石墨烯

合集下载

石墨烯是什么材料

石墨烯是什么材料

石墨烯是什么材料
石墨烯是一种由碳原子构成的二维晶体材料,其结构类似于蜂窝状的蜂窝状结构。

石墨烯由单层碳原子组成,形成了具有特殊性质的六角形晶格。

石墨烯的发现被认为是一项革命性的进展,因为它具有许多独特的物理和化学特性,使其在许多领域具有巨大的潜力。

首先,石墨烯具有出色的导电性。

由于其独特的结构,石墨烯中的电子可以自由移动,因此具有非常高的电导率。

事实上,石墨烯被认为是已知最好的导电材料之一,甚至比铜还要好。

这使得石墨烯在电子器件和导电材料方面具有巨大的应用潜力。

其次,石墨烯还具有出色的热导率。

由于其结构的特殊性,石墨烯可以有效地传递热量,因此具有很高的热导率。

这使得石墨烯在热管理和散热领域具有广阔的应用前景。

此外,石墨烯还具有出色的机械性能。

尽管它只有一个原子厚度,但石墨烯却非常坚固和耐用。

事实上,石墨烯被认为是已知最坚固的材料之一,具有比钢还要强大的拉伸强度和弹性模量。

这使得石墨烯在材料强度和耐久性方面具有巨大的潜力。

此外,石墨烯还具有许多其他独特的特性,例如光学透明性、化学稳定性和柔韧性等。

这些特性使得石墨烯在许多领域都具有广泛的应用前景,包括电子学、光学、材料科学、生物医学等。

总的来说,石墨烯是一种具有许多独特性质的材料,具有广阔的应用前景。

随着对石墨烯的研究不断深入,相信它将在未来的许多领域发挥重要作用,为人类社会带来巨大的变革和进步。

石墨烯的性质及应用

石墨烯的性质及应用

石墨烯的性质及应用石墨烯是一种由碳原子通过共价键结合形成的二维晶体结构,具有一系列独特的性质和应用潜力。

以下将详细介绍石墨烯的性质和应用。

性质:1. 单层结构:石墨烯是由单层碳原子构成的二维晶体结构,在垂直方向上只有一个原子层,具有单层的特点。

2. 高强度:尽管石墨烯只有一个碳原子层,但其强度非常高。

石墨烯的破断强度远远超过钢铁,是已知最强硬的材料之一。

3. 高导电性:石墨烯的碳原子呈现出类似于蜂窝状的排列方式,使得电子能够在其表面自由传导。

石墨烯的电子迁移率是晶体硅的200倍以上,使得其具有非常高的导电性能。

4. 高热导性:由于石墨烯中的碳原子排列紧密,热量传递效率非常高。

石墨烯的热导率超过铜的13000倍,是已知最高的热导材料之一。

5. 弹性:石墨烯具有非常强的弹性,在拉伸过程中可以扩展到原始长度的20%以上,然后恢复到原始形状。

这种弹性使得石墨烯在柔性电子学和拉伸传感器等领域具有广泛应用。

应用:1. 电子器件:石墨烯的高导电性和高迁移率使其成为制造高速电子器件的理想材料。

石墨烯可以作为传统半导体材料的替代品,用于制造更小、更快的电子元件,如晶体管、电容器和电路等。

2. 透明导电膜:石墨烯具有优异的透明导电性能,可以制备成透明导电膜,用于制造触摸屏、显示器和太阳能电池等设备。

相比于传统的氧化铟锡(ITO)薄膜,石墨烯具有更好的柔性和耐久性。

3. 电池材料:石墨烯可以用作锂离子电池的电极材料,具有高电导性和高比表面积的优势。

石墨烯电极可以提高电池的充放电速度和储能密度,有望在电动汽车和可再生能源储存等领域得到应用。

4. 传感器:石墨烯具有优异的电子迁移率和极高的比表面积,使其成为制造高灵敏传感器的理想材料。

石墨烯传感器可以用于检测气体、压力、湿度和生物分子等,具有快速响应和高灵敏度的特点。

5. 柔性电子学:石墨烯的高强度和高弹性使其成为柔性电子学的重要组成部分。

石墨烯可以制备成柔性电路、柔性显示屏和柔性传感器等,有望应用于可穿戴设备、智能医疗和可卷曲设备等领域。

石墨烯ppt课件

石墨烯ppt课件

04
缺点
设备成本高,制备过 程复杂。
液相剥离法制备过程及优化策略
过程
将石墨或膨胀石墨分散在溶剂中,通 过超声波、热应力等作用剥离出单层 或少层石墨烯。
优化策略
选择适当的溶剂和剥离条件,如超声 功率、时间、温度等,以提高剥离效 率和石墨烯质量。
优点
制备过程简单,成本低。
缺点
难以制备大面积、单层的石墨烯。
未来挑战和机遇并存局面思考
技术挑战
石墨烯制备技术仍存在一些难题 ,如大规模制备、成本控制、质 量稳定性等,需要加强技术研发
和创新。
市场机遇
随着石墨烯技术的不断突破和市场 需求的持续增长,石墨烯产业将迎 来更广阔的发展空间,企业需要抓 住机遇,积极拓展市场。
跨界融合
石墨烯产业需要与其他产业进行跨 界融合,共同推动产业升级和创新 发展,如与互联网、人工智能等产 业的深度融合。
THANKS
感谢观看
消费电子市场需求
随着消费电子产品的不断更新换代, 石墨烯在智能手机、平板电脑、可穿 戴设备等领域的应用需求将持续增长 。
新能源市场需求
石墨烯在新能源领域具有广阔的应用 前景,如太阳能电池、锂离子电池、 燃料电池等,未来市场需求将不断扩 大。
医疗健康市场需求
石墨烯在生物医疗领域的应用也逐渐 受到关注,如生物传感器、药物载体 、医疗器械等,未来市场需求有望持 续增长。
三维多孔支架、细胞培养基质、神经修复导管
石墨烯组织工程支架材料的研究进展及前景
骨组织工程、皮肤组织工程、心肌组织工程
安全性评价和毒理学问题关注
石墨烯的生物安全性问题
01 细胞毒性、免疫原性、遗传毒性
石墨烯的体内代谢和毒性机制

石墨烯正负极材料

石墨烯正负极材料

石墨烯正负极材料
石墨烯是一种由碳原子组成的二维材料,具有优异的导电性、导热性和机械性能。

在锂离子电池中,石墨烯正负极材料是关键组成部分之一。

石墨烯正极材料通常采用氧化铁锂(LiFePO4)、三元材料(NCM)或磷酸铁锂(LFP)等化合物作为主要成分。

这些化合物具有较高的能量密度和较长的循环寿命,能够提供稳定的电压平台和较高的充放电效率。

此外,石墨烯还可以通过掺杂其他元素来改善其电化学性能,例如硅、锡等。

石墨烯负极材料通常采用天然石墨、人造石墨或复合石墨等作为主要成分。

这些材料具有良好的导电性和稳定性,能够有效地吸收和释放锂离子。

此外,石墨烯还可以通过表面修饰和结构调控等方式来提高其电化学性能,例如增加表面积、改善结晶度等。

石墨烯正负极材料在锂离子电池中发挥着重要作用。

它们不仅能够提供高能量密度和长循环寿命,还能够提高电池的安全性能和稳定性。

随着石墨烯技术的不断发展和完善,相信未来会有更多新型的石墨烯正负极材料被应用于锂离子电池领域。

石墨烯是什么材料

石墨烯是什么材料

石墨烯是什么材料石墨烯是一种由碳原子形成的二维晶格结构的材料,被认为是科学界中的一项重大发现。

它具有许多出色的性质,使其成为研究、应用和开发各种技术的理想材料。

本文将介绍石墨烯的结构、性质和应用。

石墨烯的结构非常特殊。

它是由一个碳原子层构成的,碳原子形成了六边形的排列。

每个碳原子与周围三个碳原子形成共价键,形成一个稳定的二维晶格结构。

这种结构使石墨烯具有独特的性质。

首先,石墨烯具有优异的电子性能。

由于其二维结构,石墨烯的电子在平面内可以自由移动,表现出高度的导电性。

事实上,石墨烯的电子迁移率可以达到几百万cm2/V·s,远高于其他材料。

这使得石墨烯成为电子器件和传感器等领域的理想选择。

其次,石墨烯具有出色的力学性能。

虽然石墨烯只有一个碳原子层的厚度,但它的强度却相当高。

实验证明,石墨烯的强度是钢铁的200倍,同时也具有很高的柔韧性。

这种强度和柔韧性使石墨烯成为纳米复合材料和柔性电子设备的理想材料。

此外,石墨烯还具有很高的光学透明性。

它可以在可见光和红外光范围内实现高透射率,达到97.7%。

这使得石墨烯在显示技术和太阳能电池等领域有着广泛的应用前景。

石墨烯的应用非常广泛。

在电子领域,石墨烯可以用于制造高速电子器件、柔性电子设备和能量存储器件。

在材料领域,石墨烯可以用于制造轻质复合材料、高强度纤维和超薄薄膜。

在能源领域,石墨烯可以用于制造高效的太阳能电池和储能装置。

此外,石墨烯还可以用于制造高效的传感器、过滤器和催化剂等。

然而,尽管石墨烯具有如此出色的性质和应用潜力,但目前仍面临一些挑战。

首先,大规模合成石墨烯仍然是一个复杂和昂贵的过程。

其次,石墨烯的良好导电性和透明性容易受到氧化和杂质的影响,从而降低性能。

因此,石墨烯的制备和保护仍然需要进一步的研究和发展。

总之,石墨烯是一种由碳原子构成的二维晶格结构材料,具有出色的电子、力学和光学性能。

它在电子、材料和能源领域具有广泛的应用前景。

虽然石墨烯仍然面临挑战,但科学界对于其研究和开发仍抱有巨大的期望。

石墨烯的介绍

石墨烯的介绍
能源 石墨2烯1的3介绍
-
1 石墨烯的基本性质 2 石墨烯的制备方法 3 石墨烯的应用领域 4 结论与展望
石墨烯的介绍
石墨烯是一种由碳原子组成 的二维材料,它是单层石墨 的片状结构,具有极高的电 导率、热导率和机械强度
下面我们将详细介绍石墨烯 的基本性质、制备方法、应 用领域以及研究现状
CHAPTER 1
石墨烯的应用领域
能源领域
石墨烯的热导率和电导率都非常高,因此它在能源领域也有广泛的应用。例如,石墨烯可 以用于制造高效能电池和超级电容器等能源器件。此外,石墨烯还可以作为催化剂载体用 于燃料电池等领域
石墨烯的应用领域
生物医学领域
石墨烯具有良好的生物相容性和抗氧化性,因此在生物医学领域也有广泛的应用。例如, 石墨烯可以用于制造药物载体、生物传感器和成像试剂等生物医学器件。此外,石墨烯还 可以作为生物材料用于组织工程等领域
CHAPTER 3
石墨烯的应用领域
石墨烯的应用领域
石墨烯的应用领域
由于石墨烯具有优异 的物理和化学性质, 它在许多领域都有广 泛的应用。以下是石 墨烯的主要应用领域
石墨烯的应用领域
电子器件领域
石墨烯具有很高的电 导率,因此它在电子 器件领域具有广泛的 应用。例如,石墨烯 可以用于制造晶体管 、场效应管、太阳能 电池等电子器件。此 外,石墨烯还可以作 为透明导电膜用于显 示器等领域
CVD法
CVD法是一种常用的制备石墨烯的方法,它是通过加热含碳气体(如甲烷、乙炔等)在基底 表面形成石墨烯。这种方法可以制备大面积、高质量的石墨烯,但需要高温条件和复杂的 设备
石墨烯的制备方法
氧化还原法
氧化还原法是一种通过氧化剂将石墨氧化成氧化石墨,再通过还原剂将氧化石墨还原成石 墨烯的方法。这种方法制备的石墨烯质量较高,但需要使用化学试剂和复杂的工艺流程

石墨烯-PPT

石墨烯-PPT

双层石墨烯可降低元器件电噪声
美国IBM公司T·J·沃森研究中心 的科学家,最近攻克了在利用石墨 构建纳米电路方面最令人困扰的难 题,即通过将两层石墨烯片叠加, 可以将元器件的电噪声降低10倍, 由此可以大幅改善晶体管的性能, 这将有助于制造出比硅晶体管速度 快、体积小、能耗低的石墨烯晶体 管。ຫໍສະໝຸດ 石墨烯可作为宇宙学研究的平台
四、石墨烯的应用
氧化石墨烯
Dikin等制成了无支撑氧化石墨烯纸状 材料。氧化石墨烯片是以一种接近平行 的方式相互连接或瓦片式连接在一起形 成的,拉伸试验表明氧化石墨烯纸具有 较高的拉伸模量和断裂强度,其平均模 量为32 GPa,性能与用类似方法制备的 碳纳米管布基纸相当。
微电子领域
微电子领域也具有巨大的应用潜力。研究人 员甚至将石墨烯看作是硅的替代品,能用来生 产未来的超级计算机。 曼彻斯特的小组采用标准半导体制造技术制 作出晶体管。从一小片石墨烯片层开始,采用 电子束曝光在材料上刻出沟道。在被称为中央 岛的中部位置保持一个带有微小圆笼的量子点。 电压可以改变这些量子点的电导率,这样就可 以像标准场效应晶体管那样储存逻辑态。可在 26GHz频率下运作可望使该种材料超越硅的极限, 达到100GHz以上的速度跨入兆赫(terahertz)领 域。
4,电子的相互作用
石墨烯中电子间以及电子与蜂窝状栅格 间均存在着强烈的相互作用。 石墨烯中的电子不仅与蜂巢晶格之间相 互作用强烈,而且电子和电子之间也有很 强的相互作用。
5、其它特殊性质 ① 石墨烯具有明显的二维电子特性。 ② 在石墨烯中不具有量子干涉磁阻 ③ 石墨烯电子性质用量子力学的迪拉克方程来描 述比薛定谔方程更 ④ 好可控渗透性 ⑤ 离子导电体各向异性 ⑥ 超电容性 „„„„„„

石墨烯

石墨烯

石墨烯石墨烯声明:百科词条人人可编辑,词条创建和修改均免费,绝不存在官方及代理商付费代编,请勿上当受骗。

详情>> 石墨烯(二维碳材料)编辑本词条由“科普中国”百科科学词条编写与应用工作项目审核。

石墨烯(Graphene)是一种由碳原子以sp2杂化方式形成的蜂窝状平面薄膜,是一种只有一个原子层厚度的准二维材料,所以又叫做单原子层石墨。

英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用微机械剥离法成功从石墨中分离出石墨烯,因此共同获得2010年诺贝尔物理学奖。

石墨烯常见的粉体生产的方法为机械剥离法、氧化还原法、SiC外延生长法,薄膜生产方法为化学气相沉积法(CVD)。

[1] 由于其十分良好的强度、柔韧、导电、导热、光学特性,在物理学、材料学、电子信息、计算机、航空航天等领域都得到了长足的发展。

作为目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料,石墨烯被称为“黑金”,是“新材料之王”,科学家甚至预言石墨烯将“彻底改变21世纪”。

极有可能掀起一场席卷全球的颠覆性新技术新产业革命。

中文名石墨烯外文名Graphene 发现时间2004年主要制备方法机械剥离法、气相沉积法、氧化还原法、SiC外延法主要分类单层、双层、少层、多层(厚层)基本特性强度柔韧性、导热导电、光学性质应用领域物理、材料、电子信息、计算机等目录1 研究历史2 理化性质? 物理性质? 化学性质3 制备方法? 粉体生产方法? 薄膜生产方法4 主要分类? 单层石墨烯? 双层石墨烯? 少层石墨烯? 多层石墨烯5 主要应用? 基础研究? 晶体管? 柔性显示屏? 新能源电池? 航空航天? 感光元件? 复合材料6 发展前景? 中国? 美国? 欧洲? 韩国? 西班牙? 日本研究历史编辑实际上石墨烯本来就存在于自然界,只是难以剥离出单层结构。

石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

于这样的实践基础,研究石墨烯对金属腐蚀的保护作用成为了
涂料领域技术研发的一个重要方向。
应用
用于制备导电涂料 低于10个碳原子层的石墨及其相关衍生物被定义为石墨烯。在碳原子 表面沉积、聚合某种物质进行改性,或在碳原子层间插入某种物质的 改性方法,已取得了一些进展。赖奇等为了增加石墨烯与聚合物之间 的结合力,采用不同的插层剂对石墨烯进行表面改性,改性的结果一 方面减少了石墨烯之间的再凝聚,另一方面提高了其在涂料体系中的 分散稳定性。经二次插层获得的石墨烯用十二烷基苯磺酸钠、丙酮进 行表面处理后,加入到丙烯酸涂料中,对涂层电阻检测结果表明:石
应用
用于制备抑菌涂料 研究发现,在石墨烯表面,细菌的细胞无法生长,而对人类 细胞却不会施加不良影响,因此石墨烯可以用于制做绷带、 食品包装甚至抗菌T恤。蒋保江[11]采用原位化学还原方法 制备了Ag/石墨烯复合体,并以大肠杆菌为受试菌株,测试 了该材料的抑菌效果。实验结果表明:Ag/石墨烯复合体对 大肠杆菌具有优异的抑菌性能。利用石墨烯的抗菌性制备的 抑菌涂料可应用在医院、医疗器械、食品储运、幼儿园、厨
机械剥离法制备石墨烯
臼(jiu)式研磨仪
1
搅拌球磨
2
行星球磨
3
示意图
原理
石墨烯在涂料中的应用
用于制备防腐涂料 研究者通过机械的方法将多层石墨烯转移到金属镍的表面,然 后采用电化学方法来观察其缓蚀情况。结果表明:带多层石墨
烯涂层的镍腐蚀速度比裸镍的腐蚀速度慢20倍,而带4层金属
石墨烯涂层的金属镍腐蚀速度比裸镍要慢4倍。石墨烯涂层相 当薄,但是其防腐蚀作用至少与5层传统的有机涂料相当。基
应用
用于制备防污涂料
于欢以石墨烯/TiO2复合材料替代氯化亚铜毒性防污剂,考 察了水性聚氨酯涂层的耐生物附着性、表面性能、力学性 能和耐水性能,得到的海洋防污涂层性能良好。 刘文超以氧化石墨烯作为纳米银的载体,制备了氧化石墨 烯/纳米银复合材料。抑菌圈试验表明,复合材料具有很 高的稳定性以及良好的抑菌性和明显的杀菌效果,可用于 制备在海洋防污涂料。
墨烯的加入降低了涂层电阻率,导电性得到了提高,具有制备导电涂
料的应用前景。
应用
用于制备无机涂料
石墨烯改性无机涂料可以解决现有无机涂料在金属表面
附着力差的问题,无需对金属表面喷砂处理或只需进行 低表面处理,便可获得良好的附着力效果。沈海斌等的
研究结果表明:不添加铬而换成添加石墨烯,可有效提
高达克罗涂料的防腐蚀性能及耐磨性,同时涂层的耐高 温性及加热后的耐腐蚀性能也很好。这一思路在消除铬 重金属污染方面具有突出的绿色环保价值。
THANK YOU
房、卫生间等需要防菌抑菌的场合。
应用
用于制备自修复涂料 利用石墨烯的高硬度、高强度、高韧性、高透明性可 制备用于汽车、家具、地板、文物等领域的保护涂料, 并有望获得具有抗划伤以及轻微划伤自修复功能的涂 膜。
参考文献
[1] Kelly B. Physics of Graphite[M]. London: Applied SciencePublishers,1981. [2] Bolotin KI,Sikes KJ,Jiang Z,et al. Ultrahigh Electron Mobility in Suspended Graphene[J]. Solid State Commun,2008, 146( 9 - 10) : 351 - 355. [3] Bolotin K I,Sikes K J,Hone J,et al. TemperatureDependentTransport in Suspended Graphene[J]. Phys Rev Lett, 2008,101( 9) : 4 - 7. [4] Du X,Skachko I,Barker A,et al. Approaching Ballistic Transport in Suspended Graphene [J]. Nat Nanotechnol, 2008, 3( 8) : 491 - 495. [5] Schedin F,Geim A K,Morozov S V,et al. Detection of Individual Gas Molecules Adsorbed on Graphene[J]. Nat Mater, 2007,6( 9) : 652 - 625. [6] Blake P,Brimicombe P D,Nair R R,et al. GrapheneBasedLiquid Crystal Device[J]. Nano Lett,20088 ( 6 ) : 1 704 -1 208. [7] Wang X,Zhi L J,Mullen K. Transparent,Conductive Graphene Electrodes for Dye-Sensitized Solar Cells[J]. Nano Lett, 2008,8( 1) : 323 - 327.
机械剥离法制备石墨烯及在涂料中的应用
————李向权
目录
1. 背景
2. 机械剥离法制备石墨烯
3. 石墨烯在涂料中应用 4. 斯特大学的两位科学家安德烈· 盖姆(Andre Geim )和克斯特亚· 诺沃消洛夫(Konstantin Novoselov)发现他们能用一 种非常简单的方法得到越来越薄的石墨薄片。他们从高定向热解石墨 中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶 带,就能把石墨片一分为二。不断地这样操作,于是薄片越来越薄, 最后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。 这以后,制备石墨烯的新方法层出不穷,经过5年的发展,人们发现
机械剥离法制备石墨烯
所谓机械剥离法,就是通过对石墨晶体施加机械力( 摩擦力、拉力等) 将石 墨烯或石墨烯纳米片层从石墨晶体中分离出来的方法。
回顾石墨烯的研究历程,我们不难发现机械剥离法在 其中起到了至关重要的作用。由于这些方法大多需要 涉及精密的操作来施加微小的机械力,研究人员又把 它们命名为微机械剥离法。直到现在,利用微机械剥 离法获得的石墨烯的质量仍然是最好的,被广泛的应 用在凝聚态物理等基础研究中。然而,微机械剥离法 无法应用在石墨烯的宏量制备中,从而阻碍了这种方 法在石墨烯复合材料方面的应用。为了在提高石墨烯 产量的同时最大限度地保留石墨烯优异性能,1 种新 的机械剥离法逐渐得到人们的重视。这种新的方法主 要是以机械磨为剥离的工具来大量制备高质量的石墨 烯。
,将石墨烯带入工业化生产的领域已为时不远了。因此,在随后三年
内,安德烈· 盖姆和康斯坦丁· 诺沃肖洛夫在单层和双层石墨烯体系中 分别发现了整数量子霍尔效应及常温条件下的量子霍尔效应,他们也
因此获得2010年度诺贝尔物理学奖。在发现石墨烯以前,大多数物理
学家认为,热力学涨落不允许任何二维晶体在有限温度下存在。所以 ,它的发现立即震撼了凝聚体物理学学术界。虽然理论和实验界都认 为完美的二维结构无法在非绝对零度稳定存在,但是单层石墨烯在实 验中被制备出来。
相关文档
最新文档