互联网+智慧能源大数据解决方案
能源行业能源大数据应用解决方案

能源行业能源大数据应用解决方案第1章能源大数据概述 (4)1.1 能源大数据概念与特点 (4)1.2 能源大数据发展现状与趋势 (4)1.3 能源大数据在能源行业中的应用价值 (5)第2章能源大数据技术架构 (5)2.1 能源大数据技术体系 (6)2.1.1 技术体系概述 (6)2.1.2 技术体系特点 (6)2.2 数据采集与预处理技术 (6)2.2.1 数据采集技术 (6)2.2.2 数据传输技术 (6)2.2.3 数据预处理技术 (6)2.3 数据存储与管理技术 (6)2.3.1 数据存储技术 (6)2.3.2 数据管理技术 (7)2.4 数据分析与挖掘技术 (7)2.4.1 数据分析方法 (7)2.4.2 数据挖掘技术 (7)2.4.3 智能决策支持 (7)第3章能源大数据采集与预处理 (7)3.1 能源数据采集技术 (7)3.1.1 自动化监测技术 (7)3.1.2 通信技术 (7)3.1.3 数据存储与传输技术 (7)3.2 能源数据预处理方法 (8)3.2.1 数据清洗 (8)3.2.2 数据集成 (8)3.2.3 数据变换 (8)3.3 数据质量评估与提升策略 (8)3.3.1 数据质量评估 (8)3.3.2 数据质量提升策略 (8)第4章能源大数据存储与管理 (8)4.1 能源大数据存储技术 (9)4.1.1 分布式存储架构 (9)4.1.2 云存储技术 (9)4.2 能源大数据管理策略 (9)4.2.1 数据采集与预处理 (9)4.2.2 数据存储与管理策略 (9)4.3 数据仓库与数据湖在能源行业中的应用 (9)4.3.1 数据仓库在能源行业中的应用 (9)4.3.2 数据湖在能源行业中的应用 (9)4.3.3 数据湖与数据仓库的融合应用 (9)第5章能源大数据分析与挖掘 (10)5.1 能源大数据分析方法 (10)5.1.1 数据预处理 (10)5.1.2 描述性分析 (10)5.1.3 关联性分析 (10)5.1.4 预测性分析 (10)5.2 能源大数据挖掘技术 (10)5.2.1 数据挖掘概述 (10)5.2.2 分类与预测 (10)5.2.3 聚类分析 (10)5.2.4 关联规则挖掘 (11)5.3 机器学习与深度学习在能源行业的应用 (11)5.3.1 机器学习概述 (11)5.3.2 深度学习概述 (11)5.3.3 能源需求预测 (11)5.3.4 能源消耗优化 (11)5.3.5 能源设备故障诊断 (11)第6章能源大数据可视化与交互 (11)6.1 能源大数据可视化技术 (11)6.1.1 数据可视化概述 (11)6.1.2 可视化技术分类 (11)6.1.3 能源大数据可视化工具 (12)6.2 能源数据交互式分析 (12)6.2.1 交互式分析概述 (12)6.2.2 交互式分析技术 (12)6.2.3 能源数据交互式分析应用 (12)6.3 能源大数据可视化应用案例 (12)6.3.1 电力系统可视化监控 (12)6.3.2 油气田开发可视化分析 (12)6.3.3 能源消费可视化分析 (12)第7章能源需求侧管理大数据应用 (12)7.1 能源需求侧管理概述 (12)7.2 能源需求侧大数据分析 (13)7.3 需求响应与需求侧竞价应用 (13)第8章能源供给侧管理大数据应用 (14)8.1 能源供给侧管理概述 (14)8.2 能源供给侧大数据分析 (14)8.2.1 能源生产数据分析 (14)8.2.2 能源传输数据分析 (14)8.2.3 能源分配数据分析 (14)8.3 能源生产与消费预测 (15)8.3.1 时间序列分析法 (15)8.3.2 机器学习方法 (15)8.3.4 混合模型 (15)第9章智能电网大数据应用 (15)9.1 智能电网概述 (15)9.2 智能电网大数据技术与应用 (15)9.2.1 数据采集与传输 (16)9.2.2 数据存储与管理 (16)9.2.3 数据分析与挖掘 (16)9.3 分布式能源与微电网大数据分析 (16)9.3.1 数据异构性 (16)9.3.2 实时性 (16)9.3.3 复杂性 (16)9.3.4 应用案例分析 (17)第10章能源大数据安全与隐私保护 (17)10.1 能源大数据安全风险与挑战 (17)10.1.1 数据泄露风险 (17)10.1.2 网络攻击风险 (17)10.1.3 系统故障风险 (17)10.1.4 法律法规与合规性挑战 (17)10.1.5 数据质量与真实性挑战 (17)10.2 能源大数据安全防护技术 (17)10.2.1 数据加密技术 (17)10.2.1.1 对称加密算法 (17)10.2.1.2 非对称加密算法 (17)10.2.1.3 混合加密算法 (17)10.2.2 访问控制技术 (17)10.2.2.1 基于角色的访问控制 (17)10.2.2.2 基于属性的访问控制 (18)10.2.2.3 访问控制策略管理 (18)10.2.3 安全审计技术 (18)10.2.3.1 安全事件审计 (18)10.2.3.2 行为分析审计 (18)10.2.3.3 审计日志管理 (18)10.2.4 安全态势感知与威胁情报 (18)10.2.4.1 安全态势评估 (18)10.2.4.2 威胁情报收集与分析 (18)10.2.4.3 响应与处置策略 (18)10.2.5 网络安全技术 (18)10.2.5.1 防火墙技术 (18)10.2.5.2 入侵检测与防御系统 (18)10.2.5.3 虚拟专用网络(VPN) (18)10.3 能源大数据隐私保护策略与应用实践 (18)10.3.1 隐私保护法规与标准 (18)10.3.1.1 国内外隐私保护法律法规 (18)10.3.2 数据脱敏技术 (18)10.3.2.1 静态脱敏技术 (18)10.3.2.2 动态脱敏技术 (18)10.3.2.3 脱敏效果评估 (18)10.3.3 差分隐私技术 (18)10.3.3.1 差分隐私定义与机制 (18)10.3.3.2 差分隐私在能源大数据中的应用 (18)10.3.4 联邦学习技术 (18)10.3.4.1 联邦学习原理与框架 (18)10.3.4.2 联邦学习在能源大数据中的应用案例 (18)10.3.5 隐私保护应用实践 (18)10.3.5.1 用户侧隐私保护实践 (19)10.3.5.2 企业侧隐私保护实践 (19)10.3.5.3 监管与合规性实践 (19)第1章能源大数据概述1.1 能源大数据概念与特点能源大数据是指在能源生产、传输、分配和消费过程中产生的大量、高速、多样和复杂的海量数据。
智慧综合能源解决方案

智慧综合能源解决方案第1篇智慧综合能源解决方案一、背景随着我国经济的快速发展和能源需求的持续增长,能源供应与环境保护的矛盾日益突出。
为响应国家节能减排、绿色发展政策,推动能源结构优化,降低企业用能成本,提高能源利用效率,本方案提出了一套智慧综合能源解决方案。
二、目标1. 降低企业用能成本,提高能源利用效率。
2. 优化能源结构,减少对传统能源的依赖。
3. 减少能源消耗过程中的环境污染,实现绿色可持续发展。
三、解决方案1. 能源审计开展能源审计,对企业能源消耗现状进行全面、系统、准确地分析,找出能源浪费的环节,为制定节能措施提供依据。
2. 能源监测与管理系统搭建能源监测与管理系统,对企业能源消耗数据进行实时采集、分析,为企业提供能源消耗可视化、设备运行状态监测、故障预警等功能。
3. 节能技术改造针对企业能源消耗特点,选用成熟的节能技术进行改造,包括但不限于:高效节能设备、余热余压利用、变频调速、绿色照明等。
4. 新能源利用根据企业所在地的自然资源和能源政策,引入太阳能、风能、生物质能等新能源,降低企业对传统能源的依赖。
5. 能源管理体系建设建立和完善能源管理体系,形成长效的能源管理机制,确保能源管理工作的持续、有效开展。
6. 培训与宣传开展能源管理培训,提高员工能源意识,形成全员参与节能减排的良好氛围。
四、实施步骤1. 能源审计与评估对企业能源消耗现状进行详细调查,分析能源消耗数据,找出节能潜力,制定节能措施。
2. 项目可行性研究对拟实施的节能技术改造项目进行可行性研究,包括技术可行性、经济可行性、环境效益等。
3. 方案设计与评审根据可行性研究结果,设计详细的智慧综合能源解决方案,组织专家进行评审。
4. 项目实施按照设计方案,组织施工队伍进行设备安装、调试,确保项目按期完成。
5. 运行监测与评估项目投运后,对能源消耗数据进行持续监测,评估节能效果,发现问题及时调整。
6. 持续优化与提升根据运行监测结果,不断优化能源管理策略,提高能源利用效率。
能源行业能源互联网解决方案

能源行业能源互联网解决方案第一章能源互联网概述 (2)1.1 能源互联网的定义 (2)1.2 能源互联网的发展背景 (2)1.2.1 能源需求的持续增长 (2)1.2.2 新能源技术的发展 (2)1.2.3 信息技术与互联网的深度融合 (2)1.3 能源互联网的关键技术 (3)1.3.1 信息通信技术 (3)1.3.2 互联网技术 (3)1.3.3 能源技术 (3)1.3.4 安全技术 (3)第二章能源互联网架构设计 (3)2.1 能源互联网总体架构 (3)2.2 能源互联网分层架构 (4)2.3 能源互联网关键模块 (4)第三章能源生产与调度 (5)3.1 能源生产优化策略 (5)3.2 能源调度算法 (5)3.3 能源供需平衡分析 (6)第四章信息与通信技术 (6)4.1 通信技术在能源互联网中的应用 (6)4.2 信息处理与分析 (7)4.3 信息安全与隐私保护 (7)第五章能源互联网与智能电网 (8)5.1 智能电网与能源互联网的关系 (8)5.2 智能电网技术进展 (8)5.3 智能电网与能源互联网的融合 (8)第六章能源互联网与分布式能源 (9)6.1 分布式能源概述 (9)6.2 分布式能源与能源互联网的协同 (9)6.2.1 分布式能源与能源互联网的互动关系 (9)6.2.2 分布式能源与能源互联网协同发展的挑战与机遇 (9)6.3 分布式能源管理策略 (10)6.3.1 分布式能源规划与布局 (10)6.3.2 分布式能源技术与设备选型 (10)6.3.3 分布式能源政策与法规支持 (10)第七章能源互联网与新能源汽车 (10)7.1 新能源汽车概述 (10)7.2 新能源汽车与能源互联网的互动 (11)7.3 新能源汽车充电基础设施 (11)第八章能源互联网商业模式 (11)8.1 能源互联网商业模式概述 (11)8.2 创新商业模式案例 (12)8.3 商业模式与政策支持 (12)第九章能源互联网政策法规 (13)9.1 能源互联网政策背景 (13)9.2 政策法规体系构建 (13)9.2.1 国家层面政策法规 (13)9.2.2 地方层面政策法规 (13)9.3 政策法规实施与监管 (14)9.3.1 政策法规实施 (14)9.3.2 监管体系构建 (14)第十章能源互联网发展前景 (14)10.1 能源互联网发展趋势 (14)10.2 能源互联网面临的挑战 (14)10.3 能源互联网发展策略与建议 (15)第一章能源互联网概述1.1 能源互联网的定义能源互联网,作为一种新兴的能源网络形式,是指通过现代信息通信技术、互联网技术与能源技术深度融合,构建的一种具有高度智能化、网络化、互动性的能源系统。
智慧能源大数据云平台建设方案

关联规则挖掘
发现数据集中变量之间的 有趣关系,如购物篮分析 中的经常一起购买的商品 组合。
决策树分析
通过树形结构表示决策过 程,帮助决策者理解不同 的决策路径和可能的结果 。
时间序列分析
对按时间顺序排列的数据 进行统计和分析,以发现 趋势、周期和异常值。
预测与优化建议
能源需求预测
基于历史能源消耗数 据和预测模型,预测 未来的能源需求。
定期对数据进行备份,并 制定快速恢复策略,以防 止数据丢失和灾难性故障 。
数据访问控制
实施严格的数据访问控制 策略,对数据的访问和使 用进行授权管理,防止未 经授权的访问和滥用。
系统安全保障
网络安全
采用防火墙、入侵检测和 防御系统等安全设备,对 网络进行全面防护,确保 系统的安全性。
操作系统安全
使用安全的操作系统,及 时更新系统和软件补丁, 防止恶意攻击和病毒传播 。
融合创新发展
智慧能源大数据云平台将与物联网、云计算、人工智能等 先进技术深度融合,实现更加智能化、高效化的能源管理 ,推动能源行业的创新发展。
THANKS
感谢观看
智慧能源大数据云平台采用基于云计算的架构设 计,实现高可用性、高扩展性和高灵活性。
02 微服务架构
采用微服务架构,将平台功能拆分成多个独立的 服务,实现服务的松耦合和高度可配置。
03 容器化部署
使用容器化技术,实现应用快速部署和容器编排 ,提高应用开发和部署效率。
平台功能模块
数据采集与存储
实现能源数据的高效 采集、存储和管理, 支持多种数据源的接 入。
07
建设规划与实施
建设规划概述
目标与愿景
构建一个高效、智能的能源管理平台,实现对能源数据的实时监控 、分析和优化,提高能源利用效率,降低运营成本。
能源行业能源互联网平台搭建方案

能源行业能源互联网平台搭建方案第一章能源互联网平台概述 (3)1.1 能源互联网平台定义 (3)1.2 能源互联网平台发展背景 (3)1.2.1 能源转型需求 (3)1.2.2 政策扶持 (3)1.2.3 技术进步 (3)1.3 能源互联网平台发展趋势 (3)1.3.1 跨界融合 (3)1.3.2 智能化发展 (3)1.3.3 市场化运作 (4)1.3.4 绿色低碳 (4)1.3.5 安全可靠 (4)第二章平台架构设计 (4)2.1 平台整体架构 (4)2.2 技术架构 (4)2.3 数据架构 (5)2.4 安全架构 (5)第三章能源数据采集与处理 (5)3.1 数据采集方式 (5)3.2 数据预处理 (6)3.3 数据存储与管理 (6)3.4 数据挖掘与分析 (6)第四章能源交易与市场运营 (7)4.1 交易模式设计 (7)4.2 市场运营策略 (7)4.3 交易监管与风险控制 (7)4.4 交易信息发布与推送 (8)第五章能源服务与增值业务 (8)5.1 能源需求预测 (8)5.2 能源优化配置 (8)5.3 能源金融服务 (9)5.4 节能减排与碳排放管理 (9)第六章平台用户管理与服务 (9)6.1 用户注册与认证 (9)6.1.1 注册流程设计 (9)6.1.2 认证机制 (10)6.2 用户权限管理 (10)6.2.1 权限划分 (10)6.2.2 权限控制 (10)6.3 用户服务与支持 (10)6.3.1 服务内容 (10)6.3.2 服务渠道 (10)6.4 用户反馈与投诉处理 (11)6.4.1 反馈渠道 (11)6.4.2 处理流程 (11)第七章平台运营与维护 (11)7.1 平台运营策略 (11)7.2 平台维护与更新 (12)7.3 平台功能监测与优化 (12)7.4 平台故障处理与应急预案 (12)第八章政策法规与标准体系 (12)8.1 能源行业政策法规 (12)8.1.1 政策法规概述 (12)8.1.2 现行政策法规体系 (13)8.2 能源互联网平台标准制定 (13)8.2.1 标准制定的重要性 (13)8.2.2 标准制定原则 (13)8.2.3 标准制定内容 (13)8.3 政策法规执行与监督 (13)8.3.1 政策法规执行 (13)8.3.2 监督机制 (14)8.4 标准体系实施与评估 (14)8.4.1 标准体系实施 (14)8.4.2 评估与改进 (14)第九章平台建设与推广 (14)9.1 平台建设流程 (14)9.1.1 需求分析 (14)9.1.2 技术选型 (14)9.1.3 系统设计 (14)9.1.4 系统开发与测试 (15)9.1.5 系统部署与上线 (15)9.2 平台推广策略 (15)9.2.1 市场调研 (15)9.2.2 品牌塑造 (15)9.2.3 渠道拓展 (15)9.2.4 用户运营 (15)9.3 合作伙伴关系建立 (15)9.3.1 合作伙伴筛选 (15)9.3.2 合作协议签订 (15)9.3.3 合作关系维护 (15)9.4 平台宣传与营销 (15)9.4.1 网络营销 (15)9.4.2 线下活动 (16)9.4.3 媒体合作 (16)9.4.4 用户口碑传播 (16)第十章能源互联网平台未来发展展望 (16)10.1 技术发展趋势 (16)10.2 市场发展前景 (16)10.3 社会效益分析 (16)10.4 能源互联网平台在国内外的发展对比 (17)第一章能源互联网平台概述1.1 能源互联网平台定义能源互联网平台是指运用现代信息通信技术、大数据、云计算、物联网等手段,将能源生产、传输、消费等环节紧密连接,实现能源系统智能化、高效化、绿色化发展的综合性服务平台。
智慧能源大数据平台建设方案

、促进可持续发展
智慧能源大数据平台建设得到了国家政策支持和 03 市场广泛认可
项目意义
提高能源行业的生产效率 和经济效益
为实现绿色能源发展提供 有力支撑
推动能源行业向数字化、 智能化方向转型
项目目标
构建完善的智慧能源大数据平台体系
为能源行业提供准确、及时的数据支持和 分析结果
提高数据采集、存储、处理和分析能力
实现能源行业可持续发展目标,提高社会 效益和经济效益。
02
智慧能源大数据平台概述
智慧能源大数据平台定义
智慧能源大数据平台是一种基于能源行业数据,利用先进的大数据技术和分析方法,实现能源 数据的采集、存储、处理、分析、展示和应用的综合性平台。
智慧能源大数据平台应用案
06
例
案例一:电力行业大数据应用
详细描述
2. 需求侧管理:通过大数据分析 用户用电行为和习惯,优化电力 调度和分配,降低电力消耗。
总结词:电力行业是大数据应用 的重要领域之一,通过大数据技 术可以提高电力生产、传输、分 配、消费等环节的效率。
1. 智能电网:利用大数据技术对 电网运行状态进行实时监测和预 测,提高电力输送和分配的效率 ,降低能源损耗。
详细描述
1. 智能电网:利用大 数据技术对新能源电 网运行状态进行实时 监测和预测,提高电 力输送和分配的效率 ,降低能源损耗。
2. 数据驱动的决策: 通过大数据分析新能 源发电预测数据以及 气象数据,优化电力 调度和分配,降低电 力消耗。
3. 设备预测维护:利 用大数据技术对新能 源设备进行预测性维 护,减少设备故障停 机时间,提高设备利 用率。
大数据技术在智慧能源中的应用

大数据技术在智慧能源中的应用随着世界经济和社会的快速发展,能源问题和环境问题已成为人们关注的核心问题。
目前,传统能源行业正在逐渐转型,发展出基于大数据技术的智慧能源。
大数据技术在智慧能源中的应用将能够为人们解决能源问题,实现环境保护和能源可持续发展的目标。
本文将探讨大数据技术在智慧能源中的应用,并展示其优势和未来发展趋势。
一、大数据技术在智慧能源中的应用1. 能源生产和供应能源生产和供应是智慧能源中应用大数据技术的重要领域。
传统能源行业往往采用分散式监测和负荷控制方法来管理和调度。
这种方法存在着信息孤立、数据不精确、难以判断等问题。
大数据技术能够对能源生产和供应进行全方位的数据采集和监测,并通过云计算等技术将分散的数据整合起来,实现数据信息的快速共享和高效传输。
2. 能源消费和管理智慧能源在能源消费和管理上也应用广泛。
通过大数据技术对能源消费的时空分布进行统计分析,可以找到能源消耗的瓶颈所在,针对性地制定合理的负荷控制策略,最大限度地提高能源利用效率。
同时,大数据技术还可以根据历史数据分析,预测未来的能源需求,优化能源供需匹配,实现能源在时间和空间上的高效利用。
3. 能源监测和预警大数据技术在智慧能源中的另一个重要应用是能源监测和预警。
通过对能源系统的数据进行实时监测和分析,能够提早预测和预警能源系统发生异常的可能性,及时采取措施消除风险。
相较于传统方法,大数据技术可多角度、多层次地进行预测和预警,准确性更高,而且能及时发现问题和提出建议。
二、大数据技术在智慧能源中的优势1. 大数据技术可以准确分析和预测能源需求,避免供需失衡。
2. 大数据技术能够检测和纠正能源系统的运行异常,及时预测和预警潜在危险。
3. 大数据技术可以优化能源的配置和利用,降低能源消耗,提高能源利用效率。
4. 大数据技术可以实现数据的共享和信息的共享,提高能源生产和消费的协同效能。
5. 大数据技术还可以促进能源技术创新,提升智慧能源的核心竞争力。
智慧能源大数据云平台建设方案 智慧能源管理云平台建设方案

4
管理数字化 通过能源综合管理系统对现场 用能设备进行数字化管理。
3
传输网络化 现场智能设备与后台之间的数 据传送采用了网络化传输的新 模式。
能源大数据云平台解决方案
01
智慧能源管理平台—战略定位
能源及设备物联网数据服务平台
24H服务管家,防患于未然,便利
数据驱动决策---BI
能耗数据透视,能耗分解
互联网+、大数据、云计算、物联网+
智慧能源大数据云平台建设方案
目录页
CONTENTS PAGE
项目背景与挑战
大数据平台体系架构
大数据平台功能介绍
大数据平台核心优势
01
项目背景与业务挑战
现状分析 政策背景 平台趋势 平台技术 解决之道 平台优势 平台特点 战略地位
能源大数据云平台解决方案
商业建筑—能源管理平台
所有能源工作开展的前置条件 确定节能方向和验证节能效果的重要决策依据 未来的能源管理服务VS云服务(成本、效率)
能源大数据云平台解决方案
01
智慧能源管理平台—物联网数据服务平台技术
物联网
水、电、气、温度、压力等传感器的快速发展,成本降低,性能提高 LORA和NB-IOT解决15~20KM的LPWAN需求 移动互联网和M2M物联网的组网技术成熟,催生高效解决方案
绿色建筑分项计量,可再生资源利用
智能城市节能评估管理要求
国外
欧盟在2020年要达到3个20%的节能减排目标(相对于1990年减少20%的二氧化碳排放量,节约20%的能源小号,增加 可再生资源使用率) 高能耗楼宇能源管理平台和能源审计已经立法
能源大数据云平台解决方案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设施的“即插即用”与“双向传输”,
大幅提升可再生能源、分布式能源及多 元化负荷的接纳能力
2、建设能源互联网的主要任务
(端 促进智能终端及接入设施的普及应用 自动交互终端 统一的能量接口 规范化的组网结构与信息接口
加强能源系统与信息系统基础设施的一体化建设 推进能源互联网通信基础设施建设 优化网络布局、推进多网络深度融合
互补化
交易
横向多源互补
• 横向多源互补”指电力系统、煤炭、石油
自由化
系统、供热系统、天然气供应系统等多种
扁平化
供需 分散化
数据
支撑
能源资源系统之间的互补协调,突出强调 各类能源之间的“可替代性/互补性”
纵向源-网-荷-储协调
• 实现能源资源的开发利用和资源运输网络、 能量传输网络之间的相互协调; • 实现电力需求侧管理进一步扩大化成为全 能源领域的“综合用能管理”
信息 对称化
透明化
2、能源互联网的层次划分
发展层次
能源互联网
智慧城市
多能源耦合的区 域能源互联网
发展趋势
能源互联网利用 ICT 技术实现各类能量单元的 协调运行 未来能源互联网的建设应该是以电力系统为核 心的 能源互联网绝不是单纯的电力互联网 ,应该是 多类型能源网络的高度耦合,能够实现不同类 型能源的综合优化。以智能电网为主要技术支 撑的电力互联网将会成为能源互联网的资源配 置中心和枢纽 能源互联网的发展趋势一定是在当前智能电网 或者电力互联网的基础上,向综合能源系统以 及综合能源交易的方向发展,实现各类型能源 网络的互联互通和资源的整体优化配置
二、能源互联网行动计划解析
1
建设能源互联网的指导思想与基本原则
2
建设能源互联网的主要任务
3
建设能源互联网的政策机制及保障措施
1、建设能源互联网的指导思想与基本原则
指导思想
适应和引领经济社会发展新常态,着眼能源产业
全局和长远发展需求;
以改革创新为核心,以“互联网+”为手段,以智 能化为基础,以适应绿色、低碳发展为重点;
定位 能源互联网是推动我国能源革命的重要战略支撑,对适应可再生能源规模 化发展,提升能源开发利用效率,推动能源市场开放和产业升级,形成新 的经济增长点,提升能源国际合作水平具有重要意义。
3、能源互联网的定义与定位
能源互联网是我国进行能源革命的技术支撑平台
能源互联网将推动能源 生产革命
新型商业模式 降低能源市场的准入门槛 能源消费者可以同时成为 能源生产者
信息流
能够充分反映能源网络运行的物理和信息过程, 体现两者融合机理和相互作用机制。 CPS 系统 构建能够使信息流逐步引导控制能量流,利用 多能量流 能源大数据,更好地发挥能源互联网中的系统 信息价值 对区域内不同规模的电力、燃料以及供热系统等能 源网络从规划和运行两个层面进行优化。形成一个 洲际的多能源互联系统,为终端用户提供不同类型 的能源服务,推动能源系统与经济社会中其他系统 的整合
综合能源系统
能源互联网基本架构
3、能源互联网的定义与定位
定义 能源互联网是一种互联网与能源生产、传 输、存储、消费以及能源市场深度融合的 能源产业发展新形态,具有设备智能、多 能协同、信息对称、供需分散、系统扁平 、交易开放等特征。
能源互联网
横向多能源体互补, 纵向源-网-荷-储协调
能量、信息、价值 的合理、高效流动
促进信息和能源深度融合,推动能源互联网新技
术、新模式和新业态发展,支撑和引领能源革命,为 实现我国从能源大国向能源强国转变和经济提质增效 升级奠定坚实基础。
1、建设能源互联网的指导思想与基本原则
基础开放
发挥互联网在变革能源产业中的基础平台作用, 营造开放公平的发展环境。 以适应分布式可再生能源发展为重点,促进小微 企业与个人、家庭等参与能源交易。 营造开放包容的创新环境,鼓励多样化的技术、 机制及模式创新,形成万众创新良好氛围。 发挥市场在资源配置中的决定性作用,驱动人才、 资金、资源、技术等要素的流通与集聚。 发挥试点项目的示范带动作用,建立健全试点容 错机制,及时总结推广试点经验。 适应能源互联网新业态及大数据应用发展要求,创 新能源与信息深度融合下的安全监管和市场监管机 制。
能源互联网将推动能 源消费革命 能源互联网将推动 提高 能源体制革命 用能效率提升
用户的用能智能化水平
能源互联网是能源革命 售电侧市场放开 成本降低 培育多元化市场主体 的标志性技术
广域电力网络互联技术 形成有序竞争的市场 实现多元化用能 体系 更多的自主选择权 多能源融合与储能技术 能源路由器技术 用户侧自动响应技术 电动交通及其与电网的交 互技术
大众参与
基 本 原 则
探索创新 市场驱动 示范先行 科学监管
2、建设能源互联网的主要任务
(1)建设能源生产消费智能化基础设施
推动可再生能源智能化生产和联网交易设施建设
1 2
推进化石能源清洁高效 智能化生产设施建设
5、解析源互联 推动集中与分布式储能 网如何推动能源 革命 3
基础设施建设
加快能源消费智能化设施建设
互联网+智慧能源大数据解决方案
C
目录 ONTENTS 01 02 03
能源互联网的内涵与定位 能源互联网解决方案 能源互联网大数据应用
一、能源互联网的内涵与定位
1
能源互联网的基本特征
2
能源互联网发展的层次划分
3
能源互联网的定义与定位
1、能源互联网的基本特征
微观特征 宏观特征
设备 智能化 系统
能量
4
2、建设能源互联网的主要任务
(2)建设多能协同综合能源网络设施
推进综合能源网络的基础设施建设 建设以智能电网为基础,与热力
促进能源接入转化与协同调控基础设施
管网、天然气管网、交通网络等多
种类型网络互联互通,多种能源形 态协同转化的综合能源网络
建设
推动不同能源网络接口设施的标准化、 模块化建设,支持各种能源生产、消费
智能电网 智能微网
2、能源互联网的层次划分
运营机制与商业模式
信息流 物理以及信息网络支撑着分散化的能源交易,信 息流和能量流影响能源互联网中能量价值。商业 模式的创新,赋予能源互联网在市场层面开放兼 容的体系架构,使得能源互联网在物理层面所具 有的开放兼容的特性能够在价值层面有所反映
价值流
信息物理系统(CPS)