微波电子线路

合集下载

3微波集成传输线

3微波集成传输线

微带线 微带线的特性参量
有效介电常数 e: e c / v p
2
1 e r,数值由相对介电常数 r和边界条件决定
工程上,用填充因子q来定义有效介电常数,即:
e 1 q( r 1)
q 0时, e 1,全空气填充 q 1时, e r,全介质填充
r 9.5 ~ 10 , tg 0.0003
r 2.1, tg 0.0004
聚四氟乙烯
聚四氟乙烯玻璃纤维板 砷化镓
r 2.55, tg 0.008
r 13.0, tg 0.006
jingqilu@
微带线
在导体带上面即 y>h的为空气
jingqilu@
微带线 微带线的特性参量
有效介电常数法
引入有效介电常数 e, 非均匀填充 均匀填充
纯TEM波,v p c
纯TEM波,v p c / r
准TEM波,c / r v p c
准TEM波,v p c / e
jingqilu@
传输波型:
★传输特性参数主要有:特性阻抗Z0、衰减常数α、相速vp和 波导波长λg。
jingqilu@
带状线(三板线) 特性阻抗
由于带状线上的传输主模为TEM模,因此可用准 静态分析法求得单位长分布电容C和分布电感L, 从而有: L 1
Z0
工程中:
C

v pC
b ①导带厚度为0时:Z 0 r we 0.441b 0 we w we是中心导带的有效宽度, b b (0.35 w / b) 2
微波集成传输线
各种微波集成传输系统,归纳起来可分为四大类:

射频与微波电路设计介绍-7-功率放大器设计介绍

射频与微波电路设计介绍-7-功率放大器设计介绍

热设计与散热问题解决方案
热设计基本原理
阐述热设计的基本原理,包括热传导、热对流、热辐射等 概念。
散热问题解决方案
探讨散热问题的解决方案,如采用高效散热器、使用热管 技术等,并分析其优缺点。
热设计与散热问题实例分析
给出热设计与散热问题的实例分析,包括热仿真、热测试 等方面。
热设计与散热问题解决方案
热设计基本原理
阐述热设计的基本原理,包括热传导、热对流、热辐射等 概念。
散热问题解决方案
探讨散热问题的解决方案,如采用高效散热器、使用热管 技术等,并分析其优缺点。
热设计与散热问题实例分析
给出热设计与散热问题的实例分析,包括热仿真、热测试 等方面。
05
射频与微波功率放大器仿真与测 试方法
05
射频与微波功率放大器仿真与测 试方法
01
02
03
04
高集成度
随着半导体工艺的发展,射频 与微波电路将实现更高的集成
度,减小体积和重量。
高性能
采用新材料和新技术,提高电 路的性能指标,如更高的工作 频率、更低的噪声系数等。
多功能融合
将不同功能的电路模块集成在 一起,实现多功能融合,满足
复杂应用场景的需求。
智能化
引入人工智能和机器学习技术 ,实现电路的自适应调整和智 能化管理,提高系统性能。
连接测试仪器,设置合 适的测试参数(如频率 、功率等)。
对功率放大器的各项性 能指标进行测试,如输 出功率、增益、效率等 。
通过输入不同幅度和频 率的信号,观察功率放 大器的输出信号是否失 真,评估其线性度性能 。
在长时间工作和不同环 境温度下,测试功率放 大器的稳定性和可靠性 。
测试平台搭建及测试步骤说明

微波感应电路8页

微波感应电路8页

微波感应人体传感器2008-11-12 08:531。

工作原理微波感应控制器使用直径9厘米的微型环形天线作微波探测,其天线在轴线方向产生一个椭圆形半径为0~5米(可调)空间微波戒备区,当人体活动时其反射的回波和微波感应控制器发出的原微波场(或频率)相干涉而发生变化,这一变化量经HT7610A进行检测、放大、整形、多重比较以及延时处理后由白色导线输出电压控制信号。

高可靠微波感应控制器内部由环形天线和微波三极管组成一个工作频率为2.4GHz的微波振荡器,环形天线既做发射天线也可接收由人体移动而反射的回波。

内部微波三极管的半导体PN结混频后差拍检出微弱的频移信号(即检测到人体的移动信号) ,微波专用微处理器HT7610A首先去除幅度太小的干扰信号只将一定强度的探测频移信号转化成宽度不同的等幅脉冲,电路只识别脉冲足够宽的单体信号,如人体、车辆其鉴别电路才被触发,或者两秒内有2~3个窄脉冲,如防范边沿区人走动2~3步,鉴宽电路也被触发,启动延时控制电路工作。

如果是较弱的干扰信号,如小体积的动物,远距离的树木晃动、高频通讯信号、远距离的闪电和家用电器开关时产生的干扰予以排除。

最后输HT7610A 鉴别出真正大物体移动信号时,控制电路被触发,输出2秒左右的高电平,并有LED2同步显示,输出方式为电压方式,有输出时为高电平(4伏以上),没有输出时为低电平。

微波专用的微处理器HT7610A的时钟频率为16KH,当初次加电时,系统将闭锁60秒,期间完成微处理器的初始化并建立电场,这时LED1点亮60秒后熄灭,系统自动进入检测状态,当检测到有效信号时,将有5秒信号输出,并由指示灯LED2同步显示。

控制器的外形上图所示,面板上设置有灵敏度调整孔,可以使监控距离在1~7米范围内可调,顺时针转动距离变远,逆时针转动距离变近, LED1、LED2用于指示TX982的工作状态,1.2米长的双芯屏蔽线用于连接电源和负载,其中红色线用来接正电源,白色线接输出,铜网屏蔽层接电源负极,必要时可以用类似电缆加长至50米以内使用。

微波技术(微波传输线)

微波技术(微波传输线)
传播常数
描述信号在传输线上传播时的 幅度和相位变化的参数。
衰减
指信号在传输过程中幅度的减 小,与传输线的长度和材料有 关。
延迟
指信号在传输过程中时间的延 迟,与传输线的长度和传播速
度有关。
03
微波传输线的性能分析
传输线损耗
导体损耗
辐射损耗
由于导体中的电子与电磁场相互作用, 导致能量转化为热能,从而产生损耗。
传输线不连续性
不连续性定义
01
不连续性是指微波传输线中因结构、尺寸、材料等因素引起的
电磁场分布不连续的现象。
不连续性类型
02
不连续性可分为短路、开路、不均匀、不匹配等类型。
不连续性的影响
03
不连续性会导致信号反射、散射和模式转换等,影响微波系统
的性能。
04
微波传输线的实际应用
卫星通信系统
卫星通信系统是利用微波传输线实现地球上不同位置之间通信的重要应用之一。
微波技术的应用领域
01
02
03
通信领域
利用微波的穿透性和反射 性,实现无线通信和卫星 通信,如移动通信、电视 广播等。
雷达领域
利用微波的反射性和高频 率特性,实现高精度、高 分辨率的雷达探测和定位。
加热领域
利用微波对水分子产生共 振的特性,实现快速、均 匀的加热,常用于食品加 工和工业加热。
02
未来发展方向与展望
未来微波传输线将朝着高频化、高速化、 小型化、集成化的方向发展,以满足不
断增长的信息传输需求。
随着新材料、新工艺的不断涌现,微波 传输线的性能将得到进一步提升,如采 用新型介质材料、电磁超材料等,实现
更低损耗、更高传输效率的目标。

微波炉原理及维修(含电路图)

微波炉原理及维修(含电路图)

格兰仕微波炉的结构特点及原理常见故障及故障检修微波炉作为现代厨房电器的新宠,越来越普及地走进干家万户。

微波炉以其加热速度快,省电且无污染等特点,确实给人们的生活带来方便。

目前市场上微波产品很多,但格兰仕微波炉一直是一枝独秀。

一、格兰仕微波炉型号的识别二、微波炉结构特点和工作原理微波炉主要由炉腔、炉门和控制电路等几部分组成。

3.控制电路:控制电路如图1所示,又分为低压电路,控制电路和高压电路三部分。

高压变压器次级绕组之后的电路为高压电路,主要包括:磁控管、高压电容器c、高压变压器T、高压二极管D。

磁控管是微波炉的心脏,微波能就是由它产生并发射出来的。

它的工作需要很高的脉动直流阳极电压和约3~4V的灯丝电压。

由高压变压器及高压电容器、高压二极管构成的倍压整流电路为磁控管提供了满足上述要求的工作电压。

高压变压器初级绕组之前至微波炉电源入口之间的电路为低压,电路(也包括了控制电路)主要包括:保险管Fu、热断路器保护开关sw6、sw7、联锁开关swl~sw3、照明灯、定时器及功率分配器开关sw4、sw5、转盘电机M3和风扇电机M2等。

转盘电机与风扇电机为同步电机,即微波炉工作时转盘电机转动并带动玻璃转盘,风扇电机也同步转动,对磁控管及其它主要部件进行冷却。

三、并非微波炉故障的判别对于微波炉在使用过程中出现的一些现象,有的用户因为对微波炉不太了解,常容易误认为微波炉出了故障。

1.跳闸微波炉整机的功耗大,整个启动过程要比一般家电时间长,所以启动时的耗电为微波炉输入功率的5~6倍。

微波炉的启动电流高时可达7A,工作电流在5A左右。

而有的家庭配备的保护闸容量有限或敏感度过高,常因微波炉启动时的电流冲击而出现跳闸,因此最好应配备l0A以上的保护闸。

另外,在使用微波炉加热食品时,最好不要同时打开电饭锅之类的大功率用电器具。

2.感觉声音大微波炉工作时的声音主要来自风扇,而风痢转速的高低和声音的大小成正比。

格兰仕微波炉采用高转速风扇电机,以提高对主机的冷却效果,延长磁控管及主机的使用寿命。

微波电子线路-西安电子科技大学3

微波电子线路-西安电子科技大学3

3 微波混频器的工作原理——复习混频机理是基于肖特基势垒二极管结电阻R的非线性管子在偏压和j本振的激励下,跨导随时间变化,加上信号电压后出现一系列频率成分的电流,用滤波器取出所需中频即可。

一、混频器的本振激励特性以单管混频器为例,输入:本振、偏压、信号、输出、中频()u f i =()au sa au Sa e I e I ≈-=1由图t V t V V u S S L L ωωcos cos 0++=S u 远小于L u ,故可视为微分增量u ∆ ()u u f i ∆+=∴()()+∆+'++=u t V V f t V V f L L L L ωωc o s c o s 00…...u ∆很小,忽略平方以后高次项,只取一阶导数项。

一阶导数表示了小信号电流与小信号电压之间的关系,即变频跨导()tL V V u dudiuu i i i ωcos 0+=∆+=∆+()()t ug u i ∆+= 式中 ()()t V V a Sa L L e aI dudit g ωcos 0+==现 ()t g 是t 的周期偶函数,可展成以下形式的级数 ()∑∞=+=10cos 2n L n n t g g t g ωn g 为n 阶变混频跨导,是t n L ωcos 的付利叶系数平均混频跨导()⎰=πωπ20021t d t g g L ()⎰+=πωπ20cos 021t V V a Sa L L e aI t d L ω()L aV Sa aV J e aI 00= n 阶变混频跨导1g ()⎰+=πωπ20cos 021t V V a Sa L L e aI tdt L ωcos()L aV Sa aV J e aI 10=……n g ()⎰+=πωπ20cos 021t V V a Sa L L e aI tdt L ωcos()L n aV Sa aV J e aI 0= J n (x),第一类贝赛尔函数本振电压作用下,混频器为一周期时变电导0g 为平均电导,n g 为n 次变频跨导(对本振n 次而言)与本振信号有关的电流 ()t V V f i L L ωcos 0+= ∑∞=+=10cos 2n L n t n I I ω平均电流 ()L aV Sa aV J e I I 000=基波电流 ()L aV Sa L aV J e I I J 11022==L aV 足够大 ,大宗量近似, ()LLn dV eaV J π2aV L ≈代入上两式 02I I L ≈本振激励功率为L L L L V I I V P 021== 本振电导 LL L L V I V I G 02==可通过0I 和L V 来调节L P L G ,测量L P 和0I 可以了解本振工作性质 ——具有工程意义,直流和本振大小使混频器特性好二、非线性电阻的电流频谱1、小信号一次混频结果。

射频微波pcb

射频微波pcb

射频微波pcb射频微波PCB(印制电路板)在现代无线通信、雷达系统、卫星通信以及其他高频应用中扮演着至关重要的角色。

这些特殊的电路板被设计用于处理射频(RF)和微波信号,这些信号通常具有高频率和复杂的传输特性。

本文将深入探讨射频微波PCB 的设计原则、关键特性、材料选择、制造工艺以及其在各种应用中的重要性。

一、射频微波PCB设计原则设计射频微波PCB时,需要遵循一系列原则以确保信号完整性、最小化传输损耗、降低电磁干扰(EMI)和优化系统性能。

1. 布局与布线:合理的布局和布线是确保高频信号传输质量的基础。

信号线应尽可能短且直接,以减少传输损耗和信号延迟。

同时,应避免锐角和直角转弯,以减少反射和辐射。

2. 地层与电源层设计:地层和电源层的设计对于控制阻抗、减少噪声和提供稳定的参考平面至关重要。

地层通常用作回流路径,需要足够大以提供低阻抗的回流路径。

3. 阻抗匹配:在高频电路中,阻抗匹配是减少信号反射和最大功率传输的关键。

设计时需要精确控制传输线的特性阻抗,通常通过调整线宽、线间距和介质厚度来实现。

4. 串扰与隔离:高频信号容易产生串扰,即信号线之间的不期望耦合。

通过增加线间距、使用屏蔽结构或差分信号传输等技术可以有效减少串扰。

5. 散热设计:高频电路中的元件可能会产生大量热量,因此散热设计是确保电路可靠性和性能稳定的重要因素。

二、射频微波PCB的关键特性射频微波PCB具有一些独特的特性,这些特性对于高频应用至关重要。

1. 高频介电常数(Dk):介电常数是描述材料在电场中极化能力的物理量。

在高频下,材料的介电常数会发生变化,影响传输线的特性阻抗和信号传播速度。

2. 损耗角正切(Df):损耗角正切描述了材料在交变电场中的能量损耗。

低损耗角正切的材料可以减少信号传输过程中的能量损失。

3. 热稳定性:高频电路在工作时会产生热量,因此要求PCB材料具有良好的热稳定性,以保持电路性能的稳定。

4. 尺寸稳定性:尺寸稳定性指的是材料在温度变化或机械应力作用下保持其尺寸不变的能力。

微波电路与系统课程介绍

微波电路与系统课程介绍
教材:《微波固态电路》 喻梦霞 电子科技大 学出版社 2008年;
参考资料:《射频/微波电路导论》 雷振亚 西安 电子科技大学出版社 2005.8
参考资料:《微波固态电路》言华 北京理工大学 出版社 1995
参考资料: 《Microwave Solid State Circuits Design》 Inder Bahl A John Wiley & Sons Inc,Publication, 2003
要讲授PIN开关、衰减器和移相器的设计方 法。本章授课学时—4学时。 实践性教学环节 实践性教学环节主要以仿真实验为主。实验 部分学时—4学时。
7
考核方式
本课程平时考核占总分20%(以作业和出勤率 综合考核);
实验环节占总分20%(实验报告); 期末考试占总分60%(开卷笔试);
8
建议教材及参考资料
微波电路与系统
微波电路与系统课程介绍
电子科技大学 贾宝富 博士
1
绪论
前期课:微波技术, 电子线路 内容: 微波电路理论,应用技术,
半导体知识,通信系统概念
2
本课的相关课程与技术
相关课程:
电磁场 -- 基础课, 电场磁场分布,电波传播 微波技术--无源电路, 分布参数、传输线、微波网络、
滤波器、匹配、 阻抗变换 射频电路--有源电路, 放大、振荡、变频、滤波、收发信机
• 第一章:引言 • 简单介绍微该章内容 。本章授课学时—1学时。 • 第二章:微波集成电路基础 • 介绍微波平面集成传输线、微波单片集成电 路。理解微带电路的不连续性。掌握阻抗变 换电路、功率分配器和耦合器。本章授课学 时—5学时。
4
教学内容
5
教学内容
第五章:微波倍频器 了解微波倍频器的工作机理。本章主要讲授
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微波电子线路总结一、基于肖特基势垒二极管的混频器1、PN结简介:PN结的定义:在一块本征半导体中,掺以不同的杂质,使其一边成为P型,另一边成为N型,在P区和N区的交界面处就形成了一个PN结。

PN结的形成(1)当P型半导体和N型半导体结合在一起时,由于交界面处存在载流子浓度的差异,这样电子和空穴都要从浓度高的地方向浓度低的地方扩散。

但是,电子和空穴都是带电的,它们扩散的结果就使P区和N区中原来的电中性条件破坏了。

P区一侧因失去空穴而留下不能移动的负离子,N区一侧因失去电子而留下不能移动的正离子。

这些不能移动的带电粒子通常称为空间电荷,它们集中在P区和N区交界面附近,形成了一个很薄的空间电荷区,这就是我们所说的PN结,如图1所示。

(2)在这个区域内,多数载流子或已扩散到对方,或被对方扩散过来的多数载流子(到了本区域后即成为少数载流子了)复合掉了,即多数载流子被消耗尽了,所以又称此区域为耗尽层,它的电阻率很高,为高电阻区。

(3)P区一侧呈现负电荷,N区一侧呈现正电荷,因此空间电荷区出现了方向由N区指向P区的电场,由于这个电场是载流子扩散运动形成的,而不是外加电压形成的,故称为内电场,如图2所示。

(4)内电场是由多子的扩散运动引起的,伴随着它的建立将带来两种影响:一是内电场将阻碍多子的扩散,二是P区和N区的少子一旦靠近PN结,便在内电场的作用下漂移到对方,使空间电荷区变窄。

(5)因此,扩散运动使空间电荷区加宽,内电场增强,有利于少子的漂移而不利于多子的扩散;而漂移运动使空间电荷区变窄,内电场减弱,有利于多子的扩散而不利于少子的漂移。

当扩散运动和漂移运动达到动态平衡时,交界面形成稳定的空间电荷区,即PN结处于动态平衡。

PN结的宽度一般为0.5um。

PN结的单向导电性PN结在未加外加电压时,扩散运动与漂移运动处于动态平衡,通过PN结的电流为零。

(1)外加正向电压(正偏)当电源正极接P区,负极接N区时,称为给pN结加正向电压或正向偏置,如图3所示。

由于PN结是高阻区,而P区和N区的电阻很小,所以正向电压几乎全部加在PN结两端。

在PN结上产生一个外电场,其方向与内电场相反,在它的推动下,N区的电子要向左边扩散,并与原来空间电荷区的正离子中和,使空间电荷区变窄。

同样,P区的空穴也要向右边扩散,并与原来空间电荷区的负离子中和,使空间电荷区变窄。

结果使内电场减弱,破坏了PN结原有的动态平衡。

于是扩散运动超过了漂移运动,扩散又继续进行。

与此同时,电源不断向P区补充正电荷,向N区补充负电荷,结果在电路中形成了较大的正向电流IF。

而且IF 随着正向电压的增大而增大。

(2)外加反向电压(反偏)当电源正极接N区、负极接P区时,称为给PN结加反向电压或反向偏置。

反向电压产生的外加电场的方向与内电场的方向相同,使PN结内电场加强,它把P区的多子(空穴)和N区的多子(自由电子)从PN结附近拉走,使PN结进一步加宽,PN结的电阻增大,打破了PN结原来的平衡,在电场作用下的漂移运动大于扩散运动。

这时通过PN结的电流,主要是少子形成的漂移电流,称为反向电流IR。

由于在常温下,少数载流子的数量不多,故反向电流很小,而且当外加电压在一定范围内变化时,它几乎不随外加电压的变化而变化,因此反向电流又称为反向饱和电流。

当反向电流可以忽略时,就可认为PN结处于截止状态。

值得注意的是,由于本征激发随温度的升高而加剧,导致电子一空穴对增多,因而反向电流将随温度的升高而成倍增长。

反向电流是造成电路噪声的主要原因之一,因此,在设计电路时,必须考虑温度补偿问题。

综上所述,PN结正偏时,正向电流较大,相当于PN结导通,反偏时,反向电流很小,相当于PN结截止。

这就是PN结的单向导电性。

PN结的伏安特性伏安特性曲线:加在PN结两端的电压和流过二极管的电流之间的关系曲线称为伏安特性曲线,如图4所示。

u>0的部分称为正向特性,u<0的部分称为反向特性。

它直观形象地表示了PN结的单向导电性。

式中 iD ——通过PN 结的电流vD ——PN 结两端的外加电压VT ——温度的电压当量,VT=kT/q=T/11600=0.026V ,其中k 为波耳兹曼常数(1.38×10–23J/K ),T 为热力学温度,即绝对温度(300K ),q 为电子电荷(1.6×10–19C )在常温下,VT ≈26mVe ——自然对数的底Is ——反向饱和电流,对于分立器件,其典型值为10-8~10-14A 的范围内集成电路中二极管PN 结,其Is 值则更小由此可看出PN 结的单向导电性。

2、肖特基势垒二极管形成过程:在金属和N 型半导体中都存在导电载流子--电子。

它们的能级不同,逸出功也不同。

当金属和N 型半导体相接触时,电子流从半导体一侧向金属一侧扩散,同时也存在金属中的少数能量大的电子跳跃到半导体中,称为热电子(漂移)。

显然,扩散运动占据明显优势,于是界面上金属中形成电子堆积,在半导体中出现带正电的耗尽层。

在界面上形成由半导体指向金属的内建电场,它是阻止电子向金属一侧扩散的。

随着扩散过程的继续,内建电场增强,扩散运动削弱。

于是在某一耗尽层厚度下,扩散和热电子发射(漂移)处于平衡状态。

宏观上耗尽层稳定,两边的电子数也稳定。

界面上就形成一个对半导体一侧电子的稳定高度势垒 ,N 半导体的参杂浓度,Wd 厚度,这个存)2/(2G W eN D D S =φ在于金属—半导体界面由扩散运动形成的势垒成为肖特基势垒,耗尽层和电子堆积区域成为金属—半导体结。

工作原理:零偏:保持前述势垒状态。

正偏:金属一侧接正极,半导体一侧接负极。

外加电场与内建电场方向相反,内建电场被削弱,耗尽层变薄,肖特基势垒高度降低,使扩散运动增强。

金属半导体结呈正向导电特性,且外加电压越大,导电性越好。

肖特基势垒二极管和PN 结二极管的伏安特性既相似,又有所不同。

它同样具有单向导电的特性,其伏安特性为:T 工作温度( 以绝对温度计) V 加在管子两端的电压反向饱和电流,典型值为 n 修正因子,取决于制造工艺,典型值 1-2K 波尔兹曼常数e 电子电荷肖特基势垒二极管和PN 结二极管的伏安特性虽然形式上类似,但电流形成方式不同(肖特基势垒二极管完全依靠多数载流子的运动)。

I-V 表达式中决定反向饱和电流的参数不同,PN 结的反向饱和电流与外加偏压无关,而金属-半导体结的反向饱和电流实际上还对偏压有依从关系。

在伏安特性上,金属-半导体结有较低的导通电压,较高的正向电流、较强的非线性度,因而优于PN 结。

由于金属-半导体结的I-V 特性较陡,因而在同样偏压下具有较小的结电阻;当二极管工作点随大信号交流电压激励而变化时可导致微分电导(g=1/Rj)有较陡的变化,这对混频是有利的。

由表达式可见,正偏时随I 上升,Rj 变小。

3、混频混频机理是基于肖特基势垒二极管结电阻的非线性管子在偏压和本振的激励下,跨导随时间变化,加上信号电压后出现一系列频率成分的电流,用滤波器取出所需中频即可。

单管混频器为例,输入:本振、偏压、信号、输出、中频远小于UL,故可视为微分增量 ,很小,忽略平方以后高次项,只取一阶导数项。

一阶导数表示了小信号电流与小信号电压之间的关系, ⎥⎦⎤⎢⎣⎡-=1)ex p(nKT eV I I D Sa ()1-=D aV Sa e I Sa I A 5910~10--()u f i =()ausa au Sa e I e I ≈-=1t V t V V u S S L L ωωcos cos 0++=S u u ∆u ∆()t L V V u du di u u i i i ωcos 0+=∆+=∆+()()t ug u i ∆+=混频结果从表达式中可以看出:第一项为时变电流,第二项为时变电导与电压的乘积。

从中可以取出所需的中频,差频,和频等频率分量。

众多频率成分中,中频是有用成分。

越大越好,镜频和和频有利用可能。

其他均为无用的寄生频率,必须滤除掉。

二、变容二极管变容管:PN 结的结电容(主要是势垒电容)随着外加电压的改变而改变,利用了这一特性可以构成变容二极管(简称为变容管)。

变容管可以构成参量放大器、参量变频器、参量倍频器(谐波发生器)、可变衰减或调制器等。

主要工作区域为P+N 交接面的PN 结,由于耗尽层电荷随外加电压变化. 结电容也发生变化,一般加负偏压.工作在负电压区.不使其出现正向电流.所以电压最小值为击穿电压VB 对应Cmin,最大值为Φs 对应Cmax.与肖特基管相同,其等效电路为Cj 为结电容.Rs 为串联电阻Ls 为引线电感.Cp 为封装电容。

结电容特性:通过控制制造工艺过程.参数m 可以变化.m 表征结电容随电压变化的非线性程度,m 越大非线性程度越显著。

①m=0.5 突变结变容管,主要用于变频及参放。

②m>0.5 超突变结变容管,主要用于电调谐。

③m=1/3 线形缓变节变容管,主要用于倍频。

④m=0 阶跃恢复二极管,主要用于高次倍频。

给出时变电容随泵浦电压周期变化的曲线:时变电容也是周期为泵频ωp 的周期函数用傅里叶级数展开这个周期函数。

在同样的泵浦激励下,使用突变结比使用线性缓变结可以得到更大的电容调制系数,结电容 的变化范围更大,故采用突变结变容管更有利于微波电路设计。

结电容 是外加电压V=0时的结电容。

通过控制制造工艺过程,参数m 可以变化,m 表征结电容随电压变化的非线性程度,m 越大非线性程度越显著。

在偏压和大信号泵浦作用下,变容管是一个时变电容,等效为许多不同频率的周期变化的电容并联。

门雷-罗威详细研究了无耗理想非线形电抗中能量随频率的分配关系,称为门-罗关系式.该关系式极其重要.是非线形电抗变频、倍频的基础。

为每个频率的信号提供一个通路,只准该频率信号通过对其它频率呈开路,对应的负载为Ri,泵浦和信号内阻为Rp 和Rs 。

()()()()j j dc j m m dc P p p C 0C V C t V V cos t 1p cos t 1ωω==+⎡⎤--⎢⎥Φ⎣⎦m j j V C V C ⎥⎦⎤⎢⎣⎡-=φ1)0()()0(j C门——罗关系式流入C(t)和流出C(t)的功率总和为零,流入为正,流出为负.非线性电容的能量只能转换为其他频率分量的能量而全部输出。

三、阶跃恢复二极管倍频器1、阶跃二极管阶跃管倍频器多用于8-20次倍频,且有较高的频率,这归因于其核心元件阶跃恢复二极管的特殊性能。

该器件导通时能储存大量电荷,截止时载流子突然被抽走,电流骤然消失,产生具有丰富谐波分量的尖脉冲。

特点: 加正向电压时导通,但I 区载流子寿命长,复合慢,在结区有大量电荷贮存,电压反向时,由于结区的贮存电荷存在,管子仍然导通,但贮存电荷在载流子抽完后突然消失,电流截止。

相关文档
最新文档