无线输电技术发展及应用
无线电能传输技术综述及应用前景

无线电能传输技术综述及应用前景摘要:本文在讲述无线电能传输技术的实现方式、在我国的发展以及现在的发展状况,并且对无线电能传输技术的应用及发展前景进行了分析与探讨。
关键词:无线电能传输技术;综述;应用前景1 无线电能传输技术在我国的发展我国在无线电能传输领域的研究是从2000年才开始的,与世界其他国家相比,我国对于该领域的研究相对较迟。
起步初始时,主要是研究直接耦合的方式并将其应用于汽车上。
从2007年开始,我国对无线电能传输技术的研究逐渐加大了力度,投入了大量的心血。
从这几年的研究群体来看,科研工作者主要是国内的知名高校、科研机构以及一些科技公司,其中具有代表性的有浙江大学、哈尔滨工业大学、青岛科技大学以及中科院、海尔集团等学校或机构组织。
其中最为重要的,在研究过程中具有里程碑意义的是在2010年CES展会上,海尔应用无线电力传输技术推出了一款无尾电视,接着在2011年,海尔集团与山东的几所高校联合,在超前技术研究中心共同绘制完成了“无线电力传输产业技术路线图”。
未来几年,无线电力传输新兴产业将随着科技水平的不断提升而加速发展,将会达到的产业规模会带来巨大的经济效益,并同时在全国范围内出现新的经济增长点,从而带动国家经济的发展。
再这样的发展速度下,作者相信无线电能传输技术完全进入我们的生活将指日可待。
2 目前无线电能传输技术的实现方式作者在前文中提到过,按照原理来分,目前在已经出现的无线电能传输技术中,主要有电磁感应式、电磁共振式以及微波电能传输方式三种技术方式。
其中电磁感应式是利用变化中的电流来通过初级线圈而产生磁场,由变化的磁场再次通过次级线圈感应出电场,从而来达到电能的传输。
这种方式是无线电能传输中目前出现最早、发展最快、应用最多的技术。
而电磁共振式技术,它将天线固有的频率与发射场电磁频率相一致时引起的电磁共振接收后,通过电磁耦合的共振效应来达到电能传输,2007年的MIT就是通过这种技术方式来实现的。
无线电能传输技术研究

无线电能传输技术研究一、引言无线电能传输技术作为一种新兴的能源传输方式,越来越受到人们的关注。
本文将对无线电能传输技术的研究现状和发展趋势进行介绍和分析。
二、无线电能传输技术的基本原理和分类无线电能传输技术是利用无线电波将能量从发射器传输到接收器的一种技术。
根据传输距离的不同,可以将无线电能传输技术分为近距离无线电能传输和远距离无线电能传输两种。
1. 近距离无线电能传输技术近距离无线电能传输技术主要应用于小范围内的能量传输,如无线充电技术。
该技术通过将能量转化为电磁波,并通过电磁场将能量传输给接收器,实现设备的无线充电。
近距离无线电能传输技术常用的传输方式有磁共振耦合传输和电磁感应传输。
2. 远距离无线电能传输技术远距离无线电能传输技术主要应用于大范围内的能量传输,如太阳能无线输电。
该技术利用太阳能发电站产生的直流电,将其转化为高频交流电,然后通过天线将能量传输到接收天线,最终转化为直流电。
远距离无线电能传输技术常用的传输方式有微波传输和激光传输。
三、无线电能传输技术的应用领域无线电能传输技术具有广泛的应用领域,以下是一些常见的应用领域:1. 智能家居无线电能传输技术可以在家庭内实现智能家居设备的无线充电,提高家庭用电的便利性和安全性。
2. 移动通信无线电能传输技术可以为移动通信设备提供长时间的续航能力,减少用户频繁充电的困扰。
3. 无人机与机器人无线电能传输技术可以为无人机和机器人等设备提供能源支持,延长其工作时间和工作距离。
4. 新能源领域无线电能传输技术可以解决新能源发电和输电的难题,提高能源利用效率和节能减排效果。
四、无线电能传输技术的发展趋势无线电能传输技术在不断发展壮大的同时,也面临一些挑战和发展趋势。
1. 传输效率的提高目前无线电能传输技术的传输效率还不高,需要进一步提高能量传输的效率,降低能量在传输过程中的损耗。
2. 安全性的增强无线电能传输技术涉及到大量的能源传输和电磁波的产生与传输,需要加强对无线电波辐射对人体和环境的安全性研究和保障。
无线输电技术的应用与展望

通过互感 电压可 以实现小功率短距离 的无线输 电,比如 市面上可见 的,电动牙刷 ,手机的磁充外壳 ,相机等小型数
码 产 品 目前 已经 实 现 了无 线 充 电 。
1 . 2 谐振式无线输 电
能传输 。
这种方式与无线 电设备 的通信原理相似 ,只是一个传输
信息 ,一个传输能量 。在发送谐振 回路 的磁场和接受 回路 的 磁场处 于相 同频率 ,在谐振 的作用下 ,也可实现无线 电力传 输 ,不过其缺点也很 明显 ,随着功率和距离 的增长 ,其效率 会 随之 降低 ,且辐射变大 。所 以也 只适合短距离无线输 电。
0 9 MHz ( E u mb  ̄i s e )
1 . 3 磁耦合共振原理
电磁共振耦合 理论最 早 由 P o w e r c a s t 公 司提 出 ,其基 本
原理是一种 电磁波线圈技术 ,应用非辐射磁场进行 的高效无
线传输方式 ,感应距离上限 为感应线圈半径的 8 倍 ,若 电力 传输 的距 离超 出了这个 限制 ,就会 由于感 应磁场 强度较低 , 造成 接受线 圈无法 准确 高效地接 收相应 的电能 。 整个装置 主要包括两个线 圈,一般这种线圈都是 由铜制 成的 ,每一个 线圈都是 一个 相对独立 的 自振 系统 。但是这两 个线圈在实际的工作之 中各有分工 。其 中一个 为放射装 置 , 另一个为接收装置。发射装 置与电源相连 ,也就是和传统 的 能量源相连 ,该线 圈的主要功能是在周 围形成一个非辐射磁
[ 摘 要 ]无线输 电是一种通过不 可见物理媒介 的接 触而进行 电力传输 的一种技 术,文章介绍 了无 线输电技术 的分类以
及其应 用。
[ 关键词 ] 无线输 电;电磁感应 ;磁耦合共振 ;微波激光
电力电子技术中的无线输电技术

电力电子技术中的无线输电技术电力电子技术是一门应用电子学原理,用于控制电能的转换、传输和分配的技术。
而无线输电技术作为电力电子技术中的一个重要领域,正日益受到人们的关注和重视。
无线输电技术的发展,不仅可以改变传统电力传输方式,减少线路损耗,还可以为远程地区提供更可靠的电力供应。
本文将介绍电力电子技术中的无线输电技术的发展现状以及未来发展趋势。
一、无线输电技术的发展历程无线输电技术的概念最早可以追溯到19世纪初发明的电磁感应原理。
克罗克斯和特斯拉等科学家提出了通过电磁波来实现电力输送的理念。
20世纪后期,无线输电技术迎来了飞速的发展。
2007年,麻省理工学院的研究团队成功实现了将功率通过磁感应耦合的方式从一个线圈传输到另一个线圈,从而实现了远距离的无线电力传输,这一突破标志着无线输电技术进入了一个全新的阶段。
二、无线输电技术的原理无线输电技术主要基于电磁感应原理,通过发射端产生的交变电流激发传输端的线圈,从而实现电能的传输。
传输端的线圈接收激发信号后,将其转化为电能输出。
在这一过程中,需要克服电磁波传输中的能量损耗、距离衰减等问题,因此需要应用电力电子技术来提高能量传输效率。
三、无线输电技术的应用场景无线输电技术在电力电子领域有着广泛的应用场景。
首先,可以用于电动汽车的充电,通过无线输电技术可以实现电动汽车的智能充电,解决了传统有线充电存在的安全隐患和不便之处。
其次,无线输电技术可以应用于医疗设备和无线传感器网络,实现远程电力供应,极大地提高了设备的可靠性和稳定性。
另外,在一些特殊场景下,如太空科研、极地考察等领域,也可以利用无线输电技术解决能源供应的问题。
四、无线输电技术的发展趋势随着社会的电力需求不断增长,无线输电技术的发展进入了一个蓬勃发展的阶段。
未来,无线输电技术将在以下几个方面得到进一步的应用和发展。
首先,无线输电技术将在新能源领域得到广泛应用,能够提高新能源的利用效率,降低电力传输成本。
无线电能传输技术发展与应用综述

无线电能传输技术发展与应用综述摘要:无线电能传输(WirelessPowerTransfer,WPT)技术将电力电子技术和控制理论与技术等相结合,通过磁场、电场、激光、微波[等载体实现电能的无线传输,目前常见的无线充电方式主要是采用磁耦合无线电能传输技术。
与磁耦合无线电能传输技术相比,电场耦合式无线电能传输技术具有以下优点:耦合机构成本低、重量轻、形状易变;耦合机构周围磁场干扰较低;可以跨越金属障碍传能;在耦合机构之间或周围的金属导体上引起的涡流损耗很小。
因此,研究EC-WPT技术可以进一步推进WPT技术的发展和应用。
目前国内外学者围绕EC-WPT技术的多个方面展开了研究,并取得了丰富的成果。
基于此以下对无线电能传输技术发展与应用综述进行了探讨以供参考。
关键词:无线电能传输; 研究动态; 应用场景展望引言无线电能传输技术是一种不依靠导线的电能传输技术,通过电场和磁场将电能从电源端传递至用电负载端。
传统输电方式常以电线或电缆为媒介进行电能输送,存在线路老化、传输损耗、维护困难等诸多问题。
而WPT技术摆脱了导线的束缚,以安全可靠、方便灵活、绿色环保等独特优势吸引了国内外大量专家学者的研究,得到了迅速发展,目前已经广泛应用于医疗电子、工业机器人、电动汽车领域,并且在水下机器人领域有巨大的发展前景1无线电能传输技术概述1.1 分段式耦合机构1.1.1 在DWPT系统中,为了降低系统待机损耗与电磁辐射,发射端通常采用分段式耦合机构。
然而,分段式发射结构给DWPT系统引入了新问题:相邻段发射极板间距离较近时,发射端口间的耦合会影响系统谐振,相反,极板间距较远时,系统过分段时输出电压将跌落。
1.1.2 在接收端位置以及负载电阻发生变化时,系统增益如何保持一致。
针对不同负载和位置条件下系统增益一致性问题,研究人员已针对MC-WPT系统提出了许多解决方案,通过补偿网络和耦合机构设计实现动态恒压输出。
MC-WPT系统以磁场为传能媒介,要实现输出恒压,需满足不同工况下各分段线圈附近的空间磁场均匀分布,即拾取端位置、负载电阻变化时发射线圈电流恒定。
无线输电技术发展及应用

实 现 全 球无 线 电力 传输 . 可惜 由 于资 金 缺 乏 . 这 个 塔
最 终 并未建 成
2 0 0 1年 5月 .国 际无线 电力 传输 技 术 会议 在 法 属 留尼汪 岛 召开期 间 . 法 国 国家科 学研 究 中心 的皮 格 努 莱 特 .利 用 微 波 无 线 传 输 电 能 点 亮 4 0 1 T I 外 一 个
个线圈在 1 0 . 5 6  ̄ 0 . 3 MH z产 生共 振 . 效率 达 到 4 0 ¨ 3 ]
力 科技 的发展 方 向 . 必 将带 来人 类 生活 和生 产方 式 的 重 大 变革 . 有 着 巨大 的市场 和发 展前 景 。其 中一 个 重
要 应 用 领 域是 电动 汽 车无 线 充 电 , 短期内 . 静 态无 线 充 电技 术 有望 应用 于泊 车 自动 充 电 从 长期 来说 , 动 态 无 线充 电可 以为 电动汽 车在 行驶 途 中进 行充 电 . 使
江
8 2
.
苏
电
机
工
程
第 3 2卷 第 2期
2 0 1 3年 3月
J i a ng s u El e c t r i c a l Eng i ne e r i ng
科 普 园地 .
无 线输 电技术 发展及应 用
张 翼
( 江苏 省 电力公 司 电力科学 研究 院 , 江 苏 南京 2 1 1 1 0 3 )
这一 概念 。 为 电动 汽车 充 电提 出了新 的解 决方 案 . 这 意
味着 电动 汽 车 可 以不 必 停 下来 充 电而 无 限 地跑 下 去 据项 目组 人员 介绍 . “ 当你 到 达 目的 地时 .可能 电池 里 的 电 比你 出发 时 还要 多 ” . 斯坦 福 大学 正在 设 计 的无 线充 电 系统有 望 解决 电动汽 车接 线 充 电 的难 题 .其长
无线电能传输技术在应用发展中应注意的问题和展望

无线电能传输技术在应用发展中应注意的问题和展望(1)无线电能传输技术在应用发展中应注意的问题。
①国家要出台相应的政策,鼓励、扶持并规范无线充电汽车的发展和充电设施的建设。
一个行业或企业,尤其是利国利民的行业或企业的发展,离不开国家的扶持。
无线充电是一个刚刚起步的领域,其有效的发展可以很大程度上解决电动汽车发展的一个瓶颈,但由于对其研发的投资巨大,这就更需要国家进行鼓励和扶持,以加快其研发进程,使其尽早得以应用。
②无论最终采用何种方式充电、采用何种蓄电池,国家及各地方有关部门都要对其频率、安全、环保、节能等方面进行研究,避免浪费、避免对人体健康产生不良影响、避免对环境造成新的污染,同时要宣传到位,避免人们对电磁的恐惧心理。
③在实际中,由于发射端置于地下,要注意对其的保护。
④在雨水较多的地区,除对地下设施的防水外,车辆接收端的防水处理也是一个需要考虑的问题。
(2)无线电能传输技术待解疑问。
就像现在人们对Wi-Fi无线信号和手机天线杆是否有干扰和辐射等副作用一样,对于刚出现的这种无线充电技术人们仍然有很多安全疑问,比如其是否会产生电磁辐射?是否会有使用限制和令数码产品价格增加等担忧。
对于最核心的安全问题,专业人士认为从理论上说,这一系统对处在充电场的人完全无害(图8-1),因为电量只在以同一频率共振的线圈之间传输;尽管无线充电器的电能转化率并不是特别高,但随着技术的逐渐进步,相信总有一天它能追赶上直充电器。
图8-1 对于无线电能传输技术的电磁辐射安全性,专家认为其对人体是无害的(3)电磁波对人体辐射尚无权威答案,安全尚需分阶段逐步解决无线电能传输系统具体到安全问题,主要包括两个层面。
一是如何保证电磁波只辐射到手机接收部分,不会影响到人体健康,或干扰其他设备;二是让电磁辐射在错误使用情况下不至于损坏电池和充电器,比如识别无线充电器上的异物,防止锂电池过热导致的变形或爆炸的危险等。
专家表示这些都要通过大量的软硬件工作来实现。
无线电能传输技术在电力系统中的应用研究

无线电能传输技术在电力系统中的应用研究随着科技的不断发展,人类对电力系统的需求日益增长。
然而,传统的电力输送方式存在一些局限性,如输电线路损耗、电缆成本高昂等问题,给电力系统的可靠性和可持续性带来了一定的挑战。
而无线电能传输技术作为一种新兴的能源传输方式,正逐渐成为电力系统研究的热点领域。
一、无线电能传输技术的基本原理和发展历程无线电能传输技术是一种通过无线电波将能量从发射端传输到接收端的技术。
它的基本原理是利用发射端产生的电磁波,通过对电磁波进行调制和控制,将能量传输到接收端并恢复为电能。
无线电能传输技术的发展历程可以追溯到19世纪末的无线电通信技术,但直到近年来,随着无线电技术和功率电子技术的进步,无线电能传输技术才取得了较大的突破和应用。
二、无线电能传输技术在电力系统中的应用1. 无线电能传输技术在电动汽车充电中的应用电动汽车充电是近年来的一个热门话题。
传统的有线充电方式存在充电效率低、充电设施建设困难等问题。
而无线电能传输技术可以通过地面或道路上的电磁感应装置,实现对电动汽车的无线充电。
这种方式不仅可以提高充电效率,减少充电时间,还可以减少对公共区域的占用和充电桩的建设成本。
因此,无线电能传输技术在电动汽车充电中的应用具有广阔的前景。
2. 无线电能传输技术在无线传感器网络中的应用无线传感器网络是一种由大量节点组成的、能够自组织和自适应的网络系统,可以实时监测和采集环境数据。
然而,传统的无线传感器网络中,节点的电池寿命通常较短,需要频繁更换电池,给维护和管理带来了一定困难。
而无线电能传输技术可以为无线传感器网络提供长时间稳定的能量供应,解决节点电池寿命问题,并延长无线传感器网络的使用寿命。
3. 无线电能传输技术在远程无人岛屿供电中的应用远程无人岛屿供电一直是一个难题,传统的供电方式通常需要铺设长距离的电缆,不仅造成资源浪费,还增加了维护成本。
而无线电能传输技术可以实现对远程无人岛屿的无线供电,大大降低了供电成本,提高了供电可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无线输电技术发展及应用
从2007 年美国麻省理工学院成功完成无线电力传输实验开始,人类更加深刻地认识到了无线输电已不再是梦想。
无线输电这项前沿技术被认为是今后电力科技的发展方向,必将带来人类生活和生产方式的重大变革,有着巨大的市场和发展前景。
其中一个重要应用领域是电动汽车无线充电,短期内,静态无线充电技术有望应用于泊车自动充电。
从长期来说,动态无线充电可以为电动汽车在行驶途中进行充电,使得电动汽车可以边行驶边充电。
这将从根本上解决电动汽车充电难题,加速电动汽车普及。
另外无线输电技术还有许多其他应用领域,如家用电器、工业机器人、医疗器械、航空航天、油田矿井、水下作业、无线传感器网络及RFID 等方面。
1 国内外无线输电技术研究现状
1.1 国外研究现状
19 世纪末被誉为“迎来电力时代的天才”的尼古拉·特斯拉,在电气与无线电技术方面做出了突出贡献,他也曾致力于研究无线传输信号及能量的可能性,早在1899 年,特斯拉在纽约长岛建造了无线电能发射塔(沃登克里弗塔),设想利用地球本身和大气电离层为导体来实现大功率长距离的无线电能传输,该塔矗立在纽约长岛的特斯拉无线电力传输实验室内,塔高57 m,球形塔顶直径为21 m。
特斯拉想用它来实现全球无线电力传输,可惜由于资金缺乏,这个塔最终并未建成。
2001 年5 月,国际无线电力传输技术会议在法属留尼汪岛召开期间,法国国家科学研究中心的皮格努莱特,利用微波无线传输电能点亮40 m 外一个200 W 的灯泡。
其后,2003 年在岛上建造的10 kW 试验型微波输电装置,已开始以2.45 GHz 频率向接近lkm 的格朗巴桑村进行点对点无线供电。
2007 年6 月,美国麻省理工学院宣布利用电磁共振技术成功地点亮了一个离电源约2 m 远的60 W电灯泡,该研究小组在实验中使用了2 个直径为60 cm的铜线圈,铜线半径为3 mm,通过调整发射频率使2个线圈在10.56±0.3 MHz 产生共振,效率达到40%。
该项技术的发布引起了世界范围内谐振耦合式无线输电装置的研发热潮。
2008 年9 月,北美电力研讨会发布的论文显示,美国内华达州雷电实验室的G.E.Leyh 等继承了Tesla 的衣钵,成功研制电场耦合谐振无线能量传输实验装置,利用2 个空心变压器作为无线能量传输的发射与接收端,变压器与电极连接,成功地将800 W 电力用无线的方式传输到5 m 远的距离。
在日本,“非接触充电”方式的巴士已于2008 年2 月在羽田机场、2009 年10 月在奈良分别进行了试行驶。
供电线圈埋入充电台的混凝土中,汽车驶上充电台,将车载线圈对准供电线圈就能开始充电。
充电方式采用了基于电磁感应的方式。
2012 年,美国斯坦福大学首次提出了“驾驶充电”这一概念,为电动汽车充电提出了新的解决方案,这意味着电动汽车可以不必停下来充电而无限地跑下去。
据项目组人员介绍,“当你到达目的地时,可能电池里的电比你出发时还要多。
”,斯坦福大学正在设计的无线充电系统有望解决电动汽车接线充电的难题,其长期目标是开发出一种全电动高速公路,
能给行驶在路面上的汽车和货车无线充电,只要在路面下每隔几英尺埋一段金属线圈,就能利用磁场以无线方式传输大量电力。
1.2 国内研究现状
国内在无线输电技术方面研究还处于起步阶段,主要进行一些基础性研究工作,还未曾开展大规模的研究。
哈尔滨工业大学朱春波教授采用直径50 cm 螺旋铜线圈串接电容的方式构成谐振器,实现在0.7 m 距离传输23 W 的能量,在传输距离为55 cm 时负载电压获得最大值,其最高传输效率接近50%。
重庆大学自动化学院孙跃教授带领的课题组,攻克了无线电力传输的关键技术难题,建立了完整的理论体系,研制出的无线电能传输装置能够输出600 W 到1 000 W 的电能,传输效率为70%,并且能够向多个用电设备同时供电,即使用电设备频繁增加,也不会影响其供电的稳定性。
香港理工大学傅为农教授带领的课题组对感应耦合无线电能传输技术和磁谐振耦合无线电能传输技术进行了深入研究,并对2 种无线输电方式进行了比较。
他们采用平面薄膜谐振器,实验中,在发射谐振器和接收谐振器相距20 cm 时,传输效率为46%,谐振频率为5.5 MHz。
华南理工大学张波教授带领的课题组从电路角度分析谐振耦合无线输电系统传输效率与距离、线圈尺寸等之间的关系,设计制作了多种不同线圈参数的谐振耦合无线输电装置,进行比较实验,以实现系统优化目标,设计频率跟踪系统,解决了由于谐振效率失谐带来的传输效率低下问题。
另外,南京航空航天大学航天电源实验室也对电动汽车的无线能量传输技术的几种模式进行了研究。
2 无线输电技术简介
无线电力传输是一种无需通过插座和电线提供电能的技术。
根据无线输电在空间不同的传输距离,有3种基本的传输形式:电磁感应短程传输、电磁耦合共振中程传输和微波激光远程传输。
2.1 电磁感应
利用电磁感应可以进行短程的电力传输,其基本工作原理如图1 所示,发射线圈L1和接收线圈L2之间利用磁耦合来传递能量。
根据电磁感应原理,若在线圈L1中通以交变电流,该电流将在周围介质中产生一个交变磁场,线圈L2中将产生感应电动势,可供电给外部用电设备。
-----
最早使用电磁感应原理传输能量的是电动牙刷。
由于经常和水接触,直接充电比较危险,所以电动牙刷一般使用的是感应式充电。
发射线圈位于充电底座,接收线圈在牙刷内部,整个电路消耗的功率约3 W。
目前该技术可用于多种电子产品,如对手机、相机、MP3 等进行无线充电,由于充电垫产生的磁场很弱,所以不会对附近的信用卡、录像带等利用磁性记录数据的物品造成不良影响。
该解决方案提供商包括英国Splashpower、美国wild Charge 等公司。
这种接触式无线电力传输方式的优点是制造成本较低、结构简单、技术可靠,但是传输功率较小、传送距离短,一般只适用于为小型便携式电子设备供电。
2.2 电磁耦合共振
基于电磁共振耦合原理的整个装置必须包含2 个线圈,每一个线圈都是一个自振系统。
其中一个是发射装置,与能量源相连,它利用振荡器产生高频振荡电流,通过发射线圈向
外发射电磁波,在周围形成了一个非辐射磁场,即将电能转换成磁场;当接收装置的固有频率与收到的电磁波频率相同时,接收电路中产生的振荡电流最强,完成磁场到电能的转换,从而实现电能的高效传输。
在日本,2009 年8 月长野日本无线也宣布开发出基于磁共振的送电系统,如图2 所示。
当送电受电部之间的传输距离为40 cm 时,传输的效率达到了95%。
--------
在美国举行的2010 年国际消费电子产品展(CES)上,海尔展出了利用无线供电技术的高清电视,该电视采用美国无线电力公司(Witricity)的电磁共振耦合技术,电视的背面内置有约1 英尺(30.48 cm)的线圈,可在距离1 m 之外的地方供应100 W 的电力。
可供电的距离取决于线圈的大小,最远能以线圈直径的3 至5 倍距离供电。
另外,Powercast,Fulton,Visteon等公司也利用该技术为手机、MP3、汽车配件、体温表、助听器及人体植入仪器、电动汽车等厂商提供无线输电的解决方案。
2.3 微波/激光
理论上,无线电波波长越短,其定向性越好,弥散越小,所以,可利用微波或激光形式来实现电能的远程传输,这对于新能源的开发和利用,解决未来能源短缺等问题也有着重要意义。
因此,许多国家都没有放弃这方面的研究。
1968 年美国学者Glaser 提出了无线传输空间利用太阳能的“Powerbeaming”的概念,利用电磁波接收装置将太阳能转换成电能。
1979 年,美国航空航天局NASA 和美国能源部联合提出太阳能计划,建立“SPS 太阳能卫星基准系统”,SPS (Solar Powersatellite)是太阳能发电卫星,处在地球约36 000 km 的静止轨道上,那里太阳的能量约为地球上的1.4 倍。
据预测,一个SPS 所装载的太阳电池的直流输出功率为10 GW,电池输出的电力通过振荡器变换成微波电力,从送电的天线向地球表面以微波(2.45 GHz)形式无线送电。
地球上的接收天线由半波长的偶极天线、整流二极管、低通滤波器及旁路电容组成,可接收到5 GW 的电力。
目前,SPS 的建设方法、天线的放射特性、微波发送装置的姿态控制、宇宙空间的微波传播特性、为确保故障时安全的保安系统等都是亟待解决的技术问题。
日本拟于2020 年建造试验型太空太阳能发电站SPS2000,2050 年进入规模运行。
3 结束语
无线电力传输作为最前沿的电力传输技术,会给人们的生活带来巨大的便利,并将带来电力工业的创新和重大变革,具有广泛的应用前景。
未来无线输电技术有望解决电动汽车充电难题,可以给一些难以架设线路或危险的地区供应电能,并且解决新能源电站的电能输送问题。
目前在国内,无线输电研究还处于起步阶段,应该认清形势,总结国内外一些已取得的研究成果,在此基础上开展更为深入的研究工作。