微波电子线路大作业(1)
微波大作业

四端口网络研究分析1.四端口网络的基本性质性质1无耗互易四端口网络可以完全匹配,且为一理想定向耦合器。
性质2有理想定向性的无耗互易四端口网络不一定四个端口均匹配,即是说四个端口匹配是定向耦合器的充分条件,而不是必要条件。
性质3有两个端口匹配且相互隔离的无耗互易四端口电路必然为一理想定向耦合器,且其余两个端口亦匹配并相互隔离。
2.理想定向耦合器一个可逆无耗四端口网络,各个端口完全匹配,有一个端口同输入端口完全隔离,输入功率在其余两个端口上分配输出,这种网络称为理想定向耦合器。
如①口为输入端口,其它三个为输出口或隔离口。
由隔离口的端口的不同,其相应的矩阵为]S、[]03S、[]04S。
[02性质1 无耗互易四端口网络可以完全匹配,且为一理想定向耦合器。
(可由互易网络的幺正性证明。
)对于上图中(a),其散射矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00000000][241423132423141302S S S S S S S S S对于上图中(b),其散射矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00000000][341434232312141203S S S S S S S S S 对于上图中(c),其散射矩阵为[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00000000342434132412131204S S S S S S S S S 性质2 有理想定向性的无耗互易四端口网络不一定四个端口均匹配,即是说四个端口匹配是定向耦合器的充分条件,而不是必要条件。
[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡ΓT Γ-T T -ΓT Γ=0000j jCjC j j jC jC j S 性质 3 有两个端口匹配且相隔离的无耗互易四端口电路必然为一理想定向耦合器,且其余两个端口亦匹配并相互隔离。
[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00000000342434132412131204S S S S S S S S S3..定向耦合器的技术参数以常用的互易无耗][04S 为例。
西电微波电子线路大作业1教材

微波电子线路大作业姓名:班级:021014学号:一 肖特基势垒二极管与混频器1 肖特基势垒二极管利用金属与半导体接触形成肖特基势垒构成的微波二极管称为肖特基势垒二极管。
这种器件对外主要呈现非线性电阻特性,是构成微波混频器、检波器和微波开关等器件的核心元件。
目前绝大多数混频器都采用肖特基势垒二极管,因为肖特基势垒二极管的耗尽电容比PN 结电容小的多,因此肖特基势垒二极管更适合微波频率下工作。
肖特基势垒二极管的等效电路如右图所示:肖特基二极管作为非线性电阻应用时,除结电容之外,其他都是寄生参量,会对电路的性能造成影响,应尽量减小它们本身的值,或在微波电路设计时,充分考虑这些寄生参 量的影响。
一般地,肖特基势垒二极管的伏安特性可以表示为:对于理想的肖特基势垒,;当势垒不理想时,,点接触型二极管,面结合型二极管。
如下图是肖特基势垒二极管的伏安特性曲线:肖特基势垒二极管特性参量:1) 截止频率2) 噪声比(理想情况下) 3) 中频阻抗 4) 变频损耗2 混频器微波混频器的核心元件是肖特基势垒二极管。
混频机理是基于肖特基势垒二极管结电阻的非线性管子在偏压和本振的激励下,跨导随时间变化,加上信号电压后出现一系列频率成分的电流,用滤波器取出所需中频即可。
j R SR j C p C SL描述二极管混频器的混频过程,需要建立一个等效电路。
由于混频二极管是一个单向器件,不仅与和差拍产生新的频率,而其电流在一定的阻抗上所建立起的电压也会反过来加到二极管上该电压与和差拍,也产生新的频率。
混频器等效电路如右图所示:信频、中频和镜频电流的幅值为:由等效电路可以求出变频损耗。
微波混频器的作用是将微波信号转换为中频信,频率变换后的能量损耗即为变频损耗。
变频损耗主要包括三部分:(1) 由寄生频率产生的净变频损耗。
(2) 由混频二极管寄生参量引起的结损耗 。
(3) 混频器输入/输出端的失配损耗。
结论;混频器的变频损耗载镜频开路时变频损耗最低,镜频匹配时变频损耗最高。
1电子线路作业答案

11-51-6 如图所示为低频功率晶体管3DD325的输出特性曲线,由它接成的放大器如图1-2-1(a )所示,已知V CC = 5 V ,试求下列条件下的P L 、P D 、ηC (运用图解法):(1)R L = 10Ω,Q 点在负载线中点,充分激励;(2)R L = 5 Ω,I BQ 同(1)值,I cm = I CQ ;(3)R L = 5Ω,Q 点在负载线中点,激励同(1)值;(4)R L = 5 Ω,Q 点在负载线中点,充分激励。
解:(1) R L = 10 Ω 时,作负载线(由V CE = V CC - I C R L ),取Q 在放大区负载线中点,充分激励,由图得V CEQ1 = 2.6V ,I CQ1 = 220mA ,I BQ1 = I bm = 2.4mA因为V cm = V CEQ1-V CE(sat) = (2.6 - 0.2) V = 2.4 V ,I cm = I CQ1 = 220 mA所以mW 26421cm cm L ==I V P ,P D = V CC I CQ1 =1.1 W ,ηC = P L / P D = 24%(2) 当 R L = 5 Ω 时,由V CE = V CC - I C R L作负载线,I BQ 同(1)值,即I BQ2 = 2.4mA ,得Q 2点,V CEQ2 = 3.8V ,I CQ2 = 260mA这时,V cm = V CC -V CEQ2 = 1.2 V ,I cm = I CQ2 = 260 mA所以 mW 15621cm cm L ==I V P ,P D = V CC I CQ2 = 1.3 W ,ηC = P L / P D = 12%(3) 当 R L = 5 Ω,Q 在放大区内的中点,激励同(1),由图Q 3点,V CEQ3 = 2.75V ,I CQ3= 460mA ,I BQ3 = 4.6mA , I bm = 2.4mA 相应的v CEmin = 1.55V ,i Cmax = 700mA 。
微波电子线路大作业

题目:微波电子线路大作业授课老师:杨锐学院:电子工程学院专业:电子信息工程学生姓名:王静波学号:02111344微波二极管介绍微波领域内的各种二极管,包括变容二极管、阶跃二极管、PIN二极管、限幅二极管、电调变容二极管、固体噪声二极管和雪崩二极管等。
一.微波混频二极管和微波检波二极管基于金属-半导体相接触具有非线性电导原理制成的两端器件。
这种器件早在第二次世界大战期间就用于雷达接收机中,是半导体领域中最早出现的实用性器件。
1965年以前,这两种二极管均为点接触结构,即用微米级的金属触丝尖端与半导体锗或硅接触而产生高频整流特性。
1965年以后出现性能优越的肖特基势垒型混频和检波二极管(又称肖特基二极管),其工作频率从几百兆赫到 300吉赫,具有噪声低、频带宽、抗烧毁性能好等特点。
在整个微波频带内直接用二极管混频的微波接收机的噪声系数为4.0~70分贝。
梁式引线结构和四管堆具有多倍频程的性能。
检波二极管的工作频率范围为0~40吉赫,检波正切灵敏度为45~55分贝毫瓦。
二.变容二极管基于PN结结电容随反向偏压变化而制成的微波半导体器件。
大体可分两大类:低噪声参量放大器用变容管和电调谐用变容管。
前者用于微波参量放大器,噪声温度低达30K,已广泛用于卫星地球站。
后者主要用于频率调谐、压控振荡器、电子对抗和捷变频雷达快速调频等。
此外,变容管还可以用于移相、限幅等。
在制作上,两类器件有一定区别,参放变容管要有好的电容非线性和很高的优值;而电调谐变容管则要严格控制半导体外延层的掺杂浓度分布以便获得大的电容变化区,并且应具有较高的优值。
三.肖特基势垒二极管结构:肖特基势垒二极管在结构原理上与PN结二极管有很大区别,它的内部是由阳极金属(用钼或铝等材料制成的阻挡层)、二氧化硅(SiO2)电场消除材料、N-外延层(砷材料)、N型硅基片、N+阴极层及阴极金属等构成,如图所示。
在N型基片和阳极金属之间形成肖特基势垒。
当在肖特基势垒两端加上正向偏压(阳极金属接电源正极,N型基片接电源负极)时,肖特基势垒层变窄,其内阻变小;反之,若在肖特基势垒两端加上反向偏压时,肖特基势垒层则变宽,其内阻变大。
大工13春《模拟电子线路》在线作业一、二、三及答案

大工13春《模拟电子线路》在线作业一、二、三及答案大工13春《模拟电子线路》在线作业一及答案一、单选题(共10 道试题,共50 分。
)1. 当温度升高时,三极管的电流放大系数β将( ).A. 增大B. 减小C. 不变D. 不确定满分:5 分答案:A2. 三级放大电路中,各级的放大倍数均为10,则电路将输入信号放大了( )倍.A. 10B. 30C. 100D. 1000满分:5 分答案:D3. 关于BJT的结构特点说法错误的是( ).A. 基区很薄且掺杂浓度很低B. 发射区的掺杂浓度远大于集电区掺杂浓度C. 基区的掺杂浓度远大于集电区掺杂浓度D. 集电区面积大于发射区面积满分:5 分答案:C4. 在共射、共集和共基三种组态中,只具有电压放大作用的组态是( ).A. 共射组态B. 共集组态C. 共基组态D. 无法确定满分:5 分答案:C5. 在共集电极放大电路中,若输入电压为正弦波形,则输入输出电压相位( ).A. 同相B. 反相C. 相差90°D. 不确定满分:5 分答案:A6. 在杂质半导体中,多数载流子的浓度主要取决于( ).A. 温度B. 掺杂工艺C. 杂质浓度D. 晶体缺陷满分:5 分答案:C7. BJT处于截止状态的条件是( ).A. 发射结正偏,集电结反偏B. 发射结正偏,集电结正偏C. 发射结反偏,集电结正偏D. 发射结反偏,集电结反偏满分:5 分答案:D8. 小信号模型分析法不能用来求解( ).A. 静态工作点B. 电压增益C. 输入电阻D. 输出电阻满分:5 分答案:A9. 在由NPN型BJT组成的单管共发射极放大电路中,如静态工作点过高,容易产生( ).A. 饱和失真B. 截止失真C. 交越失真D. 线性失真满分:5 分答案:A10. 已知某晶体管处于放大状态,测得其三个极的电位分别为1.3V、2V和6V,则6V所对应的电极为( ).A. 发射极B. 集电极C. 基极D. 无法确定满分:5 分答案:B二、判断题(共10 道试题,共50 分。
微波电子线路大作业

微波电子线路大作业姓名:哦呵呵 学号: 班级: 一、肖特基势垒二极管肖特基势垒二极管是利用金属与半导体接触形成肖特基势垒而构成的一种微波二极管,它对外主要体现出非线性电阻特性,是构成微波阻性混频器、检波器、低噪声参量放大 器、限幅器和微波开关等的核心元件。
1、结构:肖特基势垒二极管有两种管芯结构:点接触型和面接触型。
2、工作原理:肖特基势垒二极管工作的关键区域是金属和N 型半导体结形成的肖特基势垒区域,是金属和N 型半导体形成的肖特基势垒结区域。
在金属和N 型半导体中都存在导电载流子—电子。
它们的能级不同,逸出功也不同。
当金属和N 型半导体相结时,电子流从半导体一侧向金属一侧扩散,同时也存在金属中的少数能量大的电子跳跃到半导体中,称为热电子。
显然,扩散运动占据明显优势,于是界面上金属中形成电子堆积,在半导体中出现带正电的耗尽层。
在界面上形成由半导体指向金属的内建电场,它是阻止电子向金属一侧扩散的,而对热电子发射则没有影响。
随着扩散过程的继续,内建电场增强,扩散运动削弱。
于是在某一耗尽层厚度下,扩散和热电子发射处于平衡状态。
宏观上耗尽层稳定,两边的电子数也稳定。
界面上就形成一个对半导体一侧电子的稳定高度势垒GW eN D D S 22=φ,D N 是N 半导体的参杂浓度,D W 厚度存在于金属—半导体界面由扩散运动形成的势垒成为肖特基势垒,耗尽层和电子堆积区域成为金属—半导体结。
3、伏安特性:利用金属与半导体接触形成肖特基势垒构成的微波二极管称为肖特基势垒二极管。
这种器件对外主要呈现非线性电阻特性,是构成微波混频器、检波器和微波开关等的核心元件。
一般地,肖特基势垒二极管的伏安特性可以表示为半导外延点接半导外延面结氧化金属金 金两种肖特基势垒二极管结构 金属触欧姆接触]1)[exp(1)exp()(-=⎥⎦⎤⎢⎣⎡-==U I nkT qU I U f I S S α (1-1) 式中:nkTq =α。
微波电子线路大作业

微波电子线路大作业02091411范仕祥一.PIN 管微波开关按功能分有两种:通断开关和转换开关;按PIN 管与传输线的连接方式分为串联型、并联型和串并联型;从开关结构形式出发可分为反射式开关、谐振式开关、滤波器型开关、阵列式开关等。
单刀单掷开关基本原理如果PIN 管正、反偏时分别为理想短路和开路,则对上图(a )的串联型开关来说,PIN 管理想短路时,开关电路理想导通;PIN 管理想开路时,开关理想断开。
对(c )图的并联型开关来说,情况相反,PIN 管短路,对应开关断开;PIN 管开路,对应开关导通。
由于封装参数的影响,对于单管开关无论是串联型还是并联型,都只能在固定的某几个较窄的频率区间有开关作用,而实际的工作频率常常不在这些区域。
为了扩展开关的工作模区,改善开关性能,有的直接把管芯做在微波集成电路上;也有采用改进的开关电路,其中常用的有谐振式开关、阵列式开关和滤波器型开关。
单刀双掷开关开关指标开关时间:τ为载流子寿命,I0为正向电流,IR 为反 向电流,IR ↑,ts ↓, 则: 功率容量:并联开关:导通时 截止时串联开关:导通时 截止时00ln 's s f R I I T T I I ττ==、2010(2)4f dn dm f Z R P P Z R +=2302B dn V P Z =2020(2)4f dn dm f Z R P P Z R +=2308B dn V P Z =当频率升高时,串联或并联一只PIN 管的开关,其性能指标将恶化,因此,可采用多个二极管级联,以提高开关性能。
多管阵列型开关是在均匀传输线上等间隔的并联(或串联)若干个PIN 管而构成,根据微波网络理论可对阵列型开关进行分析。
单管开关级联就可做成阵列式开关,因此阵列式开关的分析可归结为级联网络分析,可用传递矩阵相乘的方法求出阵列开关的衰减特性。
采用多管串联的电路形式,可加大该通道开关的功率容量:而采用多管并联的形式,则可提高该通道开关的隔离度。
微波电子线路大作业(3)讲诉

微波电子线路大作业(3)班级:姓名:学号:一、微波二极管负阻振荡器由砷化镓材料制成的体效应二极管呈现负阻效应的物理基础是能带结构的电子转移效应,而产生负阻效应的原理则是由于高场畴的形成。
典型的Gunn 二极管的结构如图所示.铜底座(接铜螺纹)提供一条外加散热器的低阻热通道,螺纹端拧在散热器上,它是接到直流电源的负极,陶瓷圆环起绝缘作用,它把正负极隔开。
若将耿氐二极管装在谐振腔的适当位置上,只要在它的两端加上适当的直流电压,就可以在谐振腔内产生微波振荡.这就构成了微波负阻振荡器。
由于谐振腔相当于集总电路的000L R L --并联谐振电路,它与耿氐二极管组合起来就形成了如图3-12(a)的等效电路,其中图(a)的左侧表示Gunn 二极管等效电路。
d C 和d R -是有源区参数,Cd 是Gunn 管电荷区域的电容参数,d R -是在电场超过阈值后所呈现的负阻特性,C 、L 是管壳及引线所呈现的分布参数;图(a)右侧表示谐振腔等效电路。
二极管具有负阻-Rd ,而负载则是正电阻R0,由于-Rd 与R0并联,它的电阻为00R R R R R d d t +=所以进一步简化后就变成如图(b)所示的等效电路。
当直流电源刚接通时,如工作点选择恰当且能满足Rd>R0的条件,则Rt 为负值。
在这种情况下,噪声足以触发振荡,使振幅随时间而增长。
但是,管阻-Rd 是非线性的,随着振幅的增大|-Rd|的数值逐渐减小。
当|-Rd|=R0时,从式不难看出,Rt=∞。
这就相当并联电阻Rt开路,变成Lt与Ct所组成的无损耗回路,因此产生等幅振荡。
谐振腔的作用是一方面可以调谐振荡波形使其接近正弦,另一方面把高频电磁能量收集在腔内,并通过耦合把高频能量送到负载上。
X波段波导耿氏振荡器的结构如图耿氏二极管横装在矩形波导中,并且由调节短路活塞改变腔的大小进行频率调谐。
振荡频率与腔体的长度有关,它的长度大体等于半个波导波长整数倍,腔体的长度是指从Gunn管的安装柱面到可调短路面之间的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微波电子线路大作业姓名:袁宁班级:020914学号:02091400一、肖特基势垒二极管利用金属与半导体接触形成肖特基势垒构成的微波二极管称为肖特基势垒二极管。
这种器件对外主要呈现非线性电阻特性,是构成微波混频器、检波器和微波开关等的核心元件。
一般地,肖特基势垒二极管的伏安特性可以表示为(1)如图是肖特基势垒二极管的伏安特性曲线假定二极管两端的电压由两部分构成:直流偏压和交流信号(t)=cos,即(2)代入式(1),求得时变电流为(3)定义二极管的时变电导g(t)为根据式(1)得对式(3)进行傅里叶级数展开:i(t)=交流偏压的基波电流幅度I1=I L:I n=2I S exp(αU dc)J1(αU L)根据贝塞尔函数的大宗量近似式,当αU L较大时,有I dcI L二极管对交流信号所呈现的电导为G L=交流偏压一定时,G L随I dc的增大而增大,借助于U dc来调节I dc 可以改变G L的值,使交流信号得到匹配。
二.变容二极管PN结的结电容(主要是势垒电容)随着外加电压的改变而改变,利用这一特性可以构成变容二极管(简称为变容管)。
变容管作为非线性可变电抗器件,可以构成参量放大器、参量变频器、参量倍频器(谐波发生器)、可变衰减或调制器等。
结电容可以表示为以下普遍形式:mj j U C U C ]1[)0()(Φ=— 式中:m 称为结电容非线性系数,取决于半导体中参杂浓度的分布状态。
给变容管加上直流负偏压dc U 和交流信号(泵浦电压) t U t u p p p ωcos )(=,即 t U U t u p p ωcos )(dc += 由上式得时变电容为m cos p 1)(]cos 1[)0()()—(—t U C tU U C t C p dc j mp p dc j j ωω=Φ+=式中:m dc j dc j U C U C ]1[)0()(Φ=—,dcU U p p—Φ=其中:)(dc j U C 为直流工作点dc U 处的结电容;p 为相对泵浦电压幅度(简称相对泵幅),表明泵浦激励的强度。
P=1时,为满泵工作状态;p<1时,为欠泵工作状态;p>1时,为过泵工作状态。
典型的工作状态是p<1且接近于1的欠泵激励状态,不会出现电流及相应的电流散粒噪声。
三.阶越恢复二极管阶跃恢复二极管(SRD )可以看做一种特殊的变容管,简称阶跃管。
利用阶跃管由导通恢复到截止的电流突变可以构成窄脉冲输出,也可以利用其丰富的谐波制作梳状频谱发生器或高次倍频器。
1)阶跃管特性:00)0()1()0()(C C U C U C j j j ==≈φ—在反偏时结电容近似不变,为一个不变的小电容0C (处于高阻状态,近似开路)。
正偏时,形成了较大的扩散电容d C (处于低阻状态,近似短路)。
阶跃管相当于一个电容开关。
2)工作原理(1)大信号交流电压正半周加在阶跃管上时,处于正D 向导通状态,阶跃管相当于一个低阻,阶跃管的端压u 位于PN 结接触电势差φ,管子中有电流i 留过;阶跃管相当于一个大扩散电容d C ,交流信号将对其进行充电,由于空穴在N 层的复合率比较低,因而有大量的空穴电荷在N 区堆积起来。
(2)信号电压进入负半周,使阶跃管内部产生的势垒电场把N 区内储存的空穴抽回+P 层,产生很大的反向电流。
这时阶跃管仍然有很大的电容量,故阶跃管上的电压降不能突变,管子中仍然有较大的电流,呈现出导通和低阻状态,因此阶跃管端压仍然正向而且位于φ,直到正向时存储的电荷基本清除完。
一旦电荷耗尽,反向电流将迅速下降到反向饱和电流,形成电流阶跃。
调整直流偏压,可以使电流阶跃发生在反向电流最大值处,而且是交流电压负半周即将结束的时刻。
在电流发生阶跃的同时,阶跃管两端将可能发生很大的脉冲电压。
(3)大信号交流激励电压的下一个周期来临。
上述过程重复发生,形成与交流激励电压周期相同的一个脉冲串序列波形。
四.肖特基势垒二极管混频器的分析1)混频器大信号参量当混频器二极管上只加直流偏置E 0和本振功率时,混频二极管呈现的电导为:dudi=f ’(E 0+U L cos(w L t))=aI sa e )cos 0(wt UL E a +=g(t) 式(3-7)说明当本振电压随时间作周期性变化时,瞬时电导g(t)也随时间作周期性变化,故称为时变电导;同样g (t )也可以展成傅里叶级数:g(t)=g 0+2∑∞=1n g n cos(w l nt)式中:g 0称为二极管的平均混频电导,g n 是对应本振n 次谐波的混频电导。
2)混频原理二极管混频器的原理等效电路如图3-3所示,在肖特基势垒二极管上加有较小的直流偏压(或零偏压)、大信号本振功率(1mW 以上)及接收到的微弱信号(微瓦(uW)量级以下)。
假设本振与信号分别表示为: u L (t)=U L cos(w L t)u s (t)=U s cos(w s t)由于Ul 》Us ,可以认为二极管的工作点随本振电压变化,认为接收到的信号是一个微小电压增量,因此将回路电流在各个工作点展开为泰勒级数。
为了讨论方便,将Z 、Z 、Z 短路,这时流过二极管的瞬时电流值为:i=f(u)=f(E 0+U L cos(w L t)+U s cos(w s t))=f(E 0+U l cos(w l t))+f ’(E 0+U L cos(w L t))U s cos(w s t) +!21f ’’(E 0+U L cos(w L t))(U s cos(w s t))2+….(3-9)展开式中的第一项为本振激励下的流过二极管的大信号电流,它包含直流和本振基波及其谐波项。
展开式中的其他各项为二极管中的小信号成分,当u s 很小时,可仅取第二项。
由式(3-9)可知,f ’(E 0+U L cos(w L t))是在本振激励下二极管所呈现的时变电导g (t )。
由式(3-7)~式(3-9)可知,二极管中的小信号成分近似为: i(t)=f ’(E 0+U L cos(w L t))U s cos(w s t)=(g 0+2g 1cos(w l t)+2g 2cos2w L t+…)U s cos(w s t) =g 0U s cos(w s t)+∑∞=1n g n U s cos(nw L +w s )t+g n u s cos(nw L -w s )t(3-10)混频器电路的主要频谱如图3-4所示,并用虚线画出了混频电路中的大信号成分,即直流、本振基波及本振各次谐波。
五、变容管上变频器本文将采用电荷分析法来进行分析:假设二极管上的激励电荷为t Q t Q t Q Q t q out out P p S S ωωωsin 2sin 2sin 2)(0+++= 式中:假定t=0时初相位均相同。
流过二极管的电流为 t Q t Q t Q dtt dq t i out out out P P P S S S ωωωωωωcos 2cos 2cos 2)()(++==为求的二极管上的电压u(t),应先推导出变容管上的电荷-电压(q-u )特性。
根据变容管原理,利用⎰=du u C u q j )()( 关系求得电容上存储的电荷为φφφq nu U C u q nnB +-•---=-)1(1)()()(1min 于是可得)1(1)()()(1min -•---=--nu U C q u q nnB φφφ 式中: φq 为φ=v 时的结电容上存储的电荷。
当B U u =时,B Q u q =)(,则上式可写成 nU C q Q BB ---=-1minφφ根据上式可得nBB U u q Q q u q ---=--1)()(φφφφ 一般近似认为φ=u 时,势垒消失,φq 趋于零,所以nBB U u Q u q ---=1)()(φφ 上式表示q(u)的一般特性。
式中:B Q 按积分式本应为负值,但为使q-u 特性使用方便,因此在上式中令B Q 为正值,这并不影响q-v 特性的物理实质。
对于突变结变电容,21=n ,于是上式可写成)()(22BBU uQ u q --=φφ 令 2BBQ U A -=φ,故得)()(222u Aq Q U u q u BB=-=-φφ由此可画出突变结变电容的q-u 特性,如图4-5中实线所示。
为分析方便,图中将u 的坐标零点移至φ处,并令u u -='φ,故得到 )(2u Aq u =' 式中:2BBQ U A =。
若在变容管上加入正弦变化的电荷激励,根据q-u 特性,则二极管上的电压为非正弦波,如图4-5所示。
图中二极管上的电压限制在φ~B U 的范围内,为满激励(全激励)状态。
此时取2/0B Q Q = ,可得到最大交变电荷幅度。
将这种最佳状态下的工作参数代入式(4-17),可得)sin 2sin 2sin 221()(t m t m t m Q t q out out P P S S B ωωω+++= (4-26)式中:m 为电荷激励系数,B S S Q Q m =,B P P Q Qm =,Bout out Q Q m =。
设P S ωω<,out P S ωωω=+由式(4-25)求得变容管上的电压为2222)sin 2sin 2sin 221()(t m t m t m Q Q U u Aq u out out P P S S B B B ωωω+++==' )sin sin sin (2)22241[(222t m t m t m m m m U out out P P S S out P S B ωωω++++++=])cos cos cos (4无用边带分量和谐波+-++t m m t m m t m m out P S P out S s out P ωωω将式(4-26)和式(4-27)进行比较,由变容管上的电压和流过电流之间的相位关系可以看出:对S ω、P ω和out ω既有同相分量,也有正交分量,而且对输出频率out ω,电路呈现负阻及容抗,对S ω和P ω均呈现正阻及容抗,这说明有out ω频率分量的能量输出。
六、阶跃恢复二极管倍频器分析阶跃管的作用是把每一个周期)(1T 输入的信源能量转换为一个谐波丰富的大幅度窄脉冲;再利用它激励一个谐振电路,得到频率为1Nf f N =的衰减波振荡,最后通过带通滤波器在负载上得到N 次谐波的等幅波。
输入信号)sin(1θω+=t U u g ,通过一个激励电感L 激励阶跃管,以便利用电感来储能,使之得到大幅度的阶跃电流,因此g u 应为功率信号源。
图中0U 为负偏压,'L R 为脉冲发生器的等效负载。