由一系列极接近平衡的状态所构成,这种过程称为准静态过程。
无限缓慢地压缩和无限缓慢地膨胀过程可近似看作为准静态过程。
准静态过程是一种理想过程,实际上是办不到的。
准静态原为一个热力学概念,在这里引用主要是指模型在加载的过程中任意时刻所经历的中间状态都可近似地视为静力状态,因此当加载过程进行得无限缓慢时,在各个时刻模型所处的状态就可近似地看作是静态,该过程便是准静态过程。
准静态啮合过程仿真主要考虑的是弧齿锥齿轮副在加载时的接触状态,以及齿面和齿根的应力变化规律,其前提是不考虑齿轮副惯性的影响。
ABAQUS/Explicit准静态分析显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。
当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。
由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。
在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit在求解某些类型的静态问题方面比ABAQUS/Standard更容易。
在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。
此外,当模型很大时,显式过程比隐式过程需要较少的系统资源。
将显式动态过程应用于准静态问题需要一些特殊的考虑。
根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。
因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。
但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。
Abaqus 中显示动力学分析步骤

准静态分析——ABAQUS/Explicit准静态过程(guasi-static process)在过程进行的每一瞬间,系统都接近于平衡状态,以致在任意选取的短时间dt内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由一系列极接近平衡的状态所构成,这种过程称为准静态过程。
无限缓慢地压缩和无限缓慢地膨胀过程可近似看作为准静态过程。
准静态过程是一种理想过程,实际上是办不到的。
准静态原为一个热力学概念,在这里引用主要是指模型在加载的过程中任意时刻所经历的中间状态都可近似地视为静力状态,因此当加载过程进行得无限缓慢时,在各个时刻模型所处的状态就可近似地看作是静态,该过程便是准静态过程。
准静态啮合过程仿真主要考虑的是弧齿锥齿轮副在加载时的接触状态,以及齿面和齿根的应力变化规律,其前提是不考虑齿轮副惯性的影响。
ABAQUS/Explicit准静态分析显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。
当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。
由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。
在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit在求解某些类型的静态问题方面比ABAQUS/Standard更容易。
在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。
此外,当模型很大时,显式过程比隐式过程需要较少的系统资源。
将显式动态过程应用于准静态问题需要一些特殊的考虑。
根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。
因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。
但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。
abaqus系列教程-13-Explicit准静态分析

13 ABAQUS/Explicit准静态分析显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。
当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。
由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。
在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit 在求解某些类型的静态问题方面比ABAQUS/Standard更容易。
在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。
此外,当模型成为很大时,显式过程比隐式过程需要较少的系统资源。
关于隐式与显式过程的详细比较请参见第2.4节“隐式和显式过程的比较”。
将显式动态过程应用于准静态问题需要一些特殊的考虑。
根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。
因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。
但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。
目标是在保持惯性力的影响不显著的前提下用最短的时间进行模拟。
准静态(Quasi-static)分析也可以在ABAQUS/Standard中进行。
当惯性力可以忽略时,在ABAQUS/Standard中的准静态应力分析用来模拟含时间相关材料响应(蠕变、膨胀、粘弹性和双层粘塑性)的线性或非线性问题。
关于在ABAQUS/Standard中准静态分析的更多信息,请参阅ABAQUS分析用户手册(ABAQUS Analysis User’s Manual)的第6.2.5节“Quasi-static analysis”。
13.1 显式动态问题类比为了使你能够更直观地理解在缓慢、准静态加载情况和快速加载情况之间的区别,我们应用图13-1来类比说明。
(完整版)Abaqus中显示动力学分析步骤

准静态分析——ABAQUS/Explicit准静态过程(guasi-static process)在过程进行的每一瞬间,系统都接近于平衡状态,以致在任意选取的短时间dt内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由一系列极接近平衡的状态所构成,这种过程称为准静态过程。
无限缓慢地压缩和无限缓慢地膨胀过程可近似看作为准静态过程。
准静态过程是一种理想过程,实际上是办不到的。
准静态原为一个热力学概念,在这里引用主要是指模型在加载的过程中任意时刻所经历的中间状态都可近似地视为静力状态,因此当加载过程进行得无限缓慢时,在各个时刻模型所处的状态就可近似地看作是静态,该过程便是准静态过程。
准静态啮合过程仿真主要考虑的是弧齿锥齿轮副在加载时的接触状态,以及齿面和齿根的应力变化规律,其前提是不考虑齿轮副惯性的影响。
ABAQUS/Explicit准静态分析显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。
当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。
由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。
在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit在求解某些类型的静态问题方面比ABAQUS/Standard更容易。
在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。
此外,当模型很大时,显式过程比隐式过程需要较少的系统资源。
将显式动态过程应用于准静态问题需要一些特殊的考虑。
根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。
因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。
但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。
Abaqus-中显示动力学分析

准静态分析——ABAQUS/Explicit准静态过程(guasi-static process)在过程进行的每一瞬间,系统都接近于平衡状态,以致在任意选取的短时间dt内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由一系列极接近平衡的状态所构成,这种过程称为准静态过程。
无限缓慢地压缩和无限缓慢地膨胀过程可近似看作为准静态过程。
准静态过程是一种理想过程,实际上是办不到的。
准静态原为一个热力学概念,在这里引用主要是指模型在加载的过程中任意时刻所经历的中间状态都可近似地视为静力状态,因此当加载过程进行得无限缓慢时,在各个时刻模型所处的状态就可近似地看作是静态,该过程便是准静态过程。
准静态啮合过程仿真主要考虑的是弧齿锥齿轮副在加载时的接触状态,以及齿面和齿根的应力变化规律,其前提是不考虑齿轮副惯性的影响。
ABAQUS/Explicit准静态分析显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。
当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。
由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。
在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit在求解某些类型的静态问题方面比ABAQUS/Standard更容易。
在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。
此外,当模型很大时,显式过程比隐式过程需要较少的系统资源。
将显式动态过程应用于准静态问题需要一些特殊的考虑。
根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。
因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。
但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。
Abaqus 中显现动力学分析步骤

准静态分析——ABAQUS/Explicit准静态过程(guasi-static process)在过程进行的每一瞬间,系统都接近于平衡状态,以致在任意选取的短时间dt内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由一系列极接近平衡的状态所构成,这种过程称为准静态过程。
无限缓慢地压缩和无限缓慢地膨胀过程可近似看作为准静态过程。
准静态过程是一种理想过程,实际上是办不到的。
准静态原为一个热力学概念,在这里引用主要是指模型在加载的过程中任意时刻所经历的中间状态都可近似地视为静力状态,因此当加载过程进行得无限缓慢时,在各个时刻模型所处的状态就可近似地看作是静态,该过程便是准静态过程。
准静态啮合过程仿真主要考虑的是弧齿锥齿轮副在加载时的接触状态,以及齿面和齿根的应力变化规律,其前提是不考虑齿轮副惯性的影响。
ABAQUS/Explicit准静态分析显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。
当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。
由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。
在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit在求解某些类型的静态问题方面比ABAQUS/Standard更容易。
在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。
此外,当模型很大时,显式过程比隐式过程需要较少的系统资源。
将显式动态过程应用于准静态问题需要一些特殊的考虑。
根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。
因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。
但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。
Abaqus 中显示动力学分析步骤

准静态分析——ABAQUS/Explicit准静态过程(guasi-static process)在过程进行的每一瞬间,系统都接近于平衡状态,以致在任意选取的短时间dt内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由一系列极接近平衡的状态所构成,这种过程称为准静态过程。
无限缓慢地压缩和无限缓慢地膨胀过程可近似看作为准静态过程。
准静态过程是一种理想过程,实际上是办不到的。
准静态原为一个热力学概念,在这里引用主要是指模型在加载的过程中任意时刻所经历的中间状态都可近似地视为静力状态,因此当加载过程进行得无限缓慢时,在各个时刻模型所处的状态就可近似地看作是静态,该过程即是准静态过程。
准静态啮合过程仿真主要考虑的是弧齿锥齿轮副在加载时的接触状态,以及齿面和齿根的应力变更规律,其前提是不考虑齿轮副惯性的影响。
ABAQUS/Explicit准静态分析显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。
当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。
由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。
在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit在求解某些类型的静态问题方面比ABAQUS/Standard更容易。
在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。
此外,当模型很大时,显式过程比隐式过程需要较少的系统资源。
将显式动态过程应用于准静态问题需要一些特殊的考虑。
根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟经常在计算上是不切合实际的,它将需要大量的小的时间增量。
因此,为了获得较经济的解答,必须采纳一些方式来加速问题的模拟。
但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,
北京怡格明思工程技术有限公司
Innovating through simulation
如果以f 2 的方式人为的增加材料密度:
• 膨胀波速以f的方式减小。 • 稳定时间增量以f的方式增加。
通过质量缩放的方式人为的增加稳定时间,使得可以以 自然时间周期分析成型过程。 人为的增加工具速度之后,质量缩放对惯性效应具有同 样的影响。过多的质量缩放将导致非真实的解。 如果质量缩放用于完全的动态条件下,总质量的变化应 该尽量小(小于1%)。
北京怡格明思工程技术有限公司
Innovating through simulation
利用*FIXED MASS SCALING选项,可以进行质量缩放。 *FIXED MASS SCALING在分析步开始时施加质量缩 放。 句法: *FIXED MASS SCALING, ELSET=name, FACTOR= f 2
如果实际测试是准静态的, 拉伸试件的外力功等于试 件的内能。
单轴拉伸测试
北京怡格明思工程技术有限公司
Innovating through simulation
• 准静态测试的能量历程显示 在右图中: 惯性力是可以忽略的。 测试试件的材料速度是很小 的。 动能是可以忽略的。 • 当测试的速度增加以后: 试件的响应偏离静态、趋于 动态。 因此,材料速度和动能更加 明显。
其中
EI 为内能 (包括弹性应变能、塑性应变能和与沙漏控制相关的伪能)。 EV 为粘性机制耗散的能量。 EFD 为摩擦耗散的能量。 EKE 为动能。 EW 为外力功。 ETOT 为系统的总能量。
北京怡格明思工程技术有限公司
Innovating through simulation
• 考虑单轴拉伸试样的拉 伸测试
Innovating through simulation
• 最终构型中毛坯厚 度云图 • 过大的冲压速度导 致结果与实际的物 理现象不符。 • 尽管计算费用相差 10倍,以30 m/s和3 m/s的速度冲压的结 果非常接近。
Vpunch = 150 m/s
Vpunch = 3 m/s
Vpunch = 30 m/s
变化有效应变速率
北京怡格明思工程技术有限公司
Innovating through simulation
总结
过大的载荷速率将产生带有显著惯性效应的结果。 一般的建议为限制载荷施加的速率,比如,工具速度小 于材料波速的1%。 以斜坡的方式,从零增加载荷速率,也可以提高准静态 响应的准确性。 • 使用SMOOTH STEP幅值定义 质量缩放可以用于率相关材料行为,允许以自然时间周 期进行模拟。 能量平衡可以用于评估计算结果:对于施加的载荷是否 给出了结构的准静态响应。
Innovating through simulation
质量缩放
• 人为的增加成型速度可以提高解的经济性。同时,材料应 变率以同样的速度增加。 如果材料对于应变率是不敏感的,这是不相关的。 如果模型中考虑应变率敏感性,将导致错误的结果。 如果考虑率相关性,一般需要用自然时间周期模拟成型 过程。
• 可以通过质量缩放实现这样的功能。
北京怡格明思工程技术有限公司
Innovating through simulation
SMOOTH STEP幅值定义两 个幅值之间以5阶多项式过 渡。比如,在过渡开始和 结束时一阶和二阶时间导 数为零。 在使用SMOOTH STEP定义 位移时间历程时,每个指 定的幅值处的速度和加速 度为零。
*AMPLITUDE, NAME=SSTEP, DEFINITION=SMOOTH STEP 0.0, 0.0, 1.0E-5, 1.0 *BOUNDARY, TYPE=DISPLACEMENT, AMP=SSTEP 12, 2, 2, 2.5
北京怡格明思工程技术有限公司
Innovating through simulation
如果碰撞速度很高,400 m/sec, 变形高度局部化,梁没有结构 响应。 静态测试中的主要响应为梁的一 阶模态。该模态的频率用于预 计碰撞速度。
• 一阶频率大约为250 Hz。 • 碰撞在4微秒内完成。 • 利用25 m/sec的速度碰撞,圆柱 在4微秒内向梁推动0.1 m。
第十讲 ABAQUS/Explicit中的准静态分析
王慎平 北京怡格明思工程技术有限公司
北京怡格明思工程技术有限公司
Innovating through simulation
概述
• • • • • 简介 载荷速率 能量平衡 质量缩放 总结
北京怡格明思工程技术有限公司
Innovating through simulation
尝试三种不同的冲压速度: • 3 m/s • 30 m/s • 150 m/s 下表中总结了每个圆柱杯深冲压的计算费用:
冲压速度 (m/s) 3 (1X) 30 (10X) 150 (50X)
北京怡格明思工程技术有限公司
时间增量
正则化的 CPU时间
27929
2704 529
1.0
0.097 0.019
– 因为毛坯在产生显著变形之前将被移动,因此在成型过程 的早期,一般很难达到这个值。 – 使用光滑幅值曲线将改进早期响应。
• 不关心工具的动能。
– 从模型的全部动能中减掉工具的动能,或者限制变形组件 的能量输出。
北京怡格明思工程技术有限公司
Innovating through simulation
• 例子:圆柱杯的深冲压 右图为有限元模型的1/4模型。 在所有的接触面中定义摩擦:
北京怡格明思工程技术有限公司
Innovating through simulation
• 比较内能和动能 • 当冲压速度为150 m/s 时,毛坯中的动能与 内能相比占很大的比 例。 • 当冲压速度为3 m/s和 30 m/s 时,在成型过 程中,动能与内能相 比只占很小的一部分。
北京怡格明思工程技术有限公司
对称I型截面的轧制 圆柱钢坯的镦锻
北京怡格明思工程技术有限公司
Innovating through simulation
为节省计算时间,可以在模拟过程中人为的增加轧制过程的 速度。 在增加轧制速度之后,静平衡问题演化为动平衡问题。惯性 力的影响将会增加。 准静态分析的目标就是:在惯性力的影响较小的前提之下, 尽量缩短计算的时间周期。
北京怡格明思工程技术有限公司
Innovating through simulation
• 在模拟过程中,人为的增加准静态成型过程的速度是必要 的,它可以提高解的经济性。 • 但是,在不使结果退化的前提下,究竟可以把速度提高多 少呢? 比如,金属成型过程中,典型的工具速度大约为1 m/s的数 量级。 这个速度与金属中的典型波速相比是非常小的(钢中的波 速为5000 m/s)。 • 一般推荐的载荷速率为材料中波速的1%。
准静态拉伸测试的能量历程
北京怡格明思工程技术有限公司
Innovating through simulation
• 因此,能量检查为ABAQUS/Explicit金属成型过程 的结果是否反应了准静态解提供了另外的评估方 法。
在主要的成型过程中,变形材料的动能不可以超过内能的 一小部分。 • 这个小部分一般为1–5%。
• 在相应的单元集中,每个单元的密度以 f 2的方式增 加,因此以f 的方式增加稳定时间增量。
北京怡格明思工程技术有限公司
Innovating through simulation
• 质量缩放例子: 右图为低碳钢平面应变试件 的拉伸测试。 由于对称的原因,只选取模 型的1/4。
单轴拉伸测试
北京怡格明思工程技术有限公司
– 在显式板金成型模拟过程中,过大的工具速度将抑制起皱 现象,并激起非真实的局部拉伸。 – 在屈曲成型过程中,过大的工具速度将引起“喷注”效 应—水动力学响应(下页中有图形)。
北京怡格明思工程技术有限公司
Innovating through simulation
喷注
喷注
考虑下面的屈曲成型过程(轴 对称模型180 的截面)。 当工具速度非常大时,产生高 度局部化的变形(喷注)。
北京怡格明思工程技术有限公司
Innovating through simulation
显式动力学过 , c d
其中 Le 是最小的特征单元长度, cd 是材料的膨胀波速。 泊松比为零线弹性材料的膨胀波速为
cd
E
其中 E 为杨氏模量, 为材料密度。
Innovating through simulation
• 图形显示了三种分析的不 同结果 (PEEQ云图)。
右图中左边的结果和中间 的结果几乎相同。
• 中间的结果与左边的 结果相比,只需要 1/5的计算时间。 与原始的静态解相比,右 边的结果基本是没有意 义的。
质量缩 放因子
1 25 10000
简介
• 显式方法是真正的动力学过程。它最初用于模拟高速碰撞 问题。 它用于求解结构的动力平衡状态。 在求解过程中,惯性力起到决定性的作用。 非平衡力以应力波的方式在相邻单元之间传播。 稳定时间增量一般较小。
北京怡格明思工程技术有限公司
Innovating through simulation
• 显式动力学方法还可以模拟准静态问题,比如金属成型过 程,但是需要特殊的考虑: 如果以自然时间周期计算,用显式动力学方法求解准静 态问题是不切实际的。一般需要上百万的时间增量。
北京怡格明思工程技术有限公司
Innovating through simulation
能量平衡
• 能量平衡方程可以用于帮助评估计算结果是否为合理的准 静态相应。 在ABAQUS/Explicit中,能量平衡可以写为
EI EV EFD EKE EW ETOT constant,