17.2 勾股定理的逆定理(二)教案 【新人教版八年级下册数学】
17.2勾股定理的逆定理(优质课)优秀教学设计

《17.2勾股定理的逆定理》教学设计Y qzx Bmm【内容和教材分析】内容教材第31-33页,17.2勾股定理的逆定理.教材分析“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面只是的继续和深化.勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一.【教学目标】知识与技能1.理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理.2.理解原命题、逆命题、逆定理的概念关系.3.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形.过程与方法1.通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成过程.2.通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用.3.通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题.情感、态度与价值观1.通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系.2.在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神.【教学重难点及突破】重点1.勾股定理的逆定理及运用.2.灵活运用勾股定理的逆定理解决实际问题.难点1.勾股定理的逆定理的证明.2.说出一个命题的逆命题及辨别其真假性.【教学突破】1.勾股定理的逆定理的题设实际上是给出了三条边的条件,其形式和勾股定理的结论形式一致.证明在此条件下的三角形是一个直角三角形,需要构造直角三角形才能完成,构造直角三角形是解决问题的关键.可以从特例推向一般,设置两个动手操作问题.2.勾股定理的逆定理给出的是判定一个三角形是直角三角形的方法,和前面学过的一些判定方法不同,它通过计算来做判断.3.几何中有许多互逆的命题、互逆的定理,它们从正反两个方面揭示了图形的特征性质,所以互逆命题和互逆定理是几何中的重要概念.对互逆命题、互逆定理的概念,理解它们通常困难不大.但对那些不是以“如果……那么……”形式给出的命题,叙述它们的逆命题有时就会有困难,可以尝试首先把命题变为“如果……那么……”.4.勾股定理的逆定理可以解决生活中的许多问题.在解决实际问题时,常先画出图形,根据已知条件计算出各边长,再利用勾股定理的逆定理判断三角形是否是直角三角形,再回答问题.【教学设计】一、复习导入师:上一节课我们学习了勾股定理,请同学们回忆一下:勾股定理的内容是什么?生:如果直角三角形的两条直角边为a、b,斜边为c,那么三边满足的关系为a2+b2=c2.师:勾股定理反映了直角三角形三边间的数量关系,即直角边为a,b斜边为c,则三边满足a2+b2=c2(带领学生集体复习勾股定理).思考:勾股定理的题设、结论分别是什么? 生:题设为直角三角形的两条直角边长分别为a、b,斜边为c,结论为a2+b2=c2师:如果把勾股定理的题设、结论交换一下位置,即如果三角形的三边长a,b,c 满足a2+b2=c2,那么这个三角形是否是直角三角形?本节课我们一起来研究这个问题.板书课题:17.2勾股定理的逆定理设计意图:通过对前面所学知识的归纳总结,联想到用三边的关系是否可以判断一个三角形为直角三角形,自然地引出勾股定理的逆定理.二、教学新知1.发现勾股定理的逆定理.观察发现:师生共同学习古埃及人画直角的方法:把一根长绳打上等距离的13 个结,然后以3 个结间距,4 个结间距、5 个结间距的长度为边长,用木桩钉成一个三角形,其中一个角便是直角。
初二数学勾股定理的逆定理2[人教版]
![初二数学勾股定理的逆定理2[人教版]](https://img.taocdn.com/s3/m/a5cdc6a96bec0975f465e2c9.png)
F为DC BC.
【证明】设正方形ABCD的边长为4a, A
D
则EC=a,BE=3a,CF=DF=2a.
F
在Rt△ABE中,由勾股定理得
AE 2=AB 2+BE 2=(4a)2+(3a)2=25a2. B
EC
在Rt△ADF中,由勾股定理得
AF 2=AD2+DF 2=(4a)2+(2a)2=20a2.
在Rt△ECF中,由勾股定理得
练习
1.已知:a=m2-n2,b=2mn,c=m2+n2 (m、n为正整数,m>n). 试判定由a、b、c组成的三角形是不是直 角三角形.
不是
(二)解答题:
练习
2.五边形ABCDE的各边的长都是12, ∠A=∠E=90°,M为五边形内一 点,且MA=13,MB=5, 求ME、MC、MD的长.
ME= 193
A 4B
AD2=132=169,
∴ AC2+CD2=AD2.
∴∴∴SS△S△四△A边ACADB形CC=AD=B是C21D21直AAC=角B·C·SB三△DCA=角B=C21形+21×.S×△5A×3C×D1=24==3636.0,.
四 、新课
例4
求已中证知点::,∠如E为E图FBA,C=上正9一0方°点形. ,AB且CDEC中=,14
例2 已知△ABC中,AC=2 6 ,BC=2 2 , AB=4 2 , 求AB上的高CD的长.
【解】由于(2 6)2 (2 2 )2 24 8 32 (4 2 )2 ,
所以△ABC是以∠C为直角的三角形.于是
1 2
AB·CD=
1 2
BC·AC,
CD 2 6 2 2 6 42
三 、引入
一般地说,在平面几何中,经常是利 用直线间的位置关系,角的数量关系而判 定直角的;而勾股定理的逆定理则是通过 边的计算判定直角的. 三角形的三边长a、 b、c有关系a2+b2=c2,则这个三角形是 直角三角形;如果a2+b2 ≠c2,则这个三 角形不是直角三角形.
八年级数学下册 17.2 勾股定理的逆定理教案 (新版)新人教版

17.2 勾股定理的逆定理一、教学目的1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。
2.探究勾股定理的逆定理的证明方法。
3.理解原命题、逆命题、逆定理的概念及关系。
二、重点、难点1.重点:掌握勾股定理的逆定理及证明。
2.难点:勾股定理的逆定理的证明。
三、例题的意图分析例1(补充)使学生了解命题,逆命题,逆定理的概念,及它们之间的关系。
例2通过让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,锻炼学生的动手操作能力,再通过探究理论证明方法,使实践上升到理论,提高学生的理性思维。
例3(补充)使学生明确运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大。
②分别用代数方法计算出a2+b2和c2的值。
③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形。
四、课堂引入创设情境:⑴怎样判定一个三角形是等腰三角形?⑵怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想。
五、例习题分析例1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗?⑴同旁内角互补,两条直线平行。
⑵如果两个实数的平方相等,那么两个实数平方相等。
⑶线段垂直平分线上的点到线段两端点的距离相等。
⑷直角三角形中30°角所对的直角边等于斜边的一半。
分析:⑴每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用。
⑵理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假。
解略。
例2证明:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形。
分析:⑴注意命题证明的格式,首先要根据题意画出图形,然后写已知求证。
⑵如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角。
勾股定理逆定理的应用(教案)【2023春人教版八下数学优质备课】

17.2.2勾股定理逆定理的应用核心素养目标:1.应用勾股定理的逆定理判断一个三角形是否是直角三角形;2.灵活应用勾股定理及逆定理解综合题;3.进一步加深性质定理与判定定理之间关系的认识。
教学重难点:重点:进一步理解勾股定理的逆定理;难点:勾股定理逆定理的灵活应用;教学过程:一、复习导入1.我们已经学习了勾股定理及其逆定理,你能叙述吗?2.你能用勾股定理及其逆定理解决哪些问题?二、互助探究探究点一:利用勾股定理的逆定理解答角度问题例题讲解:例1如图,某港口P位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后分别位于Q、R处,且相距30海里,如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?探究点二:利用勾股定理的逆定理解答面积问题例2已知:如图,四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.跟踪练习:如图,有一块地,已知,AD=4m,CD=3m,∠ADC=90°,AB=13m,BC=12m.求这块地的面积.探究点三:利用勾股定理的逆定理解答检测问题例3 如图,是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现AB=DC=8m,AD=BC=6m,AC=9m,请你运用所学知识帮他检验一下挖的是否合格?跟踪练习:一个零件的形状如图所示,按规定这个零件中∠A和∠DBC都应为直角,工人师傅量得这个零件各边的尺寸如图所示,这个零件符合要求吗?三、课堂小结1.利用勾股定理逆定理求角的度数2.利用勾股定理逆定理求线段的长3.利用勾股定理逆定理解决实际问题四、课堂检测1.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()A.4B.6C.16D.552. 如图,△ABC的顶点A,B,C,在边长为1的正方形方格的格点上,BD⊥AC于点D,则BD的长为()A. 23√5 B. 34√5 C. 45√5 D.56√53. 医院、公园和超市的平面示意图如图所示,超市在医院的南偏东25°的方向,且到医院的距离为300m,公园到医院的距离为400m.若公园到超市的距离为500m,则公园在医院的北偏东的方向.4.如图,等边三角形的边长为6,则高AD的长是;这个三角形的面积是 .5. 如图,矩形ABCD中,AB=8,BC=6,将矩形沿AC折叠,点D落在E处,则重叠部分△AFC的面积是多少?五、课后作业必做题:教材习题17.2第4题.选做题:教材习题17.2第12、13、14题.。
2022年人教版八年级下册《勾股定理的逆定理》公开课教案

17.2 勾股定理的逆定理教学目标【知识与技能】1.理解勾股定理的逆定理的证明方法,能证明勾股定理的逆定理.2.能用勾股定理的逆定理判别一个三角形是否是直角三角形,并能用它解决实际问题. 【过程与方法】在探索勾股定理的逆定理及其证明方法和运用勾股定理逆定理解决具体问题的过程中,进一步体验数形结合的思想,增强分析问题、解决问题的能力.【情感态度】1.通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系;2.进一步增强与他人交流合作的意识和探究精神.教学重难点【教学重点】勾股定理的逆定理及其应用.【教学难点】勾股定理的逆定理的证明.课前准备无教学过程一、情境导入,初步认识问题〔1〕勾股定理的内容是怎样的?〔2〕求以线段a,b为直角边的直角三角形的斜边c的长:①a=3,b=4;②a=2.5,b=6;③a=4,b=7.5.〔3〕想一想:分别以〔2〕中a、b、c为三边的三角形的形状会是怎样的?【教学说明】教师提出问题后,学生自主探究,相互交流获得结论,最后教师针对问题〔2〕、〔3〕提醒学生注意它们各自特征,其中〔2〕是由形获得数量关系,而〔3〕是由数量关系得到形的特征,为勾股定理的逆定理的引入作铺垫.二、思考探究,获取新知探究1 画出三边长分别为3cm、4cm和5cm,2.5cm、6cm和6.5cm,4cm、7.5cm和8.5cm 的三个三角形,用量角器测出较大角的度数,你有什么发现?你能解释其原因吗?【教学说明】将全班同学分成三个小组,分别画出上述三个三角形,然后相互交流,教师巡视,指导并帮助有困难同学画出尽可能准确的图形,从而形成对勾股定理的逆定理的感性认识.猜测如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.探究2 〔1〕三边长分别为3,4,5的三角形与以3,4为直角边的直角三角形的三边关系如何?你是怎样得到的?简要说明理由.〔2〕你能否受〔1〕启发,说明分别以2.5cm、6cm、6.5cm和4cm、7.5cm、8.5cm为三边长的三角形也是直角三角形呢?〔3〕如图,假设△ABC的三边a、b、c满足a2+b2=c2,试证明△ABC是直角三角形,请简要地写出证明过程.【教学说明】教师应引导学生利用问题〔1〕、〔2〕的思路完成问题〔3〕的证明,得出勾股定理的逆定理,在这期间,教师顺势给出原命题、逆命题、逆定理的概念,最后师生共同给出逆定理的证明过程,在黑板上展示〔也可通过多媒体展示〕,从而帮助学生获得正确认知.证明:如图,画Rt△A′C′B′,使A′C′=b,B′C′=a,∠A′C′B′=90°.∴在Rt△A′C′B′中,有A′B′2=B′C′2+A′C′2=a2+b2.又a2+b2=c2,∴A′B′2=c2,∴A′B′=c.∴△ABC≌△A′B′C′,∴∠ACB=∠A′C′B′=90°,即△ABC是直角三角形.三、典例精析,掌握新知例1判断由线段a,b,c组成的三角形是不是直角三角形:〔1〕a=15,b=8,c=17;〔2〕a=13,b=14,c=15.【教学说明】本例可由学生自己独立完成,教师巡视指导,应关注学生是否是利用两短边的平方和与最长边的平方进行比拟.例2某港口位于东西方向的海岸线上,“远航〞号、“海天〞号轮船同时离开港口,各自沿一固定方向航行,“远航〞号每小时航行16海里,“海天〞号每小时航行12海里,它们离开港口一个半小时后相距30海里,如果知道“远航〞号沿东北方向航行,能知道“海天〞号沿哪个方向航行吗?【分析】由题意,可画出示意图如下图,易知PQ=16×32=24,PR=12×32=18,又RQ=30.∵242+182=576+324=900,RQ2=900,∴PR2+PQ2=RQ2,故以P、Q、R为顶点的三角形是直角三角形,由“远航〞号沿东北方向航行,故易知“海天〞号沿西北方向航行.例3说出以下命题的逆命题,这些命题的逆命题成立吗?〔1〕两条直线平行,内错角相等;〔2〕如果两个实数相等,那么它们的绝对值相等.【分析】如果一个命题的题设和结论是另一个命题的结论和题设,那么这两个命题是互逆命题,从而可得〔1〕、〔2〕的逆命题分别为“内错角相等,两直线平行〞,“如果两个实数的绝对值相等,那么这两个数相等〞,且〔1〕中的逆命题是真命题,〔2〕中的逆命题是假命题.四、运用新知,深化理解1.如果三条线段a、b、c满足a2=c2-b2,这三条线段组成的三角形是不是直角三角形?为什么?2.说出以下命题的逆命题,这些命题的逆命题成立吗?〔1〕全等三角形的对应角相等;〔2〕角的内部到角的两边距离相等的点在角的平分线上.【教学说明】学生自主探究,寻求结论,教师巡视,及时指导,让学生在练习过程中加深对知识的领悟.【答案】1.是直角三角形,由勾股定理的逆定理可得.2.〔1〕逆命题为对应角相等的三角形全等,该逆命题不成立.〔2〕逆命题为角平分线上的点到角的两边距离相等.该逆命题成立.五、师生互动,课堂小结谈谈这节课你的收获有哪些?还有哪些疑问?与同伴交流.课后作业1.布置作业:从教材“〞中选取.2.完成练习册中本课时练习.教学反思本课时的教学目标是在掌握了勾股定理的根底上,让学生如何从三边的关系来判定一个三角形是否为直角三角形,即“勾股定理的逆定理〞.由于学生对此在理解上可能有些困难,因此教学时可以实行分层教学,让不同水平的学生在同一课堂都能学好,为此,可设计三个层次的问题,以到达分层教学目标:第一层次是让学生直接运用定理判断三角形是否是直角三角形,掌握定理的根本运用;第二层次是强调三角形三边长或三边关系,再判断三角形是否是直角三角形,这样既稳固了勾股定理的逆定理的应用,又为下一个层次做好了铺垫;第三层次是灵活运用勾股定理及其逆定理解决图形面积的计算问题.根据学生原有的认知结构,让学生更好地体会分割的思想.教案中设计的题型前后照应,使知识有序推进,有助于学生的理解和掌握,让学生通过合作、交流、反思、感悟的过程,激发学生探究新知的兴趣,感受探索、合作的乐趣,并从中获得成功的体验,真正表达学生是学习的主人.第2课时教学目标:1、了解几何体、平面和曲面的意义,能正确判定围成几何体的面是平面还是曲面;了解几何图形构成的根本元素是点、线、面、体及其关系,能正确判定由点、线、面、体经过运动变化形成的简单的几何图形。
勾股定理的逆定理(2)

勾股定理的逆定理(2)教学目标:1、能使用勾股定理的逆定理解决简单的实际问题。
2、经历将实际问题转化为敷学模型的过程,体会用勾股定理的逆定理解决实际问题的方法,发展学生的应用意识。
3、在解决实际问题的过程中,体验解决问题的策略,发展学生的实践水平和创新精神。
教学重点:使用勾股定理的逆定理解决实际问题.教学难点:将实际问题转化成用勾股定理的逆定理解决的数学问题.一、判断由线段a、b、c组成的三角形是不是直角三角形.(1)a=15,b=8,c=17;(2)a=13,b=14,c=15;(3)求证:m2-n2,m2+n2,2mn(m>n,m,n是正整数)是直角三角形的三条边长.二、如下列图所示是一尊雕塑的底座的正面,李叔叔想要检测正面的AD边和BC边是否垂直于底边AB,但他随身只带了卷尺.(1)你能替他想想办法完成任务吗?(2)李叔叔量得AD的长是30厘米,AB的长是40厘米,BD的长是50厘米,AD边垂直于AB边吗?(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?教案一、先由学生自主独立思考学案中的问题,然后分组讨论,交流各自的想法.在此活动中,教师重点注重学生:①能否独立思考,寻找解决问题的途径.②能否积极主动地参加小组活动,与小组成员充分交流,且能静心听取别人的想法.③能否由此活动,激发学生学习数学的兴趣.二、例题:“远航”号,“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里,假如知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?教师先鼓励学生根据题意画出图形,然后小组内交流讨沦,教师巡视,对有困难的学生启示,协助他们寻找解题的途径.在此活动中,教师重点注重学生:①能否根据题意画出图形.②能否积极主动地参与活动.③是否充满信心解决问题.解:根据题意画出下列图PQ=16×1.5=24,PR=12×1.5=18,QA=30.因为242+182=302,即PQ2+PR2=QR2所以∠QPR=90°由“远航”号沿东北方向航行可知,∠QPS=45°,所以∠RPS=45°,即“海天”号沿西北或东南方向航行。
人教版八年级数学下册:17.2勾股定理的逆定理说课稿
1.启发式教学:通过提问和引导,激发学生的思维,促使他们主动探索和发现知识;
2.探索式教学:通过设计探究活动和问题情境,让学生在实践中学习和体验知识;
3.互动式教学:通过小组讨论和合作学习,促进生生之间的交流和思维碰撞。
选择这些方法的理论依据是:启发式教学能够培养学生的独立思考和创新能力,探索式教学有助于学生形成深刻的理解和记忆,互动式教学能够提高学生的社会交往能力和团队合作精神。
3.定期进行自我反思,总结教学中的成功和不足,不断优化教学设计和实施策略。
(三)互动方式
我计划以下设计师生互动和生生互动的环节:
1.师生互动:
-在讲解勾股定理逆定理时,我会提问学生相关的问题,如“你们认为逆定理是什么意思?”来检查学生的理解;
-在证明过程中,我会邀请学生上台演示,并提供反馈和建议;
-在课堂结束时,我会进行小结,并鼓励学生提出疑问。
2.生生互动:
-我会组织学生进行小组讨论,共同探索逆定理的证明方法;
(二)教学反思
在教学过程中,可能预见的问题或挑战包括:
1.学生对逆定理的理解可能不够深入,容易混淆;
2.学生在证明过程中可能遇到逻辑推理的困难;
3.学生可能难以将逆定理应用到实际问题中。
我将通过以下方式应对这些问题:
1.在讲解时,我会使用直观的例子和生活情境,帮助学生理解逆定理;
2.我会引导学生逐步完成证明,并提供必要的提示和支持;
5.最后,我会总结逆定理的核心要点,并强调其在数学学习中的重要性。
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
1.基础练习:设计一些填空题和选择题,让学生独立完成,以检验他们对逆定理基本概念的理解;
初中数学人教版八年级下册17.2《勾股定理的逆定理》教案
三、教学难点与重点
1.教学重点
-核心内容:勾股定理的逆定理及其应用。
-重点讲解:
-逆定理的定义:如果一个三角形的
-逆定理的证明:通过几何图形或代数方法,让学生理解并掌握逆定理的证明过程。
最后,我觉得课堂总结环节很重要,通过回顾本节课的学习内容,学生们可以更好地梳理知识点,形成系统化的认识。同时,我也鼓励学生在课后积极思考,将所学知识运用到生活中,提升他们的数学素养。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《勾股定理的逆定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过判断一个三角形是否为直角三角形的情况?”(如测量墙壁角度等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理逆定理的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理逆定理的定义和应用这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理逆定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示勾股定理逆定理的基本原理。
五、教学反思
在今天的勾股定理逆定理教学中,我发现学生们对这个定理的理解和应用存在一定的难度。首先,他们在理解逆定理的定义上遇到了挑战,需要通过具体的例子和图形来帮助理解。在讲授过程中,我尽量用简单的语言和直观的演示来解释,希望这样能让学生更好地消化吸收。
在实践活动环节,分组讨论和实验操作的部分学生们表现得相当积极。他们通过讨论和实际操作,对逆定理的应用有了更深的认识。然而,我也注意到有些学生在操作过程中还是有些迷茫,可能是因为他们对定理的理解还不够深入,或者是实验操作不够熟练。
人教版八年级数学下《17.2 勾股定理的逆定理 原(逆)命题、原(逆)定理》优质课教学设计_9
.17.2勾股定理的逆定理1.会理解并判断勾股数,掌握勾股定理的逆定理,并能灵活应用逆定理判定一个三角形是否为直角三角形.1.通过对勾股定理的逆定理的探索,经历知识发生、发展和形成的过程.2.通过用三角形的三边的数量关系来判断三角形的形状,体验数形结合方法的应用.1.通过用三边之间的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐辩证统一的关系.2.在对勾股定理的逆定理的探索中,培养了学生的交流、合作的意识和严谨的学习态度,同时感悟勾股定理和逆定理的应用价值.【重点】勾股定理的逆定理的应用.【难点】勾股定理的逆定理的证明.【教师准备】教学中出示的教学插图和例题.【学生准备】三角板、绳子.学生利用准备好的绳子,以小组为单位动手操作,观察,做出合理的推断.[设计意图]介绍前人经验,启发思考,使学生意识到数学来源于生活,同时明确了本节课研究的问题,既实行了数学史的教育,又锻炼了学生动手实践、观察探究的水平.导入二:你能说出勾股定理吗?并指出定理的题设和结论.学生独立回忆勾股定理,师生共同分析得出其题设和结论,教师引导指出勾股定理是从形的特殊性得出三边之间的数量关系.追问:你能把勾股定理的题设与结论交换得到一个新的命题吗?师生共同得出新的命题,教师指出其为勾股定理的逆命题.追问:“如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.”能否把它作为判定直角三角形的依据呢?本节课我们一起来研究这个问题.[设计意图]通过对前面所学知识的归纳总结,自然合理地引出勾股定理的逆定理.1.勾股定理的逆定理思路一①如果改变一下三条边的结数,是否还能摆放出同样形状的三角形吗?②画图看一看,三角形的三边长分别为2.5 cm,6 cm,6.5 cm,观察三角形的形状.再换成4 cm,7.5 cm,8.5 cm试试看.③三角形的三边具有怎样的关系,才得到上面同样的结论?教师根据学生的思考结果,对第③个问题总结归纳,提出猜想:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.[设计意图]由特殊到一般,归纳猜想出“如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形就为直角三角形”的结论,培养学生动手操作水平和寻求解决数学问题的一般方法.思路二下面的三组数分别是一个三角形的三边长a,b,c.5,12,13;7,24,25;8,15,17.①这三组数都满足a2+b2=c2吗?②分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?学生以小组为单位,按给出的三组数作出三角形,得出结论:①这三组数都满足a2+b2=c2;②以每组数为边长作出的三角形都是直角三角形.师生进一步通过实际操作,猜想结论:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.[设计意图]本活动通过让学生按已知数据作出三角形,并测量三角形三个内角的度数来进一步获得一个三角形是直角三角形的相关边的条件,猜想得出结论.学生独立思考回答问题,命题1的题设是直角三角形的两直角边长分别为a,b,斜边长为c,结论是a2+b2=c2;命题2的题设是三角形的三边长a,b,c满足a2+b2=c2,结论是这个三角形是直角三角形.教师引导学生分析得出这两个命题的题设和结论正好是相反的.归纳出互逆命题概念:两个命题的题设和结论正好相反,像这样的两个命题叫做互逆命题,如果其中一个叫原命题,那么另一个就叫做它的逆命题.提问:请同学们举出一些互逆命题,并思考:原命题准确,它的逆命题是否也准确呢?举例说明.学生分组讨论合作交流,然后举手发言,教师适时记下一些互逆命题,其中既包含有原命题、逆命题都成立的互逆命题,也包括原命题成立逆命题不成立的互逆命题.如:①对顶角相等和相等的角是对顶角;②两直线平行,内错角相等和内错角相等,两直线平行;③全等三角形的对应角相等和对应角相等的三角形是全等三角形.追问:在大家举出的互逆命题中原命题和逆命题都成立吗?学生举手发言回答,另一学生纠错.同时教师引导学生明确:①任何一个命题都有逆命题.②原命题准确,逆命题不一定准确;原命题不准确,逆命题可能准确.③原命题与逆命题的关系就是命题中题设与结论“互换”的关系.[设计意图]让学生在合作交流的基础上明确互逆命题的概念,在互动的过程中掌握互逆命题的真假性是各自独立的.这个三角形是直角三角形”吗?教师引导学生分析命题的题设及结论,让学生独立画出图形,写出已知和求证.已知:如图所示,△ABC中,AB=c,AC=b,BC=a,且a2+b2=c2.求证:∠C=90°.追问:要证明△ABC是直角三角形,只要证明∠C=90°,由已知能直接证吗?教师引导,如果能证明△ABC与一个以a,b为直角边长的Rt△A'B'C'全等.那么就证明了△ABC是直角三角形,为此,能够先构造Rt△A'B'C',使A'C'=b,B'C'=a,∠C'=90°,再让学生小组讨论得出证明思路,证明了猜想的准确性.教师适时板书出规范的证明过程.证明:如图所示,作直角三角形A'B'C',使∠C'=90°,B'C'=a,A'C'=b,由勾股定理得A'B'===c,∴A'B'=AB,B'C'=BC,A'C'=AC,∴△ABC≌△A'B'C',∴∠C=∠C'=90°,∴△ABC是直角三角形.教师在此基础上进一步指出,如果一个定理的逆命题经过证明是准确的,那么它也是一个定理,我们把上面所形成的这个定理叫做勾股定理的逆定理,称这两个定理为互逆定理.[设计意图]引导学生用图形和数学符号语言表示文字命题,构造直角三角形,让学生体会这种证明思路的合理性,协助学生突破难点.2.例题讲解(教材例1)判断由线段a,b,c组成的三角形是不是直角三角形:(1)a=15,b=8,c=17;(2)a=13,b=14,c=15.学生独立完成,教师适时指导,并规范地书写解题过程.在此活动中,教师协助学生分析得到:要判断一个三角形是不是直角三角形,可根据勾股定理及其逆定理,关键是对两条较小边长的平方和与最大边长的平方实行比较,只有相等时才是直角三角形.解:(1)因为a2+b2=152+82=289,c2=172=289,所以152+82=172,根据勾股定理的逆定理,这个三角形是直角三角形.(2)因为a2+b2=132+142=365,c2=152=225,所以132+142≠152,(1)3,4,;(2)6,8,;(3)7,24,;(4)5,12,;(5)9,12, .[设计意图]通过练习,学会使用勾股定理逆定理判断一个三角形是否为直角三角形.[知识拓展]勾股定理的逆定理是直角三角形的判定方法之一,利用它判定是否为直角三角形的一般步骤:①确定最大边长c;②计算a2+b2和c2的值,若a2+b2=c2,则此三角形是直角三角形;若a2+b2<c2,则此三角形是钝角三角形;若a2+b2>c2,则此三角形是锐角三角形.(教材例2)某港口P位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16 n mile,“海天”号每小时航行12 n mile.它们离开港口一个半小时后分别位于点Q,R处,且相距30 n mile.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?引导学生认真审题,弄清已知是什么,解决的问题是什么.学生通过思考举手回答,教师在黑板上列出:已知两艘轮船的航速,它们的航行时间以及相距的路程,“远航”号的航向——东北方向;解决的问题是“海天”号的航向.引导学生尝试画图,教师在黑板上或多媒体中画出示意图.引导学生分析:图中的E,N分别表示东、北两个方向.要求出“海天”号的航行方向,只要求出∠RPQ的度数,而∠1=45°,利用角的和差得出∠2的度数.解:根据题意,由已知得PQ=16×1.5=24,PR=12×1.5=18,QR=30.因为242+182=302,即PQ2+PR2=QR2,所以∠QPR=90°,由“远航”号沿东北方向航行可知∠1=45°,所以∠2=∠QPR-∠1=45°,即“海天”号沿西北方向航行.[设计意图]学生在规范化的解答过程及练习中,提升对勾股定理逆定理的理解以及实际应用的水平.师生共同回顾本节课所学主要内容:(1)已知一个三角形的三边长,利用勾股定理的逆定理来判定这个三角形是不是直角三角形.(2)一个命题一定有逆命题,一个定理不一定有逆定理.(3)三个数满足勾股数的两个条件:①三个数必须满足较小的两个数的平方和等于最大的一个数的平方;②三个数必须都是正整数.(4)解题时,注意勾股定理与其逆定理的区别.勾股定理是在直角三角形中使用的,而勾股定理的逆定理是判断一个三角形是不是直角三角形的.1.(2019·毕节中考)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是 ()A.,,B.1,,C.6,7,8D.2,3,4解析:A中,()2+()2≠()2,不能构成直角三角形,故错误;B中,12+()2=()2,能构成直角三角形,故准确;C中,62+72≠82,不能构成直角三角形,故错误;D中,22+32≠42,不能构成直角三角形,故错误.故选B.2.若△ABC的三边长a,b,c满足(a-b)(a2+b2-c2)=0,则△ABC是 ()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形解析:根据题意可得a=b或a2+b2-c2=0,所以△ABC可能为等腰三角形,也可能为直角三角形.故选C.3.下列说法中准确的有 ()(1)在一个三角形中,如果一边上的中线等于这条边的一半,那么这条边所对的角是直角;(2)命题“在一个三角形中,有一个角是30°,那么它所对的边是另一边的一半”的逆命题是真命题;(3)勾股定理的逆定理是:如果两条直角边长的平方和等于斜边长的平方,那么这个三角形是直角三角形;(4)△ABC的三边之比是1∶1∶,则△ABC是直角三角形.A.1个B.2个C.3个D.4个解析:(1)准确,(2)错误,(3)错误,(4)准确,故有两个说法是准确的.故选B.4.如图(1)所示的是一块地,已知AD=4 m,CD=3 m,AD⊥DC,AB=13 m,BC=12 m,求这块地的面积.解:如图(2)所示,连接AC.∵AD⊥DC,∴在Rt△ACD中,AD2+CD2=AC2,∴AC===5(m).∵AC2+BC2=52+122=132=AB2,∴△ABC为直角三角形,∴这块地的面积为S=S△ABC-S△ACD=AC·CB-AD·DC=×5×12-×3×4=24(m2).17.2勾股定理的逆定理1.勾股定理的逆定理(1)归纳猜想(2)原命题、逆命题(3)勾股定理的逆定理的证明2.例题讲解例1例2一、教材作业【必做题】教材练习第33页第1,2,3题;教材第34页习题17.2第1,2,3,4题.【选做题】教材第34页习题17.2第7题.本节课以“提出问题——解决问题”为主线,以学生的自主探索学习为中心,从解决问题的完成情况看,知识目标完全达到,水平目标基本实现,情感目标基本实现.在本节课教学中,充分发挥学生在教学中的主体作用,教师不能一味地“讲知识”,而是应用启发式的原则,给学生指明学习目标和方向,让学生去自主探究,注重了知识上的即时巩固,也侧重了学生各方面的素质的培养.在重难点的突破上,还应加一些递进的习题,降低题的难度,使优生学好,中等生也能跟上.同时,缺少了板书示范,不利于学生养成良好的书写习惯.。
人教版八年级数学下册---《勾股定理的逆定理》教案设计
人教版八年级数学下册---《勾股定理的逆定理》教案设计新课一、证明勾股定理的逆定理1.请大家自行分析命题的题设、结论,画出图形,写出已知和求证并证明.已知:ABC∆的三边长分别,,a b c满足222a b c+=.求证:ABC∆是直角三角形.证明:画Rt'''A B C∆,使''B C a=,''A C b=,'90C∠=︒.2222''''''Rt ABCA B B C A C a b∆=+=+在中,222a b c+=,2''A B c c∴==.'''ABC A B C∴∆∆在和中,''''''AB c A BBC a B CAC b A C==⎧⎪==⎨⎪==⎩'''.ABC A B C∴∆≅∆'90.C C∴∠=∠=︒ABC∴∆是直角三角形.2.归纳定理(1)探讨新命题与勾股定理的关系命题和结论正好相反的两个命题叫做互逆命题.原命题:勾股定理如果直角三角形的两条直角边长分别,,a b斜边长为c,那么222a b c+=.逆命题:勾股定理逆定理如果三角形的三边长分别,,a b c满足222a b c+=,那么这个三角形为直角三角形.(2)勾股定理逆定理的作用——判定直角三角形的一个依据.引导学生证明勾股定理的逆定理,体会从猜想到证明的认识几何图形的过程,提升直观想象和推理的素养.引导学生从文字语言、图形语言、符号语言去认识勾股定理.例题二、应用例1 写出下列命题的逆命题,这些命题的逆命题成立吗?⑴内错角相等,两条直线平行;⑵对顶角相等.例1设计意图:理解原命题与逆命题的关系.(1)22a b += 2217c ==22a b ∴+=90C ∴∠=ABC ∴∆1,(n >∴221n n -+>211,n >-∴22a b n +=(22c n =+( a ∴∴∠例3 在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且14CF CD =.求证:90.AEF ∠=︒分析:根据勾股定理的逆定理,判断90AEF ∠=︒,只要证222AE EF AF +=即可.所以分别在直角ABE ECF ADF ∆∆∆、、中计算AE EF AF 、、的长度即可.解:四边形ABCD 是正方形, AB BC CD AD ∴===,90B C D ∴∠=∠=∠=︒.设=4AB BC CD AD k ===,11444CF CD k k ∴===., 43DF CD CF k k k ∴=-=-=.E 是BC 的中点,114222BE CE BC k k ∴====.在Rt ABE ECF ADF ∆∆∆、、中, 222222=(4)(2)20AE AB BE k k k +=+=, 222222=(2)5EF EC CF k k k +=+=,222222=(4)325AF AD DF k k k +=+=()222AE EF AF ∴+=.90.(AEF ∴∠=︒勾股定理逆定理)例3. 综合运用勾股定理及其逆定理解决问题,提升数学推理的素养. 总结1. 学到了哪些知识?(1)勾股定理的逆定理的做用判定直角三角形的一个依据 (2)逆命题于原命题的什么关系?命题和结论正好相反,原命题成立,它的逆命题可能成立也可能不成立.2. 学到了哪些知识?(1)如何得到勾股定理的特殊 一般 猜想 证明 (2)如何证明勾股定理的逆定理? 构造直角三角形总结本节课所学知识,领悟数学方法.1. 写出下列命题的逆命题,这些命题的逆命题成立吗? ⑴同旁内角互补,两条直线平行;⑵如果两个实数相等,那么它们的平方相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17.2 勾股定理的逆定理(二)
一、教学目标
1.灵活应用勾股定理及逆定理解决实际问题。
2.进一步加深性质定理与判定定理之间关系的认识。
二、重点、难点
1.重点:灵活应用勾股定理及逆定理解决实际问题。
2.难点:灵活应用勾股定理及逆定理解决实际问题。
三、例题的意图分析
例1(P83例2)让学生养成利用勾股定理的逆定理解决实际问题的意识。
例2(补充)培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识。
四、课堂引入
创设情境:在军事和航海上经常要确定方向和位置,从而使用一
些数学知识和数学方法。
五、例习题分析
例1(P83例2)
分析:⑴了解方位角,及方位名词;
⑵依题意画出图形;
⑶依题意可得PR=12×1.5=18,PQ=16×1.5=24,QR=30;
⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理的逆定理,知∠QPR=90°;
⑸∠PRS=∠QPR-∠QPS=45°。
小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。
例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。
分析:⑴若判断三角形的形状,先求三角形的三边长;
⑵设未知数列方程,求出三角形的三边长5、12、13;
⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形。
解略。
六、课堂练习
1.小强在操场上向东走80m后,又走了60m,再走100m回到
原地。
小强在操场上向东走了80m后,又走60m的方向
是。
2.如图,在操场上竖直立着一根长为2米的测影竿,早晨测得
它的影长为4米,中午测得它的影长为1米,则A、B、C
三点能否构成直角三角形?为什么?
3.如图,在我国沿海有一艘不明国籍的轮船进入我国海
域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B
两个基地前去拦截,六分钟后同时到达C地将其拦截。
已知
甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海
里,航向为北偏西40°,问:甲巡逻艇的航向?
七、课后练习B A
C
D
E
N
1.一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为 ,
此三角形的形状为 。
2.一根12米的电线杆AB ,用铁丝AC 、AD 固定,现已知
用去铁丝AC=15米,AD=13米,又测得地面上B 、C 两点之间
距离是9米,B 、D 两点之间距离是5米,则电线杆和地面是否
垂直,为什么?
3.如图,小明的爸爸在鱼池边开了一块四边形土地种了
一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。
小明找了一卷米尺,测得AB=4米,BC=3米,CD=13
米,DA=12米,又已知∠B=90°。
课后反思:
八、参考答案:
课堂练习:
1.向正南或正北。
2.能,因为BC 2=BD 2+CD 2=20,AC 2=AD 2+CD 2=5,AB 2=25,所以BC 2+AC 2= AB 2;
3.由△ABC 是直角三角形,可知∠CAB+∠CBA=90°,所以有∠CAB=40°,航向为北偏东50°。
课后练习:
1.6米,8米,10米,直角三角形;
2.△ABC 、△ABD 是直角三角形,AB 和地面垂直。
3.提示:连结AC 。
AC 2=AB 2+BC 2=25,AC 2+AD 2=CD 2,因此∠CAB=90°,
S 四边形=S △ADC +S △ABC =36平方米。
A
B。