石墨烯科普. 共30页
超硬新材料石墨烯简介ppt课件

无碳原子缺失,原子间作用力强 原子间的连接非常柔韧
当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不 必重新排列来适应外力,也就保持了结构稳定。
良好的导电性——通畅高速干扰小
稳定的晶格结构使碳原子具有优秀的导电性。石墨烯 中的电子在轨道中移动时,不会因晶格缺陷或引入外 来原子而发生散射。
.
制备方法
微机械分离法
撕胶带法 轻微摩擦法
用另外一种材料膨化或者引入缺陷的热解石墨进行 摩擦,体相石墨的表面会产生絮片状的晶体,在这 些絮片状的晶体中含有单层的石墨烯。
不足
尺寸不易控制,无法可靠地制造长度足供应用 的石墨薄片样本
.
加热碳化硅法
加热碳化硅以除去硅,然后生成石墨烯薄层
1. 让碳原子在 1 1 5 0 ℃下渗入钌 2. 冷却到850℃后, 碳原子就会浮到钌表面 3. 形成镜片形状的单层的碳原子“ 孤岛” 布满基质表面,
并最终长成完整的一层石墨烯。 4. 第一层覆盖 8 0 %后,第二层开始生长。
底层的石墨烯会与钌产生强烈的交互作用,而第 二层后就几乎与钌完全分离,只剩下弱电耦合, 得到的单层石墨烯薄片表现令人满意。
采用这种方法生产的石墨烯薄片往往厚度不均匀, 且石墨烯和基质之间的黏合会影响碳层的特性。 另外使用的基质是稀有金属钌。
.
恳请指导,谢谢!
.
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
在室温下传递电子的速度比已知导体都快。 由于原子间作用力十分强,在常温下,即使周围碳原
子发生挤撞,石墨烯中电子受到的干扰也非常小。
.
石墨烯:轻薄刚导电性好
.
应用领域
可做“太空电梯”缆线 代替硅生产超级计算机 超薄防弹衣 航空材料 高性能储能元件
石墨烯专题知识

石墨烯被以为是替代硅旳理想材料,石墨 烯无禁带,不能直接用于晶体管等逻辑元 件,但能够采用石墨烯纳米带、石墨烯量 子点及双层石墨烯加偏压成为半导体,作 为晶体管源电极和漏电极之间旳通道。
IBM展示全球最快石墨烯晶体管,处理速度 可达100GHz
贝尔试验室旳Fulton等人制成旳128Mbit石墨 烯单电子存储器芯片照片
层左右旳石墨烯。
❖石墨烯旳发觉
碳是构成自然界有机生命体旳主要元素, 碳材料涉及活性碳、碳黑、碳纤维、金 刚石、石墨。伴随纳米技术旳发展, 1985年,由60个碳原子构成旳“足球” 分子C60被发觉。1991年,由具有一维管 状构造旳碳纳米管被发觉。Laudau 和 Wagner理论科学家以为二维旳晶体材料 因为其本身旳热力学不稳定性,在常温 下会迅速分解。
⑥兼容性好: 与多种金属和半导体材料 兼容,可用于制备复合材料.
………
三、石墨烯旳制备措施
目前石墨烯主要旳制造措施涉及四种,分 别是:微机械剥离法、外延生长法、氧化 石墨还原法和气相沉积法。
①微机械分离法
微机械剥离法即是用透明胶带将高定向 热解石墨片按压到其他表面上进行屡次 剥离,最终得到单层或数层旳石墨烯。
目前使用旳碳材料主要涉及活性炭、活 性碳纤维、炭气凝胶等,这些碳材料旳 基元都是石墨烯。因为超级电容器是经 过导体表白来存储电荷,所以适合电子 汇集旳有效表面积越大其容量就越大;
试验表白使用石墨烯作为电极旳超级电 容器能够产生相同体积电容器6 倍以上 旳容量。同步具有优良旳化学稳定性、 导电性、导热性和低成本等优点。
❖ 2023年,Geim,Novoselov等就是经过此 措施在世界上首次得到了单层石墨烯,证明 了二维晶体构造在常温下是能够存在旳 ,
石墨烯ppt课件

04
缺点
设备成本高,制备过 程复杂。
液相剥离法制备过程及优化策略
过程
将石墨或膨胀石墨分散在溶剂中,通 过超声波、热应力等作用剥离出单层 或少层石墨烯。
优化策略
选择适当的溶剂和剥离条件,如超声 功率、时间、温度等,以提高剥离效 率和石墨烯质量。
优点
制备过程简单,成本低。
缺点
难以制备大面积、单层的石墨烯。
未来挑战和机遇并存局面思考
技术挑战
石墨烯制备技术仍存在一些难题 ,如大规模制备、成本控制、质 量稳定性等,需要加强技术研发
和创新。
市场机遇
随着石墨烯技术的不断突破和市场 需求的持续增长,石墨烯产业将迎 来更广阔的发展空间,企业需要抓 住机遇,积极拓展市场。
跨界融合
石墨烯产业需要与其他产业进行跨 界融合,共同推动产业升级和创新 发展,如与互联网、人工智能等产 业的深度融合。
THANKS
感谢观看
消费电子市场需求
随着消费电子产品的不断更新换代, 石墨烯在智能手机、平板电脑、可穿 戴设备等领域的应用需求将持续增长 。
新能源市场需求
石墨烯在新能源领域具有广阔的应用 前景,如太阳能电池、锂离子电池、 燃料电池等,未来市场需求将不断扩 大。
医疗健康市场需求
石墨烯在生物医疗领域的应用也逐渐 受到关注,如生物传感器、药物载体 、医疗器械等,未来市场需求有望持 续增长。
三维多孔支架、细胞培养基质、神经修复导管
石墨烯组织工程支架材料的研究进展及前景
骨组织工程、皮肤组织工程、心肌组织工程
安全性评价和毒理学问题关注
石墨烯的生物安全性问题
01 细胞毒性、免疫原性、遗传毒性
石墨烯的体内代谢和毒性机制
石墨烯简单介绍ppt课件

填充在信号中,它们被要求使用越来越高的频率,然而手机的工作频
率越高,热量也越高,于是,高频的提升便受到很大的限制。由于石 墨烯的出现,高频提升的发展前景似乎变得无限广阔了。 这使它在
微电子领域也具有巨大的应用潜力。
26
石墨烯应用
透明电极
石墨烯
和
,使它在透明电
导电极方面有非常好的应用前景。触摸屏、液晶显示、有机光伏电池、
有机发光二极管等等,都需要良好的透明电导电极材料。特别是,
。由于氧化铟锡脆度较高,比较容易损毁。在溶液
内的石墨烯薄膜可以沉积于大面积区域 。
通过化学气相沉积法,可以制成大面积、连续的、透明、高电导 率的少层石墨烯薄膜,主要用于光伏器件的阳极,并得到高达1.71% 能量转换效率;与用氧化铟锡材料制成的元件相比,大约为其能量转 换效率的55.2%。
石墨烯
1
什 么 是 石 墨 烯?
石墨烯(英文名Graphene)是一种由C原子 形成的蜂窝状的准二维结构,是C的另外一种 同素异形体。
。例如,在计算石墨和碳纳米 管特性时,通常都是从石墨烯这个基本结构单 元出发的。
石墨烯:基本结构单元
2
石墨烯的来源?
实际上石墨烯本来就存在于自然界,只是难以剥离出 单层结构。石墨烯一层层叠起来就是石墨。1mm厚的石墨 大约包含300万层石墨烯。
14
结构与性能
力学性能
石墨烯是已知材料中强度和硬度最高的晶体结构。其
和
分别为125GPa和1.1TPa。石墨烯的
(抗拉强度)为42N/M2。
普通钢的强度极限大多分布在250~1200MPa范围内,即 0.25ӽ109~1.2ӽ109N/m2。如果钢具有同石墨烯一样的厚度(约 0.335nm),则可推算出其二维强度极限0.084~0.40N/m。由 此可知,
石墨烯基本知识共92页

11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
END
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
石墨烯简介PPT课件

精选
17
应用与性能的关系
E
Relation between application and performance
精选
应用与性能的关系
精选
20
应用与性能的关系
透明度大
透明电极
电导率高
触控屏幕
比表面积大
太阳能电池
力学性能好 导热系数大
晶体管 复合材料
电子迁移率高
锂离子电池
精选
21
应用与性能的关系
B
精选
石墨烯的性能
力学性质:106N/cm2 光学性质:2.3%
Science, 321, 385 (2008) Science 320, 1308 (2008)
热学性质:5300 W/mK 电学性质:1/300光速
Nano Lett. 8, 902 (2008) Science, 306, 666 (2004)
精选
16
石墨烯的表征—其它方法
石墨烯表征方法
热重—示差扫描
用于分析温度变化过程中的物理化学变化,如物质含量、 分解和氧化还原等,研究样品的热失重行为和热量变化。
低温氮吸附测试
测定石墨烯的孔结构和比表面积,计算比表面积、孔径大小、 孔分布、孔体积等物理参数。
傅里叶变换红外光谱分析(FT-IR)
用来识别化合物和结构的官能团,在石墨烯制备中主要用于 氧化石墨烯的基面和边缘位的官能团的识别。
石墨烯的优异性能
精选
19
制备方法 Preparation Method
C
精选
机械剥离法
碳纳米管横向切割法
微波法 电弧放电法 光照还原法 外延生长法
石墨烯制备方法
石墨氧化还原法 电化学还原法
石墨烯科普PPT课件

Thank you!
第28页/共29页
感谢您的观看!
第29页/共29页
第10页/共29页
石墨烯材料制备
3、热膨胀法 用酸进行插层反应得到膨胀率较低的石墨鳞片, 鳞片的平均厚度约为30μm,横向尺寸在400μm左 右,这种石墨鳞片就是可膨胀石墨。将这种可膨 胀石墨放入微波或高温炉中加热,就可以的到厚 度为几纳米到几十个纳米的纳米石墨片。
第11页/共29页
石墨烯材料制备
Outline
➢石墨烯材料的简介 ➢石墨烯材料的制备 ➢石墨烯材料的性质 ➢石墨烯材料的应用 ➢石墨烯材料的展望
第13页/共29页
石墨烯材料的性质
1、力学性质——比钻石还要硬
数据转换分析:在石墨烯样品微粒开始碎裂前,它们每 100纳米距离上可承受的最大压力居然达到了大约2.9微牛。
据科学家们测算,这一结果相当于要施加55牛顿的压 力才能使1米长的石墨烯断裂。如果物理学家们能制取出 厚度相当于普通食品塑料包装袋的(厚度约100纳米)石 墨烯,那么需要施加差不多两万牛的压力才能将其扯断。 换句话说,如果用石墨烯制成包装袋,那么它将能承受大 约两吨重的物品。
施加外部机械力时,碳原子面就弯曲变形,从而使 碳原子不必重新排列来适应外力,也就保持了结构 稳定。这种稳定的晶格结构使碳原子具有优秀的导 电性。
石墨烯最大的特性是其中电子的运动速度达 到了光速的1/300,远远超过了电子在一般导体中 的运动速度。这使得石墨烯中的电子,或更准确地, 应称为“载荷子”(electric charge carrier), 的性质和相对论性的中微子非常相似。
石墨烯的应用
微电子领域 微电子领域也具有巨大的应用潜力。研究人员甚至将石
石墨烯

石墨烯石墨烯声明:百科词条人人可编辑,词条创建和修改均免费,绝不存在官方及代理商付费代编,请勿上当受骗。
详情>> 石墨烯(二维碳材料)编辑本词条由“科普中国”百科科学词条编写与应用工作项目审核。
石墨烯(Graphene)是一种由碳原子以sp2杂化方式形成的蜂窝状平面薄膜,是一种只有一个原子层厚度的准二维材料,所以又叫做单原子层石墨。
英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用微机械剥离法成功从石墨中分离出石墨烯,因此共同获得2010年诺贝尔物理学奖。
石墨烯常见的粉体生产的方法为机械剥离法、氧化还原法、SiC外延生长法,薄膜生产方法为化学气相沉积法(CVD)。
[1] 由于其十分良好的强度、柔韧、导电、导热、光学特性,在物理学、材料学、电子信息、计算机、航空航天等领域都得到了长足的发展。
作为目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料,石墨烯被称为“黑金”,是“新材料之王”,科学家甚至预言石墨烯将“彻底改变21世纪”。
极有可能掀起一场席卷全球的颠覆性新技术新产业革命。
中文名石墨烯外文名Graphene 发现时间2004年主要制备方法机械剥离法、气相沉积法、氧化还原法、SiC外延法主要分类单层、双层、少层、多层(厚层)基本特性强度柔韧性、导热导电、光学性质应用领域物理、材料、电子信息、计算机等目录1 研究历史2 理化性质? 物理性质? 化学性质3 制备方法? 粉体生产方法? 薄膜生产方法4 主要分类? 单层石墨烯? 双层石墨烯? 少层石墨烯? 多层石墨烯5 主要应用? 基础研究? 晶体管? 柔性显示屏? 新能源电池? 航空航天? 感光元件? 复合材料6 发展前景? 中国? 美国? 欧洲? 韩国? 西班牙? 日本研究历史编辑实际上石墨烯本来就存在于自然界,只是难以剥离出单层结构。
石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Outline
石墨烯材料的简介 石墨烯材料的制备 石墨烯材料的性质 石墨烯材料的应用 石墨烯材料的展望
石墨烯材料的性质
1、力学性质——比钻石还要硬
数据转换分析:在石墨烯样品微粒开始碎裂前,它们每 100纳米距离上可ቤተ መጻሕፍቲ ባይዱ受的最大压力居然达到了大约2.9微牛。
据科学家们测算,这一结果相当于要施加55牛顿的压 力才能使1米长的石墨烯断裂。如果物理学家们能制取出 厚度相当于普通食品塑料包装袋的(厚度约100纳米)石 墨烯,那么需要施加差不多两万牛的压力才能将其扯断。 换句话说,如果用石墨烯制成包装袋,那么它将能承受大 约两吨重的物品。
通往宇宙的电梯
——石墨烯
Kris 2019-9-16
Outline
石墨烯材料的简介 石墨烯材料的制备 石墨烯材料的性质 石墨烯材料的应用 石墨烯材料的展望
石墨烯材料简介
1、定义
石墨烯(Graphene)是碳原子紧密堆积成单层二维蜂窝状 晶格结构的一种碳质新材料,厚度只有0.335纳米,仅为头发的 20万分之一,是构建其它维数碳质材料(如零维富勒烯、一维 纳米碳管、三维石墨)的基本单元,具有极好的结晶性、力学 性能和电学质量。
打个比方说单层石墨烯的强度,就像把大象的重量加 到一支铅笔上,才能够用这支铅笔刺穿仅像保鲜膜一样厚 度的单层石墨烯。
石墨烯材料的性质
Dreams:对于强度比世界上最好的钢铁还要高上百倍 的石墨烯,如果能加以利用,不仅可以造出纸片般薄 的超轻型飞机材料、超坚韧的防弹衣,甚至还可以制 作23000英里长伸入太空的电梯,实现人类坐电梯进 入太空的梦想。
石墨烯材料简介
一直以来理论和实验界都认为严格的二维晶体无法在 非绝对零度稳定存在,这一假设直到2019 年英国 Manchester 大学的Geim等人发现单层石墨烯 (graphene)后才得以改变。他们采用一种简单的“微 机械力分裂法”(microfolitation) 制备了一种单原 子厚度的碳膜,这种两维碳材料表现了很高的结晶度 而且异乎寻常地稳定。这一发现立刻震撼了科学界, 随后这种新型碳材料成为材料学和物理学领域的一个 研究热点。
美国国家航空航天局(NASA)悬赏400万美金鼓励科 学家们进行这种电梯的开发
Outline
石墨烯材料的简介 石墨烯材料的制备 石墨烯材料的性质 石墨烯材料的应用 石墨烯材料的展望
石墨烯材料制备
1、机械剥离法 通过机械力从新鲜石墨晶体的表面剥离石墨烯片层。
2、加热SiC法 通过加热单晶SiC脱除Si,在单晶(0001)面上分解出石
墨烯片层。Berger等人已经能可控地制备出单层. 或是多 层石墨烯 。据预测这种方法很可能是未来大量制备石墨 烯的主要方法之一。 3、热膨胀法 4、化学法
石墨烯材料制备
3、热膨胀法
用酸进行插层反应得到膨胀率较低的石墨鳞片, 鳞片的平均厚度约为30μ m,横向尺寸在400μ m左 右,这种石墨鳞片就是可膨胀石墨。将这种可膨 胀石墨放入微波或高温炉中加热,就可以的到厚 度为几纳米到几十个纳米的纳米石墨片。
石墨烯材料制备
4、化学法
通过Diels2Alder反应Pd 催化的 Hagihara2Sonogashira,Buchwald2Hartwig 或 KumadaPNegishi 偶合等先合成六苯并蔻(HBC) ,然后在 FeCl3 或Cu (OTf) 2-AlCl3 作用下环化脱氢得到较大平 面的石墨烯。
2、发现 Graphene(石墨烯) 是2019年由曼彻斯特大学科斯
提亚•诺沃谢夫(Kostya Novoselov)和安德烈•盖姆 (Andre Geim)发现的,他们使用的是一种被称为机械微 应力技术(micromechanical cleavage)的简单方法。正 是这种简单的方法制备出来的简单物质——石墨烯推翻了 科学界的一个长久以来的错误认识——任何二维晶体不能 在有限的温度下稳定存在。现在石墨烯这种二维晶体不仅 可以在室温存在,而且十分稳定的存在于通常的环境下。
薄的石墨薄片( d < 10nm) 就被牢固地保留在SiO2 表
面上(这归结于它们之间较强的范德华力和毛细管作用 力) 。
石墨烯材料制备
2、加热SiC法
首先,样品经过氧化或H2 刻蚀表面处理,然后在超高真空 下(1×10-10 Torr) 经电子轰击加热到1000℃ ,除去氧化 物,并用俄歇电子能谱(AES) 监测,当氧化物完全去除后, 加热样品至1250—1450℃,这时将形成石墨烯层,石墨烯的 厚度与加热温度相关,且可通过AES(入射能为3keV)中 Si(92eV)和C(271eV)的峰强度测定石墨烯的厚度。
石墨烯的理论比表面积高达2 600m2Pg ,具有突出的导热 性能(3000W·m-1·K-1) 和力学性能(1060GPa) , 以及室温下 较高的电子迁移率(15000cm2·V-1·s-1) 。此外,它的特殊结 构,使其具有半整数的量子霍尔效应、永不消失的电导率等一 系列性质,因而备受关注。
石墨烯材料简介
石墨烯材料简介
康斯坦丁·诺沃肖洛夫
安德烈·海姆
石墨烯材料简介
3、结构 完美的石墨烯是二维的, 它只包括六角元胞(等角六边形) 如果有五角元胞和七角元胞存在,那么他们构成石墨烯的
缺陷。如果少量的五角元胞细胞会使石墨烯翘曲; 12个五角 元胞的会形成富勒烯。碳纳米管也被认为是卷成圆桶的石墨 烯;
可见,石墨烯是构建其它维数碳质材料(如零维富勒烯、 一维纳米碳管、三维石墨)的基本单元
石墨烯材料制备
1、机械剥离法 以1mm 厚的高取向高温热解石墨为原料,在石墨片上用 干法氧等离子体刻蚀出一个5μ m 深的平台(尺寸为 20μ m —2mm ,大小不等) ,在平台的表面涂上一层 2μ m 厚的新鲜光刻胶,焙固后,平台面附着在光刻胶层 上,从石墨片上剥离下来。用透明光刻胶可重复地从石 墨平台上剥离出石墨薄片,再将留在光刻胶里的石墨薄 片在丙酮中释放出来,将硅片浸泡其中,提出,再用一定 量的水和丙酮洗涤。这样,一些石墨薄片就附着在硅片 上。将硅片置于丙酮中,超声除去较厚的石墨薄片,而