2020年福建省泉州市洛江区中考数学一模试卷

合集下载

泉州市中考数学一模试卷

泉州市中考数学一模试卷

泉州市中考数学一模试卷姓名:________班级:________成绩:________一、 单选题 (共 12 题;共 24 分)1. (2 分) (2020 七上·江都期末) 如图是一个正方体的表面展开图,若正方体中相对的面上的数互为相反数,则 2x﹣y 的值为( )A . -2 B.6C. D.2 2. (2 分) (2012 八下·建平竞赛) 下列说法,正确的是( )A . 在△ABC 中,,则有B . 0.125 的立方根是±0.5C . 无限小数是无理数,无理数也是无限小数D . 一个无理数和一个有理数之积为无理数3. (2 分) (2018 九上·港南期中) cos30°的相反数是( )A. B.C.D. 4. (2 分) (2020·无锡) 下列选项错误的是( )A. B.第 1 页 共 16 页C. D. 5. (2 分) (2019·咸宁模拟) 下列几何体是由 4 个相同的小正方体搭成的,其中左视图与主视图相同的是A.B.C.D.6. (2 分) (2019·南京) 下列整数中,与 A.4 B.5 C.6 D.7最接近的是( )7. (2 分) (2020·河东模拟) 化简的结果是( )A.AB . a+1C . a﹣1D . a2﹣18. (2 分) (2020·河东模拟) 如图,已知在平面直角坐标系中,四边形 ABCD 是菱形,其中 B 点坐标是(8,2),D 点坐标是(0,2),点 A 在 x 轴上,则菱形 ABCD 的周长是( )第 2 页 共 16 页A.2 B.8C.8 D . 129. (2 分) (2020·河东模拟) 关于 , 的方程组A.,B.,C.,D.,的解为则( )10. (2 分) (2020·河东模拟) 已知点,,都在反比例函数那么 , 与 的大小关系是( )的图象上,A.B.C.D.11. (2 分) (2018·苍南模拟) 如图,矩形 ABCD 中,AB=8,BC=6,将矩形 ABCD 绕点 A 逆时针旋转得到矩形AEFG,AE,FG 分别交射线 CD 于点 PH,连结 AH,若 P 是 CH 的中点,则△APH 的周长为( )A . 15 B . 18 C . 20 D . 24 12. (2 分) (2020·河东模拟) 如图所示,已知二次函数第 3 页 共 16 页的图象与 轴交于点 ,与 轴交于点 ,,对称轴为直线,则下列结论:①;②;③;④是关于 的一元二次方程的一个根.其中正确的有( )A . 1个B . 2个C . 3个D . 4个二、 填空题 (共 6 题;共 7 分)13. (1 分) (2016 八上·临海期末) 计算:2x3÷x=________.14. (1 分) (2017 八上·深圳月考) 据国家旅游局统计,2017 年端午小长假全国各大景点共接待游客约为82600000 人次,数据 82600000 用科学记数法表示为________15. (1 分) (2019·湘潭) 为庆祝新中国成立 70 周年,某校开展以“我和我亲爱的祖国”为主题的“快闪”活动,七年级准备从两名男生和三名女生中选出一名同学领唱,如果每一位同学被选中的机会均等,则选出的恰为女生的概率是________.16. (1 分) (2020·河东模拟) 若直线经过点,则该直线不经过第________象限.17. (1 分) (2020·河东模拟) 如图,正方形的边长是 9,点 是 边上的一个动点,点 是边上一点,,连接 ,把正方形沿 折叠,使点 , 分别落在点 , 处,当点 落在线段 上时,线段 的长为________.18. (2 分) (2020·河东模拟) 如图,在由边长都为 1 的小正方形组成的网格中,点 , , 均为格点,,,, 为 中点, 为 上的一个动点.第 4 页 共 16 页(1) 当点 为线段 中点时, 的长度等于________; (2) 将点 绕点 逆时针旋转 90°得到点 ,连 ,当线段 度直尺在给定的网格中画出点 ,点 ,并简要说明你是怎么画出点 ,点三、 解答题 (共 7 题;共 76 分)取得最小值时,请借助无刻 的:________.19. (8 分) (2020·东丽模拟) 解不等式组: (1) 解不等式①,得:________; (2) 解不等式②,得:________; (3) 把不等式①和②的解集在数轴上表示出来:,请结合题意填空,完成本题的解答:(4) 原不等式组的解集为:________.20. (15 分) (2020·河东模拟) 某校为了解全校学生假期主题阅读的情况(要求每名学生的文章阅读篇数,最少 3 篇,最多 7 篇),随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.某校抽查的学生文章阅读的篇数统计表文章阅读的篇数(篇) 345人数(人)2028671612请根据统计图表中的信息,解答下列问题: (1) 求被抽查的学生人数和 的值; (2) 求本次抽查的学生文章阅读篇数的中位数和众数;第 5 页 共 16 页(3) 若该校共有 800 名学生,根据抽查结果,估计该校学生读书总数.21. (10 分) (2020·河东模拟) 如图,在 交弦 的延长线于点 .中,点 为弧 的中点,过点 作(1) 如图①,连接 ,若,求的大小;的切线 ,(2) 如图②,连接 ,若,,求的度数.22. (2 分) (2020 九上·醴陵期末) 如图,某办公楼 AB 的右边有一建筑物 CD,在建设物 CD 离地面 2 米高的点 E 处观测办公楼顶 A 点,测得的仰角=,在离建设物 CD 25 米远的 F 点观测办公楼顶 A 点,测得的仰角=(B,F,C 在一条直线上).(1) 求办公楼 AB 的高度; ( 2 ) 若 要 在 A , E 之 间 挂 一 些 彩 旗 , 请 你 求 出 A , E 之 间 的 距 离 .( 参 考 数 据 :)23. (11 分) (2019·德州) 下表中给出 , , 三种手机通话的收费方式.收费方式月通话费/元包时通话时间/超时费/(元/)不限时第 6 页 共 16 页(1) 设月通话时间为 小时,则方案 , , 的收费金额 , , 都是 的函数,请分别求出这三个函数解析式.(2) 填空:若选择方式 最省钱,则月通话时间 的取值范围为________;若选择方式 最省钱,则月通话时间 的取值范围为________;若选择方式 最省钱,则月通话时间 的取值范围为________;(3) 小王、小张今年 月份通话费均为 元,但小王比小张通话时间长,求小王该月的通话时间.24. (15 分) (2020·河东模拟) 平面直角坐标系中,是等边三角形,点,点,点是 边上的一个动点(与点 、 不重合).直线 是经过点 的一条直线,把沿直线 折叠,点 的对应点是点 .(1) 如图①,当时,若直线,求点 的坐标;(2) 如图②,当点 在 边上运动时,若直线,求的面积;(3) 当时,在直线 变化过程中,求面积的最大值(直接写出结果即可).25. (15 分) (2020·河东模拟) 如图,抛物线与 轴分别交于点,,与 轴交于点 .第 7 页 共 16 页(1) 求抛物线的解析式;(2) 设点在第一象限的抛物线上,连接 , .试问,在对称轴左侧的抛物线是否存在一点,满足?如果存在,请求出点 的坐标:如果不存在,请明理由;(3) 存在正实数 , ( ) ,当 的值.时,恰好满足,求 ,第 8 页 共 16 页一、 单选题 (共 12 题;共 24 分)1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、 9-1、 10-1、 11-1、 12-1、二、 填空题 (共 6 题;共 7 分)13-1、 14-1、参考答案15-1、 16-1、 17-1、18-1、18-2、第 9 页 共 16 页三、 解答题 (共 7 题;共 76 分)19-1、 19-2、19-3、 19-4、 20-1、20-2、 20-3、第 10 页 共 16 页21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、。

2020-2021学年福建省泉州市中考数学一模试卷及答案解析

2020-2021学年福建省泉州市中考数学一模试卷及答案解析

福建省泉州市中考数学模拟试卷一、选择题每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答.1.计算:(﹣2)0=()A.﹣2 B.2 C.1 D.02.下列式子运算正确的是()A.a6÷a2=a4B.a2+a3=a5C.(a+1)2=a2+1 D.3a﹣2a=13.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选()甲乙丙丁平均数80 85 85 80方差42 42 54 59A.甲B.乙C.丙D.丁4.下列图形中,是中心对称图形又是轴对称图形的是()A.B.C.D.5.在平行四边形ABCD中,点E是边AD上一点,且AE=2ED,EC交对角线BD于点F,则等于()A.B.C.D.6.如图,AB为⊙O直径,CD为弦,AB⊥CD,如果∠BOC=70°,那么∠A的度数为()A.70°B.35°C.30°D.20°7.若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=cx+a的图象可能是()A. B. C. D.二、填空题在答题卡上相应题目的答题区域内作答.8.一种原子的直径为0.00026微米,则数据0.00026用科学记数法表示为.9.分解因式:3x2﹣12= .10.a3•a2= .= .11.如图,P是反比例函数y=图象上一点,PA⊥x轴于点A,则△POA的面积S△POA12.某种商品的标价为200元,按标价的八折出售,这时仍可盈利25%,则这种商品的进价是元.13.正多边形的一个外角是36°,则边数n= .14.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠2=35°,则∠1= °.15.若点(3﹣x,x﹣1)在第二象限,则x的取值范围是.16.如图,△ABC的3个顶点都在5×5的网格(2015•模拟)如图,E是边长为1的正方形ABCD 的对角线BD上的一点,且BE=BA,P是CE上任意一点,PQ⊥BC于点Q,PR⊥BE于点R.则:(1)DE= ;(2)PQ+PR= .三、解答题(共89分)在答题卡上相应题目的答题区域内作答.18.计算:2sin60°﹣(﹣3)2+|﹣2|﹣(﹣1)2015.19.先化简,再求值:(x+2)(x﹣2)﹣(x+1)2,其中x=﹣3.20.如图,已知AF=BE,∠A=∠B,AC=BD,求证:∠F=∠E.21.某校组织了九年级学生英语口语模拟测试,现从中随机抽取部分学生的口语模拟测试成绩统计如下.口语成绩(分)人数(人)百分比(%)26 8 1627 2428 1529 m30 5根据上面提供的信息,回答下列问题:(1)扇形统计图中的圆心角a= °;(2)统计表中样本容量m= ;(3)已知该校九年级共有400名学生,如果口语成绩达28分以上(含28分)为优秀,请估计该校九年级学生口语成绩达到优秀的总人数.22.城区学校组织“书香谜缘”灯谜竞猜比赛.某校拟从3名男生(以A1、A2、A3表示)和2名女生(以B1、B2表示)中选取3人组队参赛.(1)若从5位备选学生中随机选取1人担任队长,则选取到男生的概率是;(2)若已知男生A1选取为队长,在其余4人中选取2人作为队员,请你用画树状图或列表的方法表示所有等可能的结果,并求出选取的两队员恰好是1男1女的概率.23.某超市计划购进一批甲、乙两种玩具,已知3件甲种玩具的进价与2件乙种玩具的进价的和为142元,2件甲种玩具的进价与4件乙种玩具的进价的和为164元.(1)求每件甲、乙两种玩具的进价分别是多少?(2)如果购进甲种玩具超过10件,超出部分可以享受7折优惠.超市决定在甲、乙两种玩具中选购其中一种,且数量超过10件,试帮助超市判断购进哪种玩具省钱.24.如图,A n系列矩形纸张的规格特征是:①各矩形纸张都相似;②A1纸对裁后可以得到两张A2纸,A2纸对裁后可以得到两张A3纸,…,A n纸对裁后可以得到两张A n+1纸.(1)填空:A1纸面积是A2纸面积的倍,A2纸周长是A4纸周长的倍;(2)根据A n系列纸张的规格特征,求出该系列纸张的长与宽(长大于宽)之比;(3)设A1纸张的重量为a克,试求出A8纸张的重量.(用含a的代数式表示)25.如图,在平面直角坐标系中,直线y=﹣x+2分别与x轴、y轴相交于点B、C,经过点B、C 的抛物线y=﹣x2+bx+c与x轴的另一个交点为A(﹣1,0).(1)求这个抛物线的解析式;(2)已知点D在抛物线上,且横坐标为2,求出△BCD的面积;(3)点P是直线BC上方的抛物线上一动点,过点P作PQ垂直于x轴,垂足为Q.是否存在点P,使得以点A、P、Q为顶点的三角形与△BOC相似?若存在,请求出点P的坐标;若不存在,请说明理由.26.如图1,在平面直角坐标系中,矩形OABC的顶点A,C的坐标分别为A(12,0),C(0,4),点D为OA边的中点,连接BD.(1)直接写出:点D的坐标:;tan∠BDA= ;(2)试判定以A点为圆心,以3为半径的⊙A与直线BD有多少个公共点?(3)如图2,若点M从点D出发,以每秒1个单位长度的速度沿D→A→B运动,同时点N从点O出发,以每秒3个单位长度的速度沿O→C→B→A运动,当点M,N相遇时运动即停止,设运动时间为t(秒),求使得△MON为直角三角形时所有t值和取值范围.福建省泉州市中考数学模拟试卷参考答案与试题解析一、选择题每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答.1.计算:(﹣2)0=()A.﹣2 B.2 C.1 D.0【考点】零指数幂.【分析】根据任何非0数的0次幂等于1进行计算即可.【解答】解::(﹣2)0=1.故选:C.【点评】本题主要考查了零指数幂的运算,掌握任何非0数的0次幂等于1是解题的关键.2.下列式子运算正确的是()A.a6÷a2=a4B.a2+a3=a5C.(a+1)2=a2+1 D.3a﹣2a=1【考点】同底数幂的除法;合并同类项;完全平方公式.【分析】根据同底数幂的除法、同类项和完全平方公式判断即可.【解答】解:A、a6÷a2=a4,正确;B、a2与a3不是同类项不能合并,错误;C、(a+1)2=a2+2a+1,错误;D、3a﹣2a=a,错误;故选A.【点评】此题考查同底数幂的除法、同类项和完全平方公式,关键是根据法则进行计算.3.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选()甲乙丙丁平均数80 85 85 80方差42 42 54 59A.甲B.乙C.丙D.丁【考点】方差;算术平均数.【专题】常规题型.【分析】此题有两个要求:①成绩较好,②状态稳定.于是应选平均数大、方差小的同学参赛.【解答】解:由于乙的方差较小、平均数较大,故选乙.故选:B.【点评】本题考查平均数和方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4.下列图形中,是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.【解答】解:A、此图形是中心对称图形,不是轴对称图形,故此选项错误;B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形不是中心对称图形,是轴对称图形,故此选项错误;D、此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.5.在平行四边形ABCD中,点E是边AD上一点,且AE=2ED,EC交对角线BD于点F,则等于()A.B.C.D.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据题意得出△DEF∽△BCF,那么=;由AE:ED=2:1可设ED=k,得到AE=2k,BC=3k;得到=,即可解决问题.【解答】解:如图,∵四边形ABCD为平行四边形,∴ED∥BC,BC=AD,∴△DEF∽△BCF,∴=,设ED=k,则AE=2k,BC=3k;∴==,故选A.【点评】本题主要考查了相似三角形的判定与性质,平行四边形的性质等几何知识点及其应用问题;得出△DEF∽△BCF是解题的关键.6.如图,AB为⊙O直径,CD为弦,AB⊥CD,如果∠BOC=70°,那么∠A的度数为()A.70°B.35°C.30°D.20°【考点】圆周角定理;垂径定理.【分析】由于直径AB⊥CD,由垂径定理知B是的中点,进而可根据等弧所对的圆心角和圆周角的数量关系求得∠A的度数.【解答】解:∵直径AB⊥CD,∴B是的中点;∴∠A=∠BOC=35°;故选B.【点评】此题主要考查的是垂径定理和圆周角定理的综合应用,理解等弧所对的圆周角是圆心角的一半是解决问题的关键.7.若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=cx+a的图象可能是()A. B. C. D.【考点】一次函数图象与系数的关系.【专题】压轴题;存在型.【分析】先判断出a是负数,c是正数,然后根据一次函数图象与系数的关系确定图象经过的象限以及与y轴的交点的位置即可得解.【解答】解:∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定),∵a<0,∴函数y=cx+a的图象与y轴负半轴相交,∵c>0,∴函数y=cx+a的图象经过第一、三、四象限.故选C.【点评】本题主要考查了一次函数图象与系数的关系,先确定出a、c的正负情况是解题的关键,也是本题的难点.二、填空题在答题卡上相应题目的答题区域内作答.8.一种原子的直径为0.00026微米,则数据0.00026用科学记数法表示为 2.6×10﹣4.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00026=2.6×10﹣4.故答案为:2.6×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.分解因式:3x2﹣12= 3(x﹣2)(x+2).【考点】提公因式法与公式法的综合运用.【分析】原式提取3,再利用平方差公式分解即可.【解答】解:原式=3(x2﹣4)=3(x+2)(x﹣2).故答案为:3(x+2)(x﹣2).【点评】本题考查因式分解.因式分解的步骤为:一提公因式;二看公式.公式包括平方差公式与完全平方公式,要能用公式法分解必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的2倍,如果没有两数乘积的2倍还不能分解.解答这类题时一些学生往往因分解因式的步骤、方法掌握不熟练,对一些乘法公式的特点记不准确而误选其它选项.要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以提取公因式的要先提取公因式.10.a3•a2= a5.【考点】同底数幂的乘法.【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n.【解答】解:a3•a2=a3+2=a5.【点评】本题主要考查同底数幂的乘法,熟练掌握性质是解题的关键.= 3 .11.如图,P是反比例函数y=图象上一点,PA⊥x轴于点A,则△POA的面积S△POA【考点】反比例函数系数k的几何意义.【分析】设出点P的坐标,△OAP的面积等于点P的横纵坐标的积的一半,把相关数值代入即可.【解答】解:设点P的坐标为(x,y).∵P(x,y)在反比例函数y=的图象上,∴xy=6,=xy=3,∴△OPM的面积S△POA故答案为:3.【点评】题考查了反比例函数比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.12.某种商品的标价为200元,按标价的八折出售,这时仍可盈利25%,则这种商品的进价是128 元.【考点】一元一次方程的应用.【分析】设每件的进价为x元,根据八折出售可获利25%,根据:进价=标价×8折﹣获利,可得出方程:200×80%﹣25%x=x,解出即可.【解答】解:设每件的进价为x元,由题意得:200×80%=x(1+25%),解得:x=128,故答案为:128.【点评】此题考查了一元一次方程的应用,属于基础题,关键是仔细审题,根据等量关系:进价=标价×8折﹣获利,利用方程思想解答.13.正多边形的一个外角是36°,则边数n= 10 .【考点】多边形内角与外角.【分析】利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.【解答】解:360°÷36°=10.所以这个正多边形是正十边形.故答案为:10.【点评】本题主要考查了多边形的外角和定理.是需要识记的内容.14.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠2=35°,则∠1= 55 °.【考点】平行线的性质.【分析】如图,由平行线的性质可求得∠3,再由垂直和平角的定义可求得∠1.【解答】解:如图,∵a∥b,∴∠2=∠3=35°,∵AB⊥BC,∴∠ABC=90°,∴∠1=180°﹣∠ABC﹣∠3=180°﹣90°﹣35°=55°,故答案为:55.【点评】本题主要考查平行线的性质,由平行线的性质求得∠3的大小是解题的关键.15.若点(3﹣x,x﹣1)在第二象限,则x的取值范围是x>3 .【考点】点的坐标;解一元一次不等式组.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.【解答】解:∵点(3﹣x,x﹣1)在第二象限,∴,解不等式①得,x>3,解不等式②得,x>1,所以不等式组的解集是x>3.故答案为:x>3.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).16.如图,△ABC的3个顶点都在5×5的网格(2015•模拟)如图,E是边长为1的正方形ABCD 的对角线BD上的一点,且BE=BA,P是CE上任意一点,PQ⊥BC于点Q,PR⊥BE于点R.则:(1)DE= ;(2)PQ+PR= .【考点】正方形的性质.【分析】(1)根据正方形的性质和勾股定理得出BD=,进而解答即可;(2)连接BP,过C作CM⊥BD,利用面积法求解,PQ+PR的值等于C点到BE的距离,即正方形对角线的一半.【解答】解:(1)∵边长为1的正方形ABCD,∴DB=,∴DE=﹣1;(2)连接BP,过C作CM⊥BD,如图所示:∵BC=BE,∴S△BCE =S△BPE+S△BPC=BC×PQ+BE×PR=BC×(PQ+PR)=BE×CM,∴PQ+PR=CM,∵四边形ABCD是正方形,∴∠BCD=90°,CD=BC=1,∠CBD=∠CDB=45°,∴BD=,∵BC=CD,CM⊥BD,∴M为BD中点,∴CM=BD=,即PQ+PR值是.故答案为:;.【点评】本题考查了正方形的性质、勾股定理、等腰三角形的性质以及三角形面积的计算;熟练掌握正方形的性质,运用面积法求解是解决问题的关键.三、解答题(共89分)在答题卡上相应题目的答题区域内作答.18.计算:2sin60°﹣(﹣3)2+|﹣2|﹣(﹣1)2015.【考点】实数的运算;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用特殊角的三角函数值计算,第二项利用乘方的意义化简,第三项利用绝对值的代数意义化简,最后一项利用乘方的意义化简,计算即可得到结果.【解答】解:原式=2×﹣9+2﹣﹣(﹣1)=﹣6.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.19.先化简,再求值:(x+2)(x﹣2)﹣(x+1)2,其中x=﹣3.【考点】整式的混合运算—化简求值.【专题】计算题.【分析】原式利用平方差公式及完全平方公式化简,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2﹣4﹣x2﹣2x﹣1=﹣2x﹣5,当x=﹣3时,原式=6﹣5=1.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.20.如图,已知AF=BE,∠A=∠B,AC=BD,求证:∠F=∠E.【考点】全等三角形的判定与性质.【专题】证明题.【分析】利用SAS得出全等三角形,进而利用全等三角形的性质得出答案.【解答】证明:∵AC=BD,∴AD=BC,在△ADE和△BCF中∵,∴△ADE≌△BCF(SAS),∴∠F=∠E.【点评】此题主要考查了全等三角形的判定与性质,根据AC=BD,得出对应线段AD=BC,是解题关键.21.某校组织了九年级学生英语口语模拟测试,现从中随机抽取部分学生的口语模拟测试成绩统计如下.口语成绩(分)人数(人)百分比(%)26 8 1627 2428 1529 m30 5根据上面提供的信息,回答下列问题:(1)扇形统计图中的圆心角a= 36 °;(2)统计表中样本容量m= 10 ;(3)已知该校九年级共有400名学生,如果口语成绩达28分以上(含28分)为优秀,请估计该校九年级学生口语成绩达到优秀的总人数.【考点】扇形统计图;用样本估计总体.【分析】(1)根据得分是26分的有8人,所占的百分比是16%即可求得总人数,则利用360°乘以得分是30分的人数所占的比例即可求解;(2)然后根据百分比的意义求得得分是27分的人数,进而求得m的值;(3)利用总人数400乘以对应的比例即可求解.【解答】解:(1)抽取的总人数是:8÷16%=50(人),则a=360×=36°,故答案是:36;(2)得分是27分的人数是50×24%=12(人),m=50﹣8﹣12﹣15﹣5=10.故答案是:10;(3)该校九年级学生口语成绩达到优秀的总人数是:400×=320(人).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.城区学校组织“书香谜缘”灯谜竞猜比赛.某校拟从3名男生(以A1、A2、A3表示)和2名女生(以B1、B2表示)中选取3人组队参赛.(1)若从5位备选学生中随机选取1人担任队长,则选取到男生的概率是;(2)若已知男生A1选取为队长,在其余4人中选取2人作为队员,请你用画树状图或列表的方法表示所有等可能的结果,并求出选取的两队员恰好是1男1女的概率.【考点】列表法与树状图法.【专题】计算题.【分析】(1)直接根据概率公式求解;(2)先画出树状图展示所有12种等可能的结果数,找出选取的两队员恰好是1男1女的结果数,然后根据概率公式求解.【解答】解:(1)从5位备选学生中随机选取1人担任队长,选取到男生的概率=;故答案为;(2)画树状图为:共有12种等可能的结果数,其中选取的两队员恰好是1男1女的结果数为8,所以选取的两队员恰好是1男1女的概率==.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.23.某超市计划购进一批甲、乙两种玩具,已知3件甲种玩具的进价与2件乙种玩具的进价的和为142元,2件甲种玩具的进价与4件乙种玩具的进价的和为164元.(1)求每件甲、乙两种玩具的进价分别是多少?(2)如果购进甲种玩具超过10件,超出部分可以享受7折优惠.超市决定在甲、乙两种玩具中选购其中一种,且数量超过10件,试帮助超市判断购进哪种玩具省钱.【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设每件甲种玩具的进价是x元,每件乙种玩具的进价是y元,根据“3件甲种玩具的进价与2件乙种玩具的进价的和为142元,2件甲种玩具的进价与4件乙种玩具的进价的和为164元”列出方程组解决问题;(2)设购进玩具z件(z>10),分别表示出甲种和乙种玩具消费,建立不等式解决问题.【解答】解:(1)设甲种玩具的进价是x元,乙种玩具的进价是y元,由题意得:,解得:.答:甲种玩具的进价是30元,乙种玩具的进价是26元;(2)设购进玩具z件(z>10),则乙种玩具消费26z元,甲种玩具消费10×30+(z﹣10)×30×0.7元,①当26z=10×30+(z﹣10)×30×0.7,解得z=30.所以当购进玩具正好30件,选择购其中一种即可;②当26z>10×30+(z﹣10)×30×0.7,解得z>30.所以当购进玩具超过30件,选择购甲种玩具省钱;③当26z<10×30+(z﹣10)×30×0.7,解得z<30.所以当购进玩具少于30件,多于10件,选择购乙种玩具省钱.【点评】此题主要考查二元一次方程组,一元一次不等式的运用,关键是理解题意,找出题目中的等量关系和不等关系,列出方程和不等式.24.如图,A n系列矩形纸张的规格特征是:①各矩形纸张都相似;②A1纸对裁后可以得到两张A2纸,A2纸对裁后可以得到两张A3纸,…,A n纸对裁后可以得到两张A n+1纸.(1)填空:A1纸面积是A2纸面积的 2 倍,A2纸周长是A4纸周长的 2 倍;(2)根据A n系列纸张的规格特征,求出该系列纸张的长与宽(长大于宽)之比;(3)设A1纸张的重量为a克,试求出A8纸张的重量.(用含a的代数式表示)【考点】相似多边形的性质.【分析】(1)根据A1纸对裁后可以得到两张A2纸即可得出A1纸面积是A2纸面积2倍;设A2纸的长为a,宽为b,则A2纸周长=2(a+b),则A3纸的长是b,宽是,A4纸的长是,宽是,A4纸的长周长=2(+)=a+b,由此可得出结论;(2)设A1纸的长和宽分别是m、n,则A2纸的长和宽分别为n,m,求出的值即可;(3)A1纸张的重量为a克,A2纸是A1纸面积的一半得出A2纸的重量,同理可得出A3纸的重量,找出规律即可得出结论.【解答】解:(1)∵A1纸对裁后可以得到两张A2纸,纸面积是A2纸面积2倍;∴A1纸的长为a,宽为b,则A2纸周长=2(a+b),则A3纸的长是b,宽是,A4纸的长是,∵设A2宽是,A4纸的长周长=2(+)=a+b,纸周长是A4纸周长的2倍.∴A2故答案为:2,2;(2)∵设A1纸的长和宽分别是m、n,则A2纸的长和宽分别为n,m,∴=,即=,即该系列纸张的长与宽(长大于宽)之比为:1;(3)∵A1纸张的重量为a克,A2纸是A1纸面积的一半,纸的重量,同理可得出A3纸的重量为a,∴A2同理,A3纸的重量是a克,纸张的重量是()7a克.∴A8【点评】本题考查的是相似多边形的性质,熟知相似多边形的对应边成比例是解答此题的关键.25.如图,在平面直角坐标系中,直线y=﹣x+2分别与x轴、y轴相交于点B、C,经过点B、C 的抛物线y=﹣x2+bx+c与x轴的另一个交点为A(﹣1,0).(1)求这个抛物线的解析式;(2)已知点D在抛物线上,且横坐标为2,求出△BCD的面积;(3)点P是直线BC上方的抛物线上一动点,过点P作PQ垂直于x轴,垂足为Q.是否存在点P,使得以点A、P、Q为顶点的三角形与△BOC相似?若存在,请求出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)本题需先根据直线过B,C两点,求得B,C的坐标,然后根据的东西是即可得出抛物线的解析式.(2)把D的横坐标代入抛物线的解析式求得纵坐标,求得四边形OBDC是梯形,可直接根据三角形面积公式求得;(3)本题首先判断出存在,首先设点P的横坐标为m,则P的纵坐标为﹣m2+m+2,再分两种情况进行讨论:当==时和当==时,得出△APQ∽△BCO,△APQ∽△CBO,分别求出点P的坐标即可.【解答】解:(1)∵直线y=﹣x+2分别与x轴、y轴相交于点B、C,∴B(3,0),C(0,2),将A(﹣1,0),C(0,2)代入y=﹣x2+bx+c得,,解得.故此抛物线的解析式为y=﹣x2+x+2.(2)∵点D在抛物线上,且横坐标为2,∴y=﹣×22+×2+2=2,∴D(2,2),∵C(0,2),∴CD∥AB,∴四边形OBDC是梯形,=CD•OC=×2×2=2;∴S△BCD(2)存在.如图,设点P的横坐标为m,则P的纵坐标为﹣m2+m+2,AQ=m+1,PQ=﹣m2+m+2,又∵∠COB=∠PQA=90°,∴①当==时,△APQ∽△BCO,即2(m+1)=3(﹣m2+m+2)解得:m1=2,m2=﹣1(舍去),则P(2,2),②当==时,△APQ∽△CBO,即3(m+1)=2(﹣m2+m+2),解得:m1=﹣1(不合题意,舍去),m2=,则P(,).故符合条件的点P的坐标为P(2,2)或(,).【点评】本题考查了抛物线解析式的求法,相似三角形的问题,坐标系里表示三角形的面积问题,要求会用字母代替长度,坐标,会对代数式进行合理变形.26.如图1,在平面直角坐标系中,矩形OABC的顶点A,C的坐标分别为A(12,0),C(0,4),点D为OA边的中点,连接BD.(1)直接写出:点D的坐标:(6,0);tan∠BDA= ;(2)试判定以A点为圆心,以3为半径的⊙A与直线BD有多少个公共点?(3)如图2,若点M从点D出发,以每秒1个单位长度的速度沿D→A→B运动,同时点N从点O出发,以每秒3个单位长度的速度沿O→C→B→A运动,当点M,N相遇时运动即停止,设运动时间为t(秒),求使得△MON为直角三角形时所有t值和取值范围.【考点】四边形综合题.【分析】(1)根据点A和点C的坐标可确定出OA,OC的长,由点D是OA的中点可求得点D 的坐标和AD的长,最后根据锐角三角函数的定义求解即可;(2)如图1所示,过点A作AE垂直BD,垂足为E,由勾股定理求得BD的长,然后由三角形的面积不变可求得AE的长,然后根据d和r的关系可判断出直线DB和圆A的关系,从而可知交点的个数;(3)如图2、3、4所示,由△MON为直角三角形可求得t的值和t的取值范围.【解答】解:(1)∵点A和点C的坐标分别为(12,0)和(0,4),∴OA=12,CO=4.∵四边形OABC为矩形,∴OA=BC=12,OC=AB=4.∵点D为OA的中点,∴点D的坐标为(6,0),AD=.∴tan∠BDA=.故答案为:(6,0);.(2)如图1所示,过点A作AE垂直BD,垂足为E.在Rt△ABD中,DB==2.由三角形的面积公式可知:,即.解得:AE=.∵AE>3,即d>r,∴直线BD与⊙A相离.∴直线BD与⊙A没有公共点.(3)①如图2所示:∵OC=4,DA=6,∴点N从O到C需要4s,点M从D到A需要2s.∴0<t≤2时,点N在OC上,点M在DA上.∴当0<t≤2时,△AOM为直角三角形.②如图3所示:当MN⊥OC时,△MON是直角三角形.∵MN⊥OC,∴∠MNO=90°.∴∠MNO=∠NOA=∠OAM.∴四边形OAMN为矩形.∴ON=AM.∴t=3t﹣6.解得:t=3.∴当t=3s时,△AOM为直角三角形.③如图4所示:当点N与点C重合时,△NOM为直角三角形.∵ON=OC=4,∴t=4.综上所述,当0<t≤2时或t=3时或t=4时,△NOM为直角三角形.【点评】本题主要考查的是矩形的性质、锐角三角函数的定义、直线和圆的位置关系、勾股定理的应用,根据题意画出符合题意的图形是解题的关键.。

《最新6套汇总》福建省泉州市2019-2020学年中考数学第一次模试卷

《最新6套汇总》福建省泉州市2019-2020学年中考数学第一次模试卷

2019-2020学年数学中考模拟试卷一、选择题1.如图,矩形ABCD ,AD =1,CD =2,点P 为边CD 上的动点(P 不与C 重合),作点P 关于BC 的对称点Q ,连结AP ,BP 和BQ ,现有两个结论:①若DP≥1,当△APB 为等腰三角形时,△APB 和△PBQ 一定相似;②记经过P ,Q ,A 三点的圆面积为S ,则4π≤S<254π. 下列说法正确的是( )A.①对②对B.①对②错C.①错②对D.①错②错2.如图,矩形OABC 的顶点A ,C 在坐标轴上,顶点B 的坐标是(4,2),若直线y =mx ﹣1恰好将矩形分成面积相等的两部分,则m 的值为( )A .1B .0.5C .0.75D .23.如图,在直角三角形ABC 中,∠BAC =90°,AC =2AB ,点D 是AC 的中点,将一块锐角为45°的直角三角板ADE 如图放置,使三角板斜边的两个端点分别与A 、D 重合,连接BE 、EC ,下列判断正确的有( )①△ABE ≌△DCE ;②BE =EC ;③BE ⊥EC ;④EC ;A.1个B.2个C.3个D.4个4.如图,菱形ABCD 的边长是4cm ,060B ∠=,动点P 以1/cm s 的速度从点A 出发沿AB 方向运动至点B 停止,动点Q 以2/cm s 的速度从点B 出发沿折线BCD 运动至点D 停止.若点,P Q 同时出发,运动了t s ,记BPQ V 得面积为S 2cm ,则下面图像中能表示S 与t 之间的函数关系的是( )A. B. C.D.5.已知函数y=ax2+bx+c的图象如图所示,那么能正确反映函数y=ax+b图象的只可能是( )A. B. C. D.6.如图,已知正方形ABCD的边长为3cm,若将这个正方形沿射线AD方向平移2cm,则平移前后图形的重叠部分面积为()A.3cm2B.4.5cm2C.6cm2D.9cm27.下列运算正确的是()A.a3+a3=a6B.(﹣a2)3=a6C.a5÷a﹣2=a7D.(a+1)0=18.如图,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0),……直线l n⊥x轴于点(n,0).函数y=x的图象与直线l1、l2、l3、…、l n分别交于点A1、A2、A3、…、A n;函数y=2x的图象与直线l1、l2、l3、…、l n分别交于点B1、B2、B3、…、B n.如果△OA1B1的面积记作S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积记作S3,…,四边形A n﹣1A n B n B n﹣1的面积记作S n,那么S2018=()A.2017.5 B.2018 C.2018.5 D.20199.把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.15 B.17 C.19 D.2410.下列事件属于必然事件的是()A.乘车到十字路口,遇到红灯B.在装有4个红球,6个篮球的暗箱里,一次摸3个球,摸到篮球C.某学校有学生367人,至少有两人的生日相同D.明年沙糖桔的价格在每公斤6元以上11.如图,在△ABC中,∠ABC=90°,直线l1,l2,l3分别经过△ABC的顶点A,B,C,且l1∥l2∥l3,若∠1=40°,则∠2的度数为()A.30°B.40°C.50°D.60°12.下列命题中,其中正确命题的个数为()个.①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件.A.1 B.2 C.3 D.4二、填空题13.如图,∠3=40°,直线b平移后得到直线a,则∠1+∠2=_____°.14.计算:2﹣2.15.如图,△ABC 是等边三角形,,点D 是边BC 上一点,点H 是线段AD 上一点,连接BH 、CH .当∠BHD=60°,∠AHC=90°时,DH=_____.16.已知关于x 的二次函数y=ax 2+2ax+a-3在-2≤x≤2时的函数值始终是负的,则常数a 的取值范围是____.17.计算(______________.18.若关于x 的方程226111k x x x -=+--有增根,则k 的值为_____. 三、解答题19.计算或化简:(1)2cos45°﹣(﹣0(2)先化简,再求值:(31x -﹣x ﹣1)÷2221x x x --+,其中x ; 20.尺规作图(只保留作图痕迹,不要求写出作法)如图,已知∠a 和线段a 、b求作:(1)△ABC ,使∠A =∠α,AB =a ,AC =b .(2)在(1)的条件下,作AB 边上的中线CD .21.2014年深圳市全市生产总值(GDP )公布,从2011年迈入万亿城市俱乐部之后,继续稳步增长,位列全国第4位.其中,各区的GDP 如下统计图,请你依据图解答下列问题:(1)2014年,深圳全市GDP 是 亿元;(2)补全条形统计图;(3)求出原宝安区所在扇形的圆心角度数 .(4)2014年深圳市常住人口约为1000万人,请你算出2014年深圳市人均GDP .22.如图,在△ABC 中,E 为BC 边上一点,以BE 为直径的AR 半圆D 与AC 相切于点F ,且EF ∥AD ,AD 交半圆D 于点G .(1)求证:AB 是半圆D 的切线;(2)若EF =2,AD =5,求切线长AB .23.为了解家长关注孩子成长方面的状况,某学校开展了针对家长的“您最关心孩子哪方面的成长”的主题调查,调查设置了“健康安全”,“日常学习”,“习惯养成”,“情感品质”四个项目,并随机抽取了部分家长进行调查,要求家长只能选择其中一个项目,根据调查结果绘制了如下两幅不完整的统计图.(1)本次调查共抽取了多少名学生家长?(2)通过计算补全条形统计图;(3)若全校共有2000名学生家长,估计有多少位学生家长最关心孩子“情感品质”方面的成长?24.为了解居民的环保意识,社区工作人员在某小区随机抽取了若干名居民开展有奖问卷调查活动,并用得到的数据绘制了如下条形统计图(得分为整数,满分为10分,最低分为6分).请根据图中信息,解答下列问题:(Ⅰ)本次调查一共抽取了______名居民;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)如果对该小区的800名居民全面开展这项有奖问答活动,得10分者设为一等奖,请你根据调查结果,帮社区工作人员估计需准备多少份一等奖奖品.25.立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋.现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y(元/双)与一次性购买的数量x(双)之间满足的函数关系如图所示.(1)当10≤x<60时,求y关于x的函数表达式;(2)九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;①若两次购买鞋子共花费9200元,求第一次的购买数量;②如何规划两次购买的方案,使所花费用最少,最少多少元?【参考答案】*** 一、选择题13.22014.1 4 -15.1 316.<且≠017.418.3三、解答题19.(1)-2(2)﹣x2﹣x+2【解析】【分析】(1)依次计算三角函数、零指数幂、二次根式,然后计算加减法;(2)先算括号里的,然后算除法.【详解】(1﹣﹣1﹣﹣1﹣2;(2)(31x-﹣x﹣1)÷2221xx x--+=231()11xx x----÷22(1)xx--=2 (2)(2)(1)12 x x xx x-+--⋅--=﹣(x+2)(x﹣1)=﹣x2﹣x+2当x)2+2=﹣+2【点睛】本题考查了分式的化简,熟练掌握分式混合运算法则是解题的关键.20.(1)如图,△ABC为所作;见解析;(2)如图,CD为所作;见解析.【解析】【分析】(1)先作∠BAC=∠α,然后分别截取AB=a,AC=b,从而得到△ABC;(2)作AB的中垂线得到AB的中点,从而得到中线CD.【详解】(1)如图,△ABC为所作;(2)如图,CD为所作.【点睛】本题考查作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.21.(1)16000;(2)详见解析;(3)108°;(4)1.6亿元/万人.【解析】【分析】(1)由南山区GDP及其所占百分比可得答案;(2)先求出原宝安区百分比,再用总值乘以对应的百分比可得;(3)用360°乘以对应的百分比可得;(4)总值除以总人数即可得.【详解】(1)2014年,深圳全市GDP是3200÷20%=16000(亿元),故答案为:16000;(2)原宝安区的百分比为480016000×100%=30%,原龙岗区GDP为16000×(1﹣10%﹣3%﹣17%﹣20%﹣30%)=3200(亿元),补全图形如下:(3)原宝安区所在扇形的圆心角度数360°×30%=108°,故答案为:108°;(4)2014年深圳市人均GDP为16000÷1000=1.6(亿元/万人).【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.22.(1)详见解析;(2)【解析】【分析】(1)连接DF,根据切线的性质得到DF⊥AC,根据平行线的性质得到∠EFD=∠ADF,∠FED=∠ADB,由等腰三角形的性质得到∠EFD=∠FED,求得∠ADF=∠ADB,根据全等三角形的性质得到∠ABD=∠AFD=90°,于是得到结论;(2)根据相似三角形的判定和性质定理得到25CE CF EFCD CA AD===,设CE=2x,于是得到CD=5x,DF=DE=3x,根据勾股定理得到CF=4x,于是得到AF=6x,在Rt△ADF中根据勾股定理即可得到结论.【详解】(1)证明:连接DF,∵AC与半圆D相切于点F,∴DF⊥AC,∴∠AFD=90°,∵EF∥AD,∴∠EFD=∠ADF,∠FED=∠ADB,又∵DF=DE,∴∠EFD=∠FED,∴∠ADF=∠ADB,在△ABD与△AFD中DB DFADB ADF AD AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△AFD (SAS),∴∠ABD=∠AFD=90°,∴AB是半圆D的切线;(2)解:∵EF∥AD,∴△CFE∽△CAD,∴25 CE CF EFCD CA AD===,设CE=2x,∴CD=5x,DF=DE=3x,∴在Rt△DFC中,由勾股定理得CF=4x,∴AF=6x,在Rt△ADF中,(6x)2+(3x)2=52,解得x=3∴AB=AF=6x=【点睛】本题考查了切线的判定和性质,相似三角形的判定和性质,全等三角形的判定和性质,勾股定理,平行线的性质,熟练正确切线的判定定理是解题的关键.23.(1)100人;(2)见解析;(3)160人.【解析】【分析】(1)依据“健康安全”一项的人数以及百分比,即可得到抽取的家长数量;(2)求得“习惯养成”一项的人数,即可补全条形统计图;(3)依据“情感品质”一项所占的百分比,即可估计有多少位学生家长最关心孩子“情感品质”方面的成长.【详解】(1)本次调查共抽取家长人数为:30÷30%=100(人);(2)100﹣30﹣52﹣8=10(人),如图所示:(3)2000×8100=160(人),答:估计有160位学生家长最关心孩子“情感品质”方面的成长.【点睛】本题主要考查了条形统计图以及扇形统计图,通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.24.(Ⅰ)50;(Ⅱ)平均数为8.26,众数为8,中位数为8;(Ⅲ)160份.【解析】【分析】(Ⅰ)根据总数等于个体数量的和计算即可;(Ⅱ)根据平均数、众数、中位数的定义计算即可;(Ⅲ)根据样本估计总体的思想,用800乘以10分的人所占百分比即可得答案.【详解】(Ⅰ)4+10+15+11+10=50(名).故答案为:50(Ⅱ)∵4610715811910108.26410151110x⨯+⨯+⨯+⨯+⨯==++++.∴这组数据的平均数为8.26.∵在这组数据中,8出现了15此,出现的次数最多,∴这组数据的众数为8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是8,∴这组数据的中位数为8.(Ⅲ)估计需准备一等奖奖品为1080016050⨯=(份).【点睛】本题考查条形统计图,用样本估计整体及平均数、众数、中位数的定义,读懂统计表,运用数形结合思想来解决由统计图形式给出的数学实际问题是本题的关键.25.(1)y=150﹣x;(2)①第一批购买数量为30双或40双.②第一次买26双,第二次买74双最省钱,最少9144元.【解析】【分析】(1)若购买x双(10<x<60),每件的单价=140﹣(购买数量﹣10),依此可得y关于x的函数关系式;(2)①设第一批购买x双,则第二批购买(100﹣x)双,根据购买两批鞋子一共花了9200元列出方程求解即可.分两种情况考虑:当25<x≤40时,则60≤100﹣x<75;当40<x<60时,则40<100﹣x<60.②把两次的花费与第一次购买的双数用函数表示出来.【详解】解:(1)购买x双(10<x<60)时,y=140﹣(x﹣10)=150﹣x.故y关于x的函数关系式是y=150﹣x;(2)①设第一批购买x双,则第二批购买(100﹣x)双.当25<x≤40时,则60≤100﹣x<75,则x(150﹣x)+80(100﹣x)=9200,解得x1=30,x2=40;当40<x<60时,则40<100﹣x<60,则x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=9200,解得x=30或x=70,但40<x<60,所以无解;答:第一批购买数量为30双或40双.②设第一次购买x双,则第二次购买(100﹣x)双,设两次花费w元.当25<x≤40时w=x(150﹣x)+80(100﹣x)=﹣(x﹣35)2+9225,∴x=26时,w有最小值,最小值为9144元;当40<x<60时,w=x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=﹣2(x﹣50)2+10000,∴x=41或59时,w有最小值,最小值为9838元,综上所述:第一次买26双,第二次买74双最省钱,最少9144元.【点睛】考查了一元二次方程的应用,根据实际问题列一次函数关系式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.2019-2020学年数学中考模拟试卷一、选择题1.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.95°B.75°C.35°D.85°2.如图,在△ABC中,若点D、E分别是AB、AC的中点,S△ABC=4,则S△ADE=()A.1B.2C.3D.43.在下列图形中,既是轴对称图形,又是中心对称图形的是( )A.直角三角形B.正五边形C.正方形D.平行四边形4.在△ABC中,D是BC延长线上一点,且BC=m•BD,过D点作直线AB,AC的垂线,垂足分别为E、F,若AB=n•AC.则DEDF=()A.1(1)n m+B.1m(1n)-C.1(1)n m-D.1(1)n m-5.某游客为爬上3千米高的山顶看日出,先用1小时爬了1千米,休息0.5小时后,再用1.5小时爬上山顶.游客爬山所用时间l与山高h间的函数关系用图形表示是()A. B.C. D.6.大小相同的正方体搭成的几何体如图所示,其俯视图是()A. B. C . D .7.在平面直角坐标系xOy 中,已知点M ,N 的坐标分别为(-1,2),(2,1),若抛物线y=ax 2-x+2(a <0)与线段MN 有一个交点,则a 的取值范围是( ) A .1a ≤-B .10a -<<C .1a <-D .10a -≤<8.边长为2的正方形内接于⊙O ,则⊙O 的半径是( ) A .1BC .2D .9.如图所示是一块含30°,60°,90°的直角三角板,直角顶点O 位于坐标原点,斜边AB 垂直x 轴,顶点A 在函数y 1=1k x(x >0)的图象上,顶点B 在函数y 2=2kx (x >0)的图象上,∠ABO =30°,则12k k =( )A .﹣12B .﹣13C .﹣14D .﹣1510.如图,CE 是□ABCD 的边AB 的垂直平分线,垂足为点O ,CE 与DA 的延长线交于点E 、连接AC ,BE ,DO ,DO 与AC 交于点F ,则下列结论:①四边形ACBE 是菱形;②∠ACD =∠BAE ;③AF :BE =2:3;④S 四边形AFOE:S △COD =2:3.其中正确的结论有( )个.A .1B .2C .3D .411.下列说法中错误的是( ) . A .一个三角形中至少有一个角不少于60° B .三角形的中线不可能在三角形的外部 C .直角三角形只有一条高D .三角形的中线把三角形的面积平均分成相等的两部分12.如图,矩形ABCD 中,A (﹣2,0),B (2,0),C (2,2),将AB 绕点A 旋转,使点B 落在边CD 上的点E 处,则点E 的坐标为( )A.)B.()2 C.(1,2)D.()22,二、填空题13.若关于x 的一元二次方程()22210m x x --+=有两个实数根,那么m 的取值范围是________. 14.如图,在平面直角坐标系中,点A (0,3),将△AOB 沿x 轴向右平移得到△A'O'B',与点A 对应的点A'恰好在直线y =32x 上,则BB'=_____.15.某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为_____度.16.关于x 的方程=3的解为_____.17.15的平方根是____.18.已知一个角的度数为50度,那么这个角的补角等于_____. 三、解答题19.如图,在方格纸中每个小正方形的边长均为l ,线段AB 的端点在小正方形的顶点上,(所画图形顶点必须在小正方形的顶点上).(1)在如图中画一个以AB 为边的四边形ABCD 是中心对称图形,且四边形面积是12;(2)在如图中画一个以AB 为边的四边形ABMN 是轴对称图形,且只有一个角是直角,面积为15.20.已知;如图,在△ABC 中,AB =BC ,∠ABC =90度.F 为AB 延长线上一点,点E 在BC 上,BE =BF ,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=30°,求∠EFC的度数.21.为了更好治理和净化运河,保护环境,运河综合治理指挥部决定购买10台污水处理设备.现有A、B两种型号的设备,其中每台的价格、月处理污水量如下表.万元.(1)求a,b的值;(2)由于受资金限制,运河综合治理指挥部决定购买污水处理设备的资金不超过110万元,问每月最多能处理污水多少吨?22.如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,过A作AE∥BC交CD延长线于E.(1)求证:EA是⊙O的切线;(2)若BD经过圆心O,其它条件不变,ADE与圆重合部分的面积为_____.(在备用图中画图后,用阴影标出所求面积)23.如图1,AB是曲线,BC是线段,点P从点A出发以不变的速度沿A﹣B﹣C运动,到终点C停止,过点P分别作x轴、y轴的垂线分别交x轴、y轴于点M、点N,设矩形MONP的面积为S运动时间为(秒),S与t的函数关系如图2所示,(FD为平行x轴的线段)(1)直接写出k、a的值.(2)求曲线AB的长l.(3)求当2≤t≤5时关于的函数解析式.24.如图,在正方形ABCD 中,AF=BE ,AE 与DF 相交于于点O . (1)求证:△DAF ≌△ABE ; (2)求∠AOD 的度数;(3)若AO=4,DF=10,求tan ADF ∠的值.25.某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.(1)被调查的学生中,最喜爱体育节目的有 人,这些学生数占被调查总人数的百分比为 %.(2)被调查学生的总数为 人,统计表中m 的值为 ,统计图中n 的值为 . (3)在统计图中,E 类所对应扇形圆心角的度数为 .(4)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生数.【参考答案】*** 一、选择题13.3m ≤且2m ≠ 14.2 15.90 16.x =217.18.130° 三、解答题19.(1)见解析;(2)见解析;【解析】 【分析】(1)根据平行四边形的底边为4,高为3,进行画图;(2)以AB 为直角边、点A 为直角顶点构建等腰直角三角形,再依据轴对称图形且面积为15可得. 【详解】解:(1)如图所示,平行四边形ABCD 即为所求;(2)如图2,四边形ABMN 即为所求四边形; 【点睛】本题主要考查了利用图形的轴对称变换和中心变换进行作图,作图时需要运用平行四边形的性质及勾股定理进行计算.注意:平行四边形是中心对称图形. 20.(1)见解析;(2)∠EFC=30°. 【解析】 【分析】(1)根据已知利用SAS 判定△ABE ≌△CBF ,由全等三角形的对应边相等就可得到AE=CF ;(2)根据已知利用角之间的关系可求得∠EFC 的度数. 【详解】(1)证明:在△ABE 和△CBF 中,∵090BE BF ABC CBF AB BC =⎧⎪∠=∠=⎨⎪=⎩, ∴△ABE ≌△CBF (SAS ). ∴AE =CF .(2)解:∵AB =BC ,∠ABC =90°,∠CAE =30°, ∴∠CAB =∠ACB =12(180°﹣90°)=45°,∠EAB =45°﹣30°=15°. ∵△ABE ≌△CBF , ∴∠EAB =∠FCB =15°. ∵BE =BF ,∠EBF =90°, ∴∠BFE =∠FEB =45°.∴∠EFC =180°﹣90°﹣15°﹣45°=30°.【点睛】此题主要考查了全等三角形的判定方法及等腰三角形的性质等知识点的掌握情况;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .21.(1)a=12,b=10; (2)最多能处理污水2000吨. 【解析】 【分析】(1)本题等量关系为A 型设备的价格-B 型设备的价格=2万元,3台B 型设备的价格-2台A 型设备的价格=6万元.即可列方程组解应用题.(2) 设购买A 型设备x 台,则B 型设备(10﹣x )台,能处理污水y 吨,根据题意列出不等式,求出x 的取值范围,再列出处理污水y 吨与购买A 型设备x 台的函数关系式,根据一次函数的性质求解即可. 【详解】(1)根据题意,得2326a b b a -=⎧⎨-=⎩,解得1210a b =⎧⎨=⎩;(2)设购买A 型设备x 台,则B 型设备(10﹣x )台,能处理污水y 吨, ∵12x+10(10﹣x )≤110, ∴0≤x≤5且x 为整数,∵y =220x+180(10﹣x )=40x+1800, ∴y 随x 的增大而增大,当x =5时,y =40×5+1800=2000(吨)所以最多能处理污水2000吨. 【点睛】本题考查了二元一次方程组的应用,一次函数的应用和一元一次不等式的应用,分析题意,找到合适的关系是解决问题的关键.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y 随x 的变化,结合自变量的取值范围确定最值.22.(1)见解析;(2)23π 【解析】 【分析】(1)根据等边三角形的性质可得:∠OAC=30°,∠BCA=60°,证明∠OAE=90°,可得:AE 是⊙O 的切线;(2)如备用图,根据等边三角形的性质得到BD ⊥AC ,∠ABD=∠CBD=30°,∠BAD=∠BCD=90°,根据平行线的性质得到∠AED=∠BCD=90°,解直角三角形得到AD=2,连接OA ,根据扇形和三角形的面积公式即可得到结论. 【详解】(1)证明:如图1,连接OA ,∵⊙O 是等边三角形ABC 的外接圆, ∴∠OAC=30°,∠BCA=60°, ∵AE ∥BC ,∴∠EAC=∠BCA=60°,∴∠OAE=∠OAC+∠EAC=30°+60°=90°, ∴AE 是⊙O 的切线; (2)如备用图,∵△ABC 是等边三角形,BD 经过圆心O ,∴BD ⊥AC ,∠ABD=∠CBD=30°,∠BAD=∠BCD=90°, ∵EA 是⊙O 的切线, ∴∠EAD=30°, ∵AE ∥BC ,∴∠AED=∠BCD=90°, ∵∴AD=2, 连接OA , ∵OA=OB ,∴∠OAB=OBA=30°, ∴∠AOD=60°,∴△ADE 与圆重合部分的面积=S 扇形AOD -S △AOD=260212236023ππ⋅⨯-⨯=故答案为:23π【点睛】本题考查了作图-复杂作图,切线的判定和性质,扇形的面积计算,正确的作出图形是解题的关键. 23.(1)k =6,a =5;(2)曲线AB 的长l =12x x ;(3)2,(25)S t t t =+≤≤. 【解析】 【分析】(1)设P 点坐标为(x ,y )由图象可知,图2中B 点与图1中D 点对应,在B 点时,S =6,故得k =6,图2中E 点与图1中C 点对应,在E 点时,S =30,故得6a =30,可求a =5.(2)通过勾股定理可计算BC放入长度=BC 段用时3秒,故可知P,由A 到B 用时可得曲线AB 的长l .(3)由图(1)可知B (3,2),C 坐标(6,5),由B 到C 是从第2秒后开始到第5秒用时3秒,故P 的坐标可设为(1+t ,t ),即可得S 与t 的函数关系.【详解】解:(1)∵B 点与图1中D 点对应, ∴k =2×3=6,∵图2中E 点与图1中C 点对应,故P 在C 点时,S =30. ∴a =306=5. 故:k =6,a =5;(2)∵BC, ∴P点的速度=52-, ∴曲线AB 的长l×2=.(3)由图(1)可知B (3,2),C 坐标(6,5),P 点由B 到C 用时3秒,故可设P 点坐标为(t+1,t ),矩形MONP 的面积为S =t (t+1)=t 2+t ,(2≤t≤5). 【点睛】本题涉及了直角坐标系的意义和动点构成的几何意义,该题在分析上较为复杂,要求在图1和图2中时间t 与P 坐标之间变化关系,结合线段长与速度及时间的关系和面积的几何意义加以分析是解题关键. 24.(1)见解析;(2)90AOD ??;(3)tan ∠ADF 的值为12. 【解析】 【分析】(1)利用正方形的性质得出AD=AB,∠DAB=∠ABC=90°,即可得出结论;(2)利用(1)的结论得出∠ADF=∠BAE,进而求出∠ADF+∠DAO=90°,最后用三角形的内角和定理即可得出结论.(3)根据(2)得到AO 2=OF·OD,再设OF=x,DO=10-x ,求出x 即可解答 【详解】(1)在正方形ABCD 中,DA=AB,90DAF ABE ∠=∠=︒, 又AF=BE AD AB DAF ABE AF BE =⎧⎪=⎨⎪=⎩∠∠ ∴DAF ∆≌ABE ∆ (SAS)(2)由(1)得 DAF ∆≌ABE ∆ ,∴ ∠ADF=∠BAE,又 ∠BAE+∠DAO=90︒,∴∠ADF+∠DAO=90︒90AOD ∴∠=︒(3)由(2)得∠AOD=900∴△AOF ∽△DOA ∴AO 2=OF·OD 设OF=x,DO=10-x ∴x(10-x)=16 解得x=2或x=8(舍去) ∴tan ∠ADF=48AO OD = ∴tan ∠ADF 的值为12. 【点睛】此题考查了正方形的性质,三角形全等的判定和性质,三角形相似,解题关键在于利用好正方形的性质证明三角形全等25.(1)30,20;(2)150,45,36;(3)21.6°;(4)160【解析】【分析】(1)观察图表体育类型即可解决问题;(2)根据“总数=B类型的人数÷B所占百分比”可得总数;用总数减去其他类型的人数,可得m的值;根据百分比=所占人数/总人数可得n的值;(3)根据圆心角度数=360°×所占百分比,计算即可;(4)用学生数乘以最喜爱新闻节目所占百分比可估计最喜爱新闻节目的学生数.【详解】(1)最喜爱体育节目的有 30人,这些学生数占被调查总人数的百分比为 20%.故答案为30,20;(2)总人数=30÷20%=150人,m=150﹣12﹣30﹣54﹣9=45,n%=54150×100%=36%,即n=36,故答案为150,45,36.(3)E类所对应扇形的圆心角的度数=360°×9150=21.6°,故答案为21.6°;(4)估计该校最喜爱新闻节目的学生数为2000×12150=160人,答:估计该校最喜爱新闻节目的学生数为160人.【点睛】本题考查统计表、扇形统计图、样本估计总体等知识没解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2019-2020学年数学中考模拟试卷一、选择题1.小明把一副45,30的直角三角板如图摆放,其中00090,45,30C F A D ∠=∠=∠=∠=,则αβ∠+∠等于 ( )A .0180B .0210C .0360D .02702.已知二次函数y =ax 2+(a+2)x ﹣1(a 为常数,且a≠0),( )A .若a >0,则x <﹣1,y 随x 的增大而增大B .若a >0,则x <﹣1,y 随x 的增大而减小C .若a <0,则x <﹣1,y 随x 的增大而增大D .若a <0,则x <﹣1,y 随x 的增大而减小3.甲、乙两运动员在长为400m 的环形跑道上进行匀速跑训练,两人同时从起点出发,同向而行,若甲跑步的速度为5m/s ,乙跑步的速度为4m/s ,则起跑后500s 内,两人相遇的次数为( )A.0B.1C.2D.3 4.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )A .甲队员成绩的平均数比乙队员的大B .乙队员成绩的平均数比甲队员的大C .甲队员成绩的中位数比乙队员的大D .甲队员成绩的方差比乙队员的大5.下列计算正确的是( ) A.221a a -=- B.()()2220m m m m +-=≠C.1155155⨯⨯⎛⎫-+-= ⎪⎝⎭ 2- 6.如图,若将直角坐标系中“鱼“形图案的每个“顶点”的纵坐标保持不变,横坐标都乘以﹣1,得到一组新的点,再依次连接这些点,所得图案与原图案关系为( )A.关于y轴对称B.关于x轴对称C.重合D.宽度不变,高度变为原来的一半7.如图,点I和O分别是△ABC的内心和外心,则∠AIB和∠AOB的关系为()A.∠AIB=∠AOBB.∠AIB≠∠AOBC.2∠AIB﹣12∠AOB=180° D.2∠AOB﹣12∠AIB=180°8.A、B、C、D四名同学随机分为两组,两个人一组去參加辩论赛,问A、B两人恰好分到一组的概率()A.14B.13C.16D.129.分式方程1232x x=-的解为()A.25x=-B.1x=-C.1x=D.25x=10.7名学生参加决赛,他们的决赛成绩各不相同,其中一名参赛选手想知道自己是否进前4名,他除了知道自己成绩外,还要知道这7名学生成绩的()A.众数B.方差C.平均数D.中位数11.(11·丹东)如图,在Rt△ABC中,∠C=90°, BE平分∠ABC,ED垂直平分AB于D,若AC=9,则AE的值是()A.B.C.6 D.412.如图,将△ABC绕点A顺时针旋转,使点C落在边AB上的点E处,点B落在点D处,连结BD,如果∠DAC=∠DBA ,那么∠BAC 度数是( )A .32°B .35°C .36°D .40°二、填空题 13.分解因式:269mx mx m -+=_____.14.如图,矩形ABCD 中,4AB =,6AD =,点E 为AD 中点,点P 为线段AB 上一个动点,连接EP ,将APE ∆沿PE 折叠得到FPE ∆,连接CE ,CF ,当ECF ∆为直角三角形时,AP 的长为_____.15.如图,在△ABC 中,∠ACB =90°,AC =BC =3,将△ABC 折叠,使点A 落在BC 边上的点D 处,EF 为折痕,若AE =2,则sin ∠BFD 的值为_____.16.如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为__________.17.周末,张三、李四两人在磁湖游玩,张三在湖心岛P 处观看李四在湖中划船(如图),小船从P 处出发,沿北偏东60︒方向划行200米到A 处,接着小船向正南方向划行一段时间到B 处.在B 处李四观测张三所在的P 处在北偏西45︒的方向上,这时张三与李四相距_________米(保留根号).18.若m 为任意实数,则关于x 的一元二次方程211(3)(2)142x x m m ---=+实数根的个数为_______. 三、解答题 19.在四边形ABCD 中,AB ∥DC ,AB=AD ,对角线AC ,BD 交于点O ,AC 平分∠BAD ,过点C 作CE ∥DB 交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若∠DAB=60°,且AB=4,求OE 的长.20.计算:()01122019230()3cos π---++︒- 212﹣|1|﹣tan45°+(π﹣1978)0.22.第36届全国信息学冬令营在广州落下帷幕,长郡师生闪耀各大赛场,金牌数、奖牌数均稳居湖南省第一.学校拟预算7700元全部用于购买甲、乙、丙三种图书共20套奖励获奖师生,其中甲种图书每套500元,乙种图书每套400元,丙种图书每套250元,设购买甲种图书x 套,乙种图书y 套,请解答下列问题:(1)请求出y 与x 的函数关系式(不需要写出自变量的取值范围);(2)若学校购买的甲、乙两种图书共14套,求甲、乙图书各多少套?(3)若学校购买的甲、乙两种图书均不少于1套,则有哪几种购买方案? 23.解不等式组:4261139x x x x >-⎧⎪-+⎨<⎪⎩ . 24.1135323(5)(1)(3)(10)10464675+----++- 25.如图,在平面直角坐标系中,点A 在y 轴正半轴上,AC //x 轴,点B 、C 的横坐标都是3,且BC 2=,点D 在AC 上,若反比例函数k y (x 0)x =>的图象经过点B 、D ,且AO 3BC 2=.(1)求k 的值及点D 的坐标;(2)将ΔAOD 沿着OD 折叠,设顶点A 的对称点'A 的坐标是()'A m,n ,求代数式m 3n +的值.【参考答案】*** 一、选择题13.m(x-3)214.1或9 415.1 216.1217.18.2三、解答题19.(1)证明见解析;.【解析】【分析】(1)根据平行四边形的判定和菱形的判定证明即可;(2)根据菱形的性质和勾股定理解答即可.【详解】(1)∵AB∥DC,∴∠CAB=∠ACD.∵AC平分∠BAD,∴∠CAB=∠CAD.∴∠CAD=∠ACD,∴DA=DC.∵AB=AD,∴AB=DC.∴四边形ABCD是平行四边形.∵AB=AD,∴四边形 ABCD是菱形;(2)∵四边形 ABCD是菱形,∠DAB=60°,∴∠OAB=30,∠AOB=90°.∵AB=4,∴OB=2,AO=OC=2.∵CE∥DB,∴四边形 DBEC是平行四边形.∴CE=DB=4,∠ACE=90°.∴OE===.【点睛】本题考查了平行四边形的性质与判定、全等三角形的判定与性质、菱形的判定;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.20。

福建省泉州市2020年数学中考一模试卷B卷

福建省泉州市2020年数学中考一模试卷B卷

福建省泉州市2020年数学中考一模试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)的倒数是A . 3B .C .D .2. (2分)(2019·高安模拟) 如图,Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=35°,则∠A的度数为()A .B .C .D .3. (2分) (2019七下·沙河期末) 计算(﹣2)5÷(﹣2)3的结果是()A . ﹣4B . 4C . ﹣2D . 24. (2分)(2018·云南模拟) 下列图形中,不是轴对称图形的是()A .B .C .D .5. (2分)(2019·昆明模拟) 在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:比赛成绩/分9.59.69.79.89.9参赛队个数98643则这30个参赛队决赛成绩的中位数和众数分别是()A . 9.7,9.5B . 9.7,9.9C . 9.6,9.5D . 9.6,9.66. (2分)若一个圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为()A . 15π cm2B . 24π cm2C . 39π cm2D . 48π cm27. (2分)不等式组的解集在数轴上表示正确的是()A .B .C .D .8. (2分) (2016九上·恩施月考) 如图,将等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB′C′,若AC=1,则图中阴影部分的面积为()A .B .C .D . 39. (2分)如图,反比例函数y=(x<0)的图象经过点P,则k的值为()A . ﹣6B . -5C . 6D . 510. (2分)(2020·安顺) 已知二次函数的图象经过与两点,关于x的方程有两个根,其中一个根是3.则关于x的方程有两个整数根,这两个整数根是()A . -2或0B . -4或2C . -5或3D . -6或4二、填空题 (共4题;共5分)11. (1分)(2017·广东) 分解因式:a2+a=________.12. (2分)(2017·天津模拟) 如图,锐角三角形ABC的边AB和AC上的高线CE和BF相交于点D.请写出图中的一对相似三角形,如________.13. (1分) (2016八下·固始期末) 在平面直角坐标系中,点A,B的坐标分别为(m,3),(3m﹣1,3),若线段AB与直线y=2x+1相交,则m的取值范围为________.14. (1分)如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为________.三、解答题 (共11题;共68分)15. (5分) (2019七上·萧山月考) 计算:(1);(2) .16. (5分)(2017·陕西模拟) 解分式方程:﹣1= .17. (2分) (2020·永嘉模拟) 如图,A,B,C是方格纸中的格点,请按要求作图.(1)在图1中画出一个以A,B,C,D为顶点的格点平行四边形.(2)在图2中画出一个格点P,使得∠BPC=∠BAC.18. (5分)如图,已知△ABC是等边三角形,D、E、F分别是射线BA、CB、AC上一点,且AD=BE=CF,连接DE、EF、DF.(1)求证:∠BDE=∠CEF;(2)试判断△DEF的形状,并简要说明理由.19. (2分)(2020·哈尔滨模拟) 为了解中考体育科目训练情况,某区从全区九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图。

福建省泉州市2020版中考数学模拟试卷(I)卷

福建省泉州市2020版中考数学模拟试卷(I)卷

福建省泉州市2020版中考数学模拟试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)—3的倒数是()A . 3B . -3C .D .2. (2分) (2018七上·陇西期中) 如下图所示,在数轴上表示到原点的距离为3个单位的点有()A . D点B . A点C . A点和D点D . B点和C点3. (2分)(2017·景德镇模拟) 下列雪花的图案中,包含了轴对称、旋转、位似三种变换的是()A .B .C .D .4. (2分) (2018七上·沙洋期中) 我国推行“一带一路”政策以来,已确定沿线有65个国家加入,共涉及总人口约达46亿人,用科学记数法表示该总人口为()A . 4.6×109B . 46×108C . 0.46×1010D . 4.6×10105. (2分)(2019·恩施) 如图,在△ABC中,点D,E,F分别是AB,AC,BC的中点,已知∠ADE=65°,则∠CFE的度数为()A . 60°B . 65°C . 70°D . 75°6. (2分)(2017·鄞州模拟) 在某次射击训练中,甲、乙、丙、丁4人各射击10次,平均成绩相同,方差分别是S甲2=0.35,S乙2=0.15,S丙2=0.25,S丁2=0.27,这4人中成绩发挥最稳定的是()A . 甲B . 乙C . 丙D . 丁7. (2分)(2017·桂平模拟) 若点A(a+1,b﹣1)在第二象限,则点B(﹣1,b)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限8. (2分)(2016·余姚模拟) 正方形ABCD的边长为12,在其角上去掉两个全等的矩形DMNP和矩形BIJK,DM=IB=2,DP=BK=3,正方形EFGH顶点分别在正方形ABCD的边上,且EH过N点,则正方形EFGH的边长是()A . 10B . 3C . 4D . 3 或49. (2分) (2018九上·黄石期中) 抛物线y=x2﹣mx﹣m2+1的图象过原点,则m为()A . 0B . 1C . ﹣1D . ±110. (2分)如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2 ,则y关于x的函数的图象大致为()A .B .C .D .二、填空题 (共6题;共6分)11. (1分)计算的最后结果是________.12. (1分)因式分解:ax2﹣ a=________.13. (1分)(2017·泰安) 分式与的和为4,则x的值为________.14. (1分)如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O为圆心,∠AOB=120°,从A 到B只有路弧AB,一部分市民走“捷径”,踩坏了花草,走出了一条小路AB。

2020年福建省泉州市洛江区中考数学一模试卷 (含解析)

2020年福建省泉州市洛江区中考数学一模试卷 (含解析)

2020年福建省泉州市洛江区中考数学一模试卷一、选择题(本大题共10小题,共40.0分)1.−12的倒数是()A. −12B. 12C. −2D. 22.一种登革热病毒的直径约为0.00000005m,数据0.00000005m可用科学记数法表示为()A. 5×10−7mB. 5×10−8mC. 0.5×10−7mD. −5×108m3.一个几何体如下图,则它的左视图是()A.B.C.D.4.正多边形的一个内角为140°,则该正多边形的边数为()A. 9B. 8C. 7D. 45.下列说法正确的是()A. 了解某班同学的身高情况适合用全面调查B. 数据2、3、4、2、3的众数是2C. 数据4、5、5、6、0的平均数是5D. 甲、乙两组数据的平均数相同,方差分别是S甲2=3.2,S乙2=2.9,则甲组数据更稳定6.“今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、物价各几何?”这是我国古代名著九章算术中记载的古典名题,其题意是:有若干人一起买鸡.如果每人出9文钱,就多出11文钱;如果每人出6文钱,就相差16文钱.问买鸡的人数、鸡的价格各是多少?若设买鸡的人数为x人,则列方程正确的是()A. 9x+11=6x+16B. 9x+11=6x−16C. 9x−11=6x+16D. 9x−11=6x−167.下列计算正确的是()A. a3⋅a3=a9B. (a+b)2=a2+b2C. a2÷a2=0D. (a2)3=a68.在平面直角坐标系中,点A(0,−2)在()A. x轴的负半轴上B. y轴的负半轴上C. x轴的正半轴上D. y轴的正半轴上9.如图,AB为⊙O的直径,∠BED=40°,则∠ACD的度数为()A. 90°B. 50°C. 45°D. 80°10.已知函数y=ax2+bx+c的图像的一部分如下图所示,则a+b+c的取值范围是()A. −2<a+b+c<0B. −2<a+b+c<2C. 0<a+b+c<2D. a+b+c<2二、填空题(本大题共6小题,共24.0分)11.计算:(110−1)0−(13)−2=__________.12.在△ABC中,∠A=30°,∠B=90°,若AC=10cm,则BC=___________.13.数轴上距离3的点5个单位长度所表示的数是______.14.同时掷两枚质地均匀的骰子,点数之和小于5的概率是___.15.如图,在△ABC中,∠BAC=90°,AB=AC,DA//BC,tan∠DBA=12,若CD=2√17,则线段BC的长为______ .16. 如图,在平面直角坐标系中,矩形ABCD 的边AB 在y 轴上,点C 坐标为(2,−2),并且AO :BO =1:2,点D 在函数y =k x (x >0)的图象上,则k 的值为______.三、计算题(本大题共2小题,共16.0分)17. .用加减法解方程组{5x −3y =8x +6y =618. 先化简,再求值:(1−1m+2)÷m 2+2m+12m+2,其中m =√2−2.四、解答题(本大题共7小题,共70.0分)19. 如图,AD =CB ,AB =CD.求证:∠BAD +∠ADC =180°.20.如图,已知△ABC,利用尺规在BC上找一点P,使得△ABP与△ACP均为直角三角形(不写作法,保留作图痕迹)21.如图,在四边形ABCD中,点E和点F是对角线AC上的两点,AE=CF,DF=BE,且DF//BE,过点C作CG⊥AB交AB的延长线于点G.(1)求证:四边形ABCD是平行四边形;(2)若tan∠CAB=2,∠CBG=45°,BC=4√2,则▱ABCD的面积是______.522.某电脑公司有A型、B型、C型三种型号的电脑,其中A型每台2500元、B型每台4000元、C型每台6000元,某中学现有资金100500元,计划全部用于从这家电脑公司购进36台两种型号的电脑,这个学校有哪几种购买方案可选择,说明理由.23.甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司揽件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均揽件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.24.如图,AB为⊙O直径,点D为AB下方⊙O上一点,点C为弧ABD中点,连接CD,CA.(1)求证:∠ABD=2∠BDC;(2)过点C作CE⊥AB于H,交AD于E,求证:EA=EC;(3)在(2)的条件下,若OH=5,AD=24,求线段DE的长25.复习课中,老师给出二次函数y=kx2−(2k+1)x−3k−1(k为常数,k≠0).老师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生独立思考后,黑板上出现了一些结论.老师作为活动一员,又补充一些结论,并从中选择如下四条:(1)函数图象过定点(−1,0).(2)函数图象与x轴总有两个不同的交点.(3)若k>0,当x>1时,y 随x的增大而增大.(4)若函数有最小值,则最小值必为负数.请你分别判断四条结论的对与错,并说明理由.【答案与解析】1.答案:C)=1,解析:解:∵(−2)×(−12∴−1的倒数是−2.2故选:C.根据倒数的定义进行解答即可.本题考查的是倒数的定义,即乘积是1的两数互为倒数.2.答案:B解析:本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.00000005=5×10−8.故选B.3.答案:A解析:本题考查了简单几何体的三视图,从左边看得到的图形是左视图,从正面看到的图形是正视图,从上往下看的视图是俯视图.解答此题从左边看得到的应该是一个直角三角形,据此解答即可.解:从左面看到的图形应该是一个直角三角形,如图所示:故选A.4.答案:A解析:解:∵正多边形的一个内角是140°,∴它的外角是:180°−140°=40°,360°÷40°=9.故选A.首先根据求出外角度数,再利用外角和定理求出边数.此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.5.答案:A解析:解:A、了解某班同学的身高情况适合全面调查,故A正确;B、数据2、3、4、2、3的众数是2,3,故B错误;C、数据4、5、5、6、0的平均数是4,故C错误;D、方差越小越稳定,乙的方差小于甲得方差,乙的数据等稳定,故D错误.故选:A.根据调查方式,可判断A;根据众数的意义可判断B;根据平均数的意义,可判断C;根据方差的性质,可判断D.本题考查了方差,方差越小数据越稳定是解题关键.6.答案:C解析:本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.设买鸡的人数为x人,根据鸡的价钱不变,即可得出关于x的一元一次方程,此题得解.解:设买鸡的人数为x人,根据题意得:9x−11=6x+16.故选C.7.答案:D解析:解:A、原式=a6,不符合题意;B、原式=a2+2ab+b2,不符合题意;C、原式=1,不符合题意;D、原式=a6,符合题意,故选:D.各项计算得到结果,即可作出判断.此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.8.答案:B解析:本题考查了点的坐标,y轴上的点的横坐标等于零,y轴的负半轴上的点的纵坐标小于零.根据y轴上的点横坐标等于零,y轴上纵坐标小于零的点在y轴的负半轴上,可得答案.解:在平面直角坐标系中,点A(0,−2)在y轴的负半轴上,故选:B.9.答案:B解析:连接AE,由AB为直径,则∠AEB=90°,可得∠AED=90°−40°=50°,即可求出∠ACD=∠AED= 50°.本题考查圆周角定理及其推论,解题的关键是掌握直径所对的圆周角是90°.解:连接AE,∵AB为直径,∴∠AEB=90°,∵∠BED=40°∴∠AED=90°−40°=50°,∴∠ACD=∠AED=50°.故选B.10.答案:C解析:这是一道考查二次函数图象的题目,根据图象过点(0,1),求出c的值;再根据过点(−1,0),得到关于a、b的式子,根据当x=1时,应有y>0,求出a的取值范围,从而确定a+b+c的范围.解:由图象可知:a<0,图象过点(0,1)∴c=1,图象过点(−1,0),则a−b+1=0,当x=1时,应有y>0,则a+b+1>0,将a−b+1=0代入,可得a+(a+1)+1>0,解得a>−1,∴实数a的取值范围为−1<a<0,又a+b+c=2a+2,∴0<a+b+c<2.故选C.11.答案:−8解析:【试题解析】本题考查的知识点是零指数幂和负整数指数幂,零指数幂:任何一个不等于零的数的零次幂都等于1,负整数指数幂:任何不等于0的数的−n(n是正整数)次幂等于这个数的n次幂的倒数.只要按照零指数幂和负整数指数幂的运算法则进行计算即可.解:(110−1)0−(13)−2,=1−32,=1−9,=−8,故答案为−8.12.答案:5cm解析:本题考查的是直角三角形的性质有关知识,关键是得出BC=12AC,根据含30度角的直角三角形性质得出BC=12AC,代入求出即可.解:∵在Rt△ABC中,∠B=90°,∠A=30°,AC=10cm,∴BC=12AC=5cm.故答案为5cm.13.答案:8或−2.解析:本题主要考查了数轴等知识,注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉任一种情况.根据数轴的特点,分两种情况进行讨论:要求的点在已知点的左侧或右侧.解:在数轴上与表示3的点距离5个单位长度的点表示的数是3+5=8或3−5=−2.故答案为8或−2.14.答案:16解析:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.首先根据题意列出表格,然后由表格求得所有等可能的结果与点数的和小于5的情况,再利用概率公式求解即可求得答案.解:列表如下:123456123456723456783456789456789105678910116789101112∵共有36种等可能的结果,点数的和小于5的有6种情况,∴点数的和小于5的概率是636=16.故答案为16.15.答案:6√2解析:解:过D作DE⊥AB于E,DF⊥BC于F,∵∠BAC=90°,AB=AC,∴∠ABC=45°,∵DA//BC,∴∠DAE=∠ABC=45°,∴AE=DE,设AE=DE=x,∵tan∠DBA=12,∴BE=2x,∴BD=√5x,AB=AC=3x,∴BC=3√2x,∴DF=3√22x,∴BF=√22x,∴CF=5√22x,∵DF2+CF2=CD2,∴(3√22x)2+(5√22x)2=(2√17)2,∴x=2,∴BC=6√2.故答案为:6√2过D作DE⊥AB于E,DF⊥BC于F,根据等腰直角三角形的性质得到∠ABC=45°,根据平行线的性质得到∠DAE=∠ABC=45°,设AE=DE=x,由tan∠DBA=12,得到BE=2x,根据勾股定理得到BD=√5x,AB=AC=3x,求得BC=3√2x,根据勾股定理得到DF2+CF2=CD2,即(3√22x)2+(5√22x)2=(2√17)2,于是得到结论.本题考查了解直角三角形,梯形的性质,正确的作出辅助线是解题的关键.16.答案:2解析:解:如图,∵点C坐标为(2,−2),∴矩形OBCE的面积=2×2=4,∵AO:BO=1:2,∴矩形AOED的面积=2,∵点D在函数y=kx(x>0)的图象上,∴k=2,故答案为2.先根据C 的坐标求得矩形OBCE 的面积,再利用AO :BO =1:2,即可求得矩形AOED 的面积,根据反比例函数系数k 的几何意义即可求得k .本题考查了反比例函数图象上点的坐标特征:反比例函数y =k x (k 为常数,k ≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k ,即xy =k.也考查了矩形的性质. 17.答案:解:{5x −3y =8 ①x +6y =6 ②将①−②×5,得−33y =−22,解得y =23,把y =23代入②,得x +6×23=6,解得x =2,所以原方程组的解为{x =2y =23.解析:本题主要考查了加减消元法解二元一次方程组.由题意利用加减消元法将二元一次方程组转化为一元一次方程,再进行求解即可.18.答案:解:原式=(m+2m+2−1m+2)÷(m+1)22(m+1)=m +1m +2⋅2m +1 =2m+2,当m =√2−2时,原式=√2−2+2=√2.解析:先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.19.答案:证明:连接AC.在△ADC 和△CBA 中,{AD =CB AC =CA CD =AB,∴△ADC≌△CBA .∴∠DCA =∠BAC .∴AB//CD .∴∠BAD+∠ADC=180°.解析:本题考查全等三角形的判定及性质,平行线的判定及性质,掌握全等三角形的判定条件是解题的关键.连结AC,由三边相等证明△ADC≌△CBA,得到∠DCA=∠BAC,从而AB//CD,由平行线的性质即可证明.20.答案:解:如图,点P为所作.解析:过A点作BC的垂线,垂足为P,点P满足条件.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质.21.答案:24解析:(1)证明:∵AE=CF,∴AE−EF=CF−EF,即AF=CE,∵DF//BE,∴∠DFA=∠BEC,∵DF=BE,∴△ADF≌△CBE(SAS),∴AD=CB,∠DAF=∠BCE,∴AD//CB,∴四边形ABCD是平行四边形;(2)解:∵CG⊥AB,∴∠G=90°,∵∠CBG=45°,∴△BCG是等腰直角三角形,∵BC=4√2,∴BG=CG=4,∵tan∠CAB=25,∴AG=10,∴AB=6,∴▱ABCD的面积=6×4=24,故答案为:24.(1)根据已知条件得到AF=CE,根据平行线的性质得到∠DFA=∠BEC,根据全等三角形的性质得到AD=CB,∠DAF=∠BCE,于是得到结论;(2)根据已知条件得到△BCG是等腰直角三角形,求得BG=CG=4,解直角三角形得到AG=10,根据平行四边形的面积公式即可得到结论.本题考查了平行相交线的判定和性质,全等三角形的判定和性质,解直角三角形,正确的识别图形是解题的关键.22.答案:解:设从该电脑公司购进A型电脑x台,购进B型电脑y台,购进C型电脑z台,则可分以下三种情况考虑:(1)只购进A型电脑和B型电脑,依题意可列方程组{6000x+4000y=100500x+y=36,解得:{x=−21.75y=57.75,不合题意,应该舍去;(2)只购进A型电脑和C型电脑,依题意可列方程组{6000x+2500z=100500x+z=36,解得:{x=3z=33;(3)只购进B型电脑和C型电脑,依题意可列方程组{4000y+2500z=100500y+z=36,解得:{y=7z=29.答:有两种方案供该校选择,第一种方案是购进A型电脑3台和C型电脑33台;第二种方案是购进B型电脑7台和C型电脑29台.解析:本题主要考查了二元一次方程组的应用,根据题意充分考虑三种情况及题中的整数性,结合等量关系:单价×数量=总价.列方程组求解.分三种情况:一是购买A+B=36,A的单价×数量+B的单价×数量=100500;二是购买A+C=36,A的单价×数量+C的单价×数量=100500;三是购买B+C=36,B的单价×数量+C的单价×数量= 100500.23.答案:解:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,所以甲公司揽件员人均揽件数超过40(不含40)的概率为430=215;(2)①甲公司各揽件员的日平均揽件数为38×13+39×9+40×4+41×3+42×130=39件;②甲公司揽件员的日平均工资为70+39×2=148元,乙公司揽件员的日平均工资为[38×7+39×7+40×(8+5+3)]×4+(1×5+2×3)×630=159.4元,因为159.4>148,所以仅从工资收入的角度考虑,小明应到乙公司应聘.解析:本题主要考查概率公式,解题的关键是掌握概率=所求情况数与总情况数之比及平均数的定义及其意义.(1)根据概率公式计算可得;(2)①根据加权平均数的定义计算可得;②根据①的结果计算甲公司的日平均工时,再根据加权平均数的定义及其意义计算乙公司的日平均工资,比较即可得解.24.答案:解:(1)如图1,设∠BDC=α,∠DAC=β,则∠CAB=∠BDC=α,∵点C为弧ABD中点,∴AC⏜=CD⏜,∴∠ADC=∠DAC=β,∴∠DAB=β−α,连接AD,∵AB为⊙O直径,∴∠ADB=90°,∴α+β=90°,∴β=90°−α,∴∠ABD=90°−∠DAB=90°−(β−α),∴∠ABD=2α,∴∠ABD=2∠BDC;(2)∵CE⊥AB,∴∠ACE+∠CAB=∠ADC+∠BDC=90°,∵∠CAB=∠CDB,∴∠ACE=∠ADC,∵∠CAE=∠ADC,∴∠ACE=∠CAE,∴AE=CE;(3)如图2,连接OC,∴∠COB=2∠CAB,∵∠ABD=2∠BDC,∠BDC=∠CAB,∴∠COB=∠ABD,∵∠OHC=∠ADB=90°,∴△OCH∽△BAD,∴OHBD =OCAB=12,∵OH=5,∴BD=10,∴AB=√AD2+BD2=26,∴AO=13,∴AH=18,又∠AHE=∠ADB,∠DAB=∠HAE,可得△AHE∽△ADB,∴AHAD =AEAB,即1824=AE26,∴AE=392,∴DE=AD−AE=92.解析:【试题解析】本题考查了相似三角形的判定和性质,勾股定理,属于较难题.(1)如图1,设∠BDC=α,∠DAC=β,根据圆周角定理得到∠CAB=∠BDC=α,即可得到结论;(2)根据已知条件得到∠ACE=∠ADC,得到∠ACE=∠CAE,于是得到结论;(3)根据圆周角定理得到∠COB=2∠CAB,根据勾股定理得到AB=√AD2+BD2=26,由相似三角形的性质即可得到结论.25.答案:解:(1)结论为真,理由如下:把x=−1代入y=kx2−(2k+1)x−3k−1,得y=0所以该函数的图象过定点(−1,0)(2)结论为假,理由如下:△=[−(2k+1)]2−4k(−3k−1)=16k2+8k+1=(4k+1)2当k=−14时,△=(4k+1)2=0,函数图象与x轴只有一个的交点;当k≠−14时,△=(4k+1)2>0,函数图象与x轴有两个的不同的交点(3)结论为假.理由如下:二次函数y=kx2−(2k+1)x−3k−1图象的对称轴为x=2k+12k =1+12k,若k>0,显然x=1+12k >1,故当1<x<1+12k时,y随x的增大而减小,当x>1+12k时,y随x的增大而增大;(4)结论为真,理由如下:∵函数有最小值,∴函数开口向上,k>0,二次函数y=kx2−(2k+1)x−3k−1的最小值为y=−(4k+1)24k<0,解析:本题考查了二次函数图象与系数的关系,二次函数图象上的点的坐标特征,二次函数的性质有关知识.利用二次函数的性质依次判断即可.。

泉州市2020年数学中考一模试卷C卷

泉州市2020年数学中考一模试卷C卷

泉州市 2020 年数学中考一模试卷 C 卷姓名:________班级:________成绩:________一、 单选题 (共 6 题;共 12 分)1. (2 分) (2020·临潭模拟) 已知 A 为锐角,且 cosA≤ ,那么( ) A. B. C. D. 2. (2 分) (2019 九上·天台月考) 若 y=(a+2)x2-3x+2 是二次函数,则 a 的取值范围是( ) A . a≠0 B . a>0 C . a>2 D . a≠-23. (2 分) (2019 九上·香坊期末) 在 A.中,,,则()B. C.D.4. (2 分) (2018·菏泽) 规定:在平面直角坐标系中,如果点 P 的坐标为(m,n),向量可以用点 P的坐标表示为:=(m,n).已知:=(x1 , y1), =(x2 , y2),如果 x1•x2+y1•y2=0,那么点与 互相垂直.下列四组向量,互相垂直的是( )A.=(3,2),=(﹣2,3)B.=( ﹣1,1),=( +1,1)C.=(3,20180),=(﹣ ,﹣1)D.=(,﹣ ),=(( ) 2 , 4)5. (2 分) 若二次函数 y=(x﹣m)2﹣1,当 x≤3 时,y 随 x 的增大而减小,则 m 的取值范围是( )A . m=3B . m>3C . m≥3第 1 页 共 11 页D . m≤36. (2 分) (2019 九上·东港月考) 如图,点 O 是矩形 ABCD 的对角线 AC 的中点,若,,则 OB 的长为交 AD 于点 M,A.4 B.5 C.6D.二、 填空题 (共 12 题;共 12 分)7. (1 分) (2018 九上·桥东期中) 已知线段 a、b、c,其中 c 是 a、b 的比例中项,若 a =9cm,b=4cm,则 线段 c=________.8.(1 分)(2018 九上·松江期中) 已知点 P 是线段 AB 的黄金分割点,AB=4 厘米,则较短线段 AP 的长是________ 厘米.9. (1 分) (2015 九上·重庆期末) △ABC 与△DEF 的相似比为 3:4,则△ABC 与△DEF 的周长比为________. 10. (1 分) (2019 九上·浙江期末) 计算:2a+3a=________.11. (1 分) (2020·济源模拟) 计算(﹣ )﹣2﹣ +2cos30°=________. 12. (1 分) (2015 九上·黄陂期中) 二次函数 y=x2﹣2x﹣3 的图象的顶点坐标是________. 13. (1 分) 如图,点 D,C 的坐标分别为(﹣1,﹣4)和(﹣5,﹣4),抛物线的顶点在线段 CD 上运动(抛物线 随顶点一起平移),与 x 轴交于 A,B 两点(A 在 B 的左侧),点 B 的横坐标最大值为 3,则点 A 的横坐标最小值为________.14. (1 分) 如图,直线 l1∥l2∥l3 , 直线 AC 分别交 l1、l2、l3 于点 A、B、C;直线 DF 分别交 l1、l2、 l3 于点 D、E、F,若 AB=3,BC=4,DE=2,则线段 EF 的长为________ .第 2 页 共 11 页15. (1 分) 如图,一边靠墙,其它三边用 12 米的篱笆围成一个矩形(ABCD)花圃,则这个花圃的面积 S(平 方米)与 AB 的长 x(米)之间的函数关系式为________.16. (1 分) (2018·青浦模拟) 将一个三角形经过放大后得到另一个三角形,如果所得三角形在原三角形的 外部,这两个三角形各对应边平行且距离都相等,那么我们把这样的两个三角形叫做“等距三角形”,它们对应边 之间的距离叫做“等距”.如果两个等边三角形是“等距三角形”,它们的“等距”是 1,那么它们周长的差是 ________.17. (1 分) 已知二次函数 y=2x2+2018,当 x 分别取 x1 , x2(x1≠x2)时,函数值相等,则当 x 取 2x1+2x2 时,函数值为________.18. (1 分) (2017·河北模拟) 如图,一次函数 y=kx+3 分别与 x,y 轴交于点 N,M,与反比例函数 y= (x >0)的图象交于点 A,若 AM:MN=2:3,则 k=________.三、 解答题 (共 7 题;共 78 分)19. (5 分) 以直线 x=1 为对称轴的抛物线 y=-x2+bx+c 与 x 轴交于 A、B 两点,其中点 A 的坐标为(3,0). (1)求点 B 的坐标; (2)设点 M(x1 , y1)、N(x2 , y2)在抛物线线上,且 x1<x2<1,试比较 y1、y2 的大小. 20. (6 分) (2015 八上·潮南期中) 如图,△ABC,AB=5,BC=4,AC=3.第 3 页 共 11 页(1) 用直尺和圆规作边 AB 的垂直平分线 MN; (2) 在直线 MN 上找一点 D,使△ADC 周长最小,并写出△ADC 最小周长是________. 21. (10 分) (2019 九上·闵行期末) 如图,在 Rt△ABC 中,∠ACB = 90°,BC = 6,AC = 8.点 D 是 AB 边 上一点,过点 D 作 DE // BC,交边 AC 于 E.过点 C 作 CF // AB,交 DE 的延长线于点 F.(1) 如果,求线段 EF 的长;(2) 求∠CFE 的正弦值.22. (10 分) 如图,某仓储中心有一斜坡 AB,其坡度为 i=1:2,顶部 A 处的高 AC 为 4m,B、C 在同一水平地面上(1) 求斜坡 AB 的水平宽度 BC。

福建省泉州市2019-2020学年中考数学一月模拟试卷含解析

福建省泉州市2019-2020学年中考数学一月模拟试卷含解析

福建省泉州市2019-2020学年中考数学一月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.将抛物线向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为()A.B.C.D.2.如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B﹣D﹣E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.3.下列四个命题中,真命题是()A.相等的圆心角所对的两条弦相等B.圆既是中心对称图形也是轴对称图形C.平分弦的直径一定垂直于这条弦D.相切两圆的圆心距等于这两圆的半径之和4.如图,按照三视图确定该几何体的侧面积是(单位:cm)( )A .24π cm 2B .48π cm 2C .60π cm 2D .80π cm 25.sin45°的值等于( )A .2B .1C .3D .226.点A (a ,3)与点B (4,b )关于y 轴对称,则(a+b )2017的值为( )A .0B .﹣1C .1D .720177.若点P (﹣3,y 1)和点Q (﹣1,y 2)在正比例函数y=﹣k 2x (k≠0)图象上,则y 1与y 2的大小关系为( )A .y 1>y 2B .y 1≥y 2C .y 1<y 2D .y 1≤y 28.对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( )A .∠α=60°,∠α的补角∠β=120°,∠β>∠αB .∠α=90°,∠α的补角∠β=90°,∠β=∠αC .∠α=100°,∠α的补角∠β=80°,∠β<∠αD .两个角互为邻补角9.一个三角形框架模型的三边长分别为20厘米、30厘米、40厘米,木工要以一根长为60厘米的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是( )A .30厘米、45厘米;B .40厘米、80厘米;C .80厘米、120厘米;D .90厘米、120厘米10.如图,A 、B 、C 、D 四个点均在⊙O 上,∠AOD=50°,AO ∥DC ,则∠B 的度数为( )A .50°B .55°C .60°D .65°11.方程的解为( )A .x=﹣1B .x=1C .x=2D .x=312.如图,已知BD 是ABC △的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .33二、填空题:(本大题共6个小题,每小题4分,共24分.)13.比较大小:3_________10 (填<,>或=).14.如图,反比例函数3y x=(x >0)的图象与矩形OABC 的边长AB 、BC 分别交于点E 、F 且AE=BE ,则△OEF 的面积的值为 .15.方程组35231x y x y +=⎧⎨-=⎩的解是________. 16.如图,在扇形AOB 中,∠AOB=90°,正方形CDEF 的顶点C 是弧AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为4时,阴影部分的面积为_____.17.如果把抛物线y=2x 2﹣1向左平移1个单位,同时向上平移4个单位,那么得到的新的抛物线是_____. 18.分解因式39a a -=________,221218x x -+=__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,已知抛物线y=x 2+bx+c 过A ,B ,C 三点,点A 的坐标是(3,0),点C 的坐标是(0,-3),动点P 在抛物线上.(1)b =_________,c =_________,点B 的坐标为_____________;(直接填写结果)(2)是否存在点P ,使得△ACP 是以AC 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由;(3)过动点P 作PE 垂直y 轴于点E ,交直线AC 于点D ,过点D 作x 轴的垂线.垂足为F ,连接EF ,当线段EF 的长度最短时,求出点P 的坐标.20.(6分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.(3)登山多长时间时,甲、乙两人距地面的高度差为50米?21.(6分)如图,直线y=2x+6与反比例函数y=kx(k>0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图像于点M,交AB于点N,连接BM.求m的值和反比例函数的表达式;直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?22.(8分)如图,PB 与⊙O 相切于点B ,过点B 作OP 的垂线BA ,垂足为C ,交⊙O 于点A ,连结PA ,AO ,AO 的延长线交⊙O 于点E ,与PB 的延长线交于点D .(1)求证:PA 是⊙O 的切线;(2)若tan ∠BAD=23,且OC=4,求BD 的长.23.(8分)如图,一次函数y=﹣x+4的图象与反比例函数y=(k 为常数,且k≠0)的图象交于A (1,a ),B (3,b )两点.求反比例函数的表达式在x 轴上找一点P ,使PA+PB 的值最小,求满足条件的点P 的坐标求△PAB 的面积.24.(10分)如图,在平面直角坐标系中,一次函数()10y kx b k =+≠与反比例函数()20m y m x=≠的图像交于点()3,1A 和点B ,且经过点()0,2C -. 求反比例函数和一次函数的表达式;求当12y y >时自变量x 的取值范围. 25.(10分)如图,在顶点为P 的抛物线y=a (x-h )2+k (a≠0)的对称轴1的直线上取点A (h ,k+14a ),过A 作BC ⊥l 交抛物线于B 、C 两点(B 在C 的左侧),点和点A 关于点P 对称,过A 作直线m ⊥l .又分别过点B ,C 作直线BE ⊥m 和CD ⊥m ,垂足为E ,D .在这里,我们把点A 叫此抛物线的焦点,BC 叫此抛物线的直径,矩形BCDE 叫此抛物线的焦点矩形.(1)直接写出抛物线y=14x 2的焦点坐标以及直径的长. (2)求抛物线y=14x 2-32x+174的焦点坐标以及直径的长. (3)已知抛物线y=a (x-h )2+k (a≠0)的直径为32,求a 的值.(4)①已知抛物线y=a (x-h )2+k (a≠0)的焦点矩形的面积为2,求a 的值.②直接写出抛物线y=14x 2-32x+174的焦点短形与抛物线y=x 2-2mx+m 2+1公共点个数分别是1个以及2个时m 的值.26.(12分)综合与探究:如图,已知在△ABC 中,AB=AC ,∠BAC=90°,点 A 在 x 轴上,点 B 在 y 轴上,点()3,1C -在二次函数21332y x bx =-++的图像上. (1)求二次函数的表达式;(2)求点 A ,B 的坐标;(3)把△ABC 沿 x 轴正方向平移, 当点 B 落在抛物线上时, 求△ABC 扫过区域的面积.27.(12分)如图,△ABC 三个定点坐标分别为A (﹣1,3),B (﹣1,1),C (﹣3,2).请画出△ABC 关于y 轴对称的△A 1B 1C 1;以原点O 为位似中心,将△A 1B 1C 1放大为原来的2倍,得到△A 2B 2C 2,请在第三象限内画出△A 2B 2C 2,并求出S △A1B1C1:S △A2B2C2的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】 试题分析:∵抛物线向右平移1个单位长度,∴平移后解析式为:,∴再向上平移1个单位长度所得的抛物线解析式为:.故选C . 考点:二次函数图象与几何变换.2.A【解析】【分析】根据题意,将运动过程分成两段.分段讨论求出解析式即可.【详解】∵BD=2,∠B=60°,∴点D 到AB 3当0≤x≤2时, y=2133•224x x x ; 当2≤x≤4时,y=13 322x x =. 根据函数解析式,A 符合条件.故选A .【点睛】本题为动点问题的函数图象,解答关键是找到动点到达临界点前后的一般图形,分类讨论,求出函数关系式.3.B【解析】试题解析:A.在同圆或等圆中,相等的圆心角所对的两条弦相等,故A 项错误;B. 圆既是中心对称图形也是轴对称图形,正确;C. 平分弦(不是直径)的直径一定垂直于这条弦,故C 选项错误;D.外切两圆的圆心距等于这两圆的半径之和,故选项D 错误.故选B.4.A【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其侧面积.【详解】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为8÷1=4cm,故侧面积=πrl=π×6×4=14πcm1.故选:A.【点睛】此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.5.D【解析】【分析】根据特殊角的三角函数值得出即可.【详解】,解:sin45°=2故选:D.【点睛】本题考查了特殊角的三角函数的应用,能熟记特殊角的三角函数值是解此题的关键,难度适中.6.B【解析】【分析】根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.【详解】解:由题意,得a=-4,b=1.(a+b)2017=(-1)2017=-1,故选B.【点睛】本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的纵坐标相等,横坐标互为相反数得出a,b是解题关键.7.A【解析】【分析】分别将点P(﹣3,y1)和点Q(﹣1,y2)代入正比例函数y=﹣k2x,求出y1与y2的值比较大小即可. 【详解】∵点P(﹣3,y1)和点Q(﹣1,y2)在正比例函数y=﹣k2x(k≠0)图象上,∴y1=﹣k2×(-3)=3k2,y2=﹣k2×(-1)=k2,∵k≠0,∴y1>y2.故答案选A.【点睛】本题考查了正比例函数,解题的关键是熟练的掌握正比例函数的知识点.8.C【解析】熟记反证法的步骤,然后进行判断即可.解答:解:举反例应该是证明原命题不正确,即要举出不符合叙述的情况;A、∠α的补角∠β>∠α,符合假命题的结论,故A错误;B、∠α的补角∠β=∠α,符合假命题的结论,故B错误;C、∠α的补角∠β<∠α,与假命题结论相反,故C正确;D、由于无法说明两角具体的大小关系,故D错误.故选C.9.C【解析】当60cm的木条与20cm是对应边时,那么另两条边的木条长度分别为90cm与120cm;当60cm的木条与30cm是对应边时,那么另两条边的木条长度分别为40cm与80cm;当60cm的木条与40cm是对应边时,那么另两条边的木条长度分别为30cm与45cm;所以A、B、D选项不符合题意,C选项符合题意,故选C.10.D【解析】试题分析:连接OC,根据平行可得:∠ODC=∠AOD=50°,则∠DOC=80°,则∠AOC=130°,根据同弧所对的圆周角等于圆心角度数的一半可得:∠B=130°÷2=65°.考点:圆的基本性质11.B【解析】【分析】观察可得最简公分母是(x-3)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】方程的两边同乘(x−3)(x+1),得(x−2) (x+1)=x(x−3),,解得x=1.检验:把x=1代入(x−3)(x+1)=-4≠0.∴原方程的解为:x=1.故选B.【点睛】本题考查的知识点是解分式方程,解题关键是注意解得的解要进行检验.12.D【解析】【分析】根据ED是BC的垂直平分线、BD是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴3故选D.【点睛】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.<【解析】【分析】根据实数大小比较的方法进行比较即可得答案.【详解】∵32=9,9<10,∴3<10,故答案为:<.【点睛】本题考查了实数大小的比较,熟练掌握实数大小比较的方法是解题的关键.14.9 4【解析】试题分析:如图,连接OB.∵E、F是反比例函数(x>0)的图象上的点,EA⊥x轴于A,FC⊥y轴于C,∴S△AOE=S△COF=32×1=32.∵AE=BE,∴S△BOE=S△AOE=32,S△BOC=S△AOB=1.∴S△BOF=S△BOC﹣S△COF=1﹣32=32.∴F是BC的中点.∴S△OEF=S矩形AOCB﹣S△AOE﹣S△COF﹣S△BEF=6﹣32﹣32﹣32×32=.15.21 xy=⎧⎨=⎩【解析】【分析】利用加减消元法进行消元求解即可【详解】解:35 231 x yx y+=⎧⎨-=⎩①②由①+②,得3x=6x=2把x=2代入①,得2+3y=5y=1所以原方程组的解为:21x y =⎧⎨=⎩故答案为:21x y =⎧⎨=⎩ 【点睛】本题考查了二元一次方程组的解法,用适当的方法解二元一次方程组是解题的关键.16.4π﹣1【解析】分析:连结OC ,根据勾股定理可求OC 的长,根据题意可得出阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积,依此列式计算即可求解.详解:连接OC ∵在扇形AOB 中∠AOB=90°,正方形CDEF 的顶点C 是»AB 的中点,∴∠COD=45°,∴22,∴阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积 =22451(42)43602π⨯⨯-⨯=4π-1. 故答案是:4π-1.点睛:考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.17.y=2(x+1)2+1.【解析】原抛物线的顶点为(0,-1),向左平移1个单位,同时向上平移4个单位,那么新抛物线的顶点为(-1,1);可设新抛物线的解析式为y=2(x-h )2+k ,代入得:y=2(x+1)2+1.18.(3)(3)a a a +- 22(3)x -【解析】此题考查因式分解329(9)(3)(3),a a a a a a a -=-=+-222212182(69)2(3)x x x x x -+=-+=- 答案点评:利用提公因式、平方差公式、完全平方公式分解因式三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)2-,3-,(-1,0);(2)存在P 的坐标是(14)-,或(-25),;(1)当EF 最短时,点P 的坐标是:(2102+,32-)或(2102,32-) 【解析】【分析】(1)将点A 和点C 的坐标代入抛物线的解析式可求得b 、c 的值,然后令y=0可求得点B 的坐标; (2)分别过点C 和点A 作AC 的垂线,将抛物线与P 1,P 2两点先求得AC 的解析式,然后可求得P 1C 和P 2A 的解析式,最后再求得P 1C 和P 2A 与抛物线的交点坐标即可;(1)连接OD .先证明四边形OEDF 为矩形,从而得到OD=EF ,然后根据垂线段最短可求得点D 的纵坐标,从而得到点P 的纵坐标,然后由抛物线的解析式可求得点P 的坐标.【详解】解:(1)∵将点A 和点C 的坐标代入抛物线的解析式得:3930c b c =-⎧⎨++=⎩, 解得:b=﹣2,c=﹣1,∴抛物线的解析式为223y x x =--.∵令2230x x --=,解得:11x =-,23x =,∴点B 的坐标为(﹣1,0).故答案为﹣2;﹣1;(﹣1,0).(2)存在.理由:如图所示:①当∠ACP 1=90°.由(1)可知点A 的坐标为(1,0).设AC 的解析式为y=kx ﹣1.∵将点A 的坐标代入得1k ﹣1=0,解得k=1,∴直线AC 的解析式为y=x ﹣1,∴直线CP 1的解析式为y=﹣x ﹣1.∵将y=﹣x ﹣1与223y x x =--联立解得11x =,20x =(舍去),∴点P 1的坐标为(1,﹣4).②当∠P 2AC=90°时.设AP 2的解析式为y=﹣x+b .∵将x=1,y=0代入得:﹣1+b=0,解得b=1,∴直线AP 2的解析式为y=﹣x+1.∵将y=﹣x+1与223y x x =--联立解得1x =﹣2,2x =1(舍去),∴点P 2的坐标为(﹣2,5).综上所述,P 的坐标是(1,﹣4)或(﹣2,5).(1)如图2所示:连接OD .由题意可知,四边形OFDE 是矩形,则OD=EF .根据垂线段最短,可得当OD ⊥AC 时,OD 最短,即EF最短.由(1)可知,在Rt△AOC中,∵OC=OA=1,OD⊥AC,∴D是AC的中点.又∵DF∥OC,∴DF=12OC=32,∴点P的纵坐标是32 -,∴23 232x x--=-,解得:x=22±,∴当EF最短时,点P的坐标是:,32-)或(,32-).20.(1)10;1;(2)15(02)3030(211)x xyx x⎧=⎨-⎩剟剟;(3)4分钟、9分钟或3分钟.【解析】【分析】(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;(2)分0≤x≤2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系;(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于50即可得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度-甲登山全程中y关于x的函数关系式=50,即可得出关于x的一元一次方程,解之可求出x值.综上即可得出结论.【详解】(1)(10-100)÷20=10(米/分钟),b=3÷1×2=1.故答案为:10;1.(2)当0≤x≤2时,y=3x;当x≥2时,y=1+10×3(x-2)=1x-1.当y=1x-1=10时,x=2.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为15(02)3030(211)x xyx x⎧=⎨-⎩剟剟.(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).当10x+100-(1x-1)=50时,解得:x=4;当1x-1-(10x+100)=50时,解得:x=9;当10-(10x+100)=50时,解得:x=3.答:登山4分钟、9分钟或3分钟时,甲、乙两人距地面的高度差为50米.【点睛】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度×时间找出y 关于x 的函数关系式;(3)将两函数关系式做差找出关于x 的一元一次方程.21.(1)m =8,反比例函数的表达式为y =8x;(2)当n =3时,△BMN 的面积最大. 【解析】【分析】(1)求出点A 的坐标,利用待定系数法即可解决问题;(2)构造二次函数,利用二次函数的性质即可解决问题.【详解】解:(1)∵直线y=2x+6经过点A (1,m ),∴m=2×1+6=8,∴A (1,8),∵反比例函数经过点A (1,8),∴8=1k , ∴k=8,∴反比例函数的解析式为y=8x. (2)由题意,点M ,N 的坐标为M (8n ,n ),N (62n -,n ), ∵0<n <6, ∴62n -<0, ∴S △BMN =12×(|62n -|+|8n |)×n=12×(﹣62n -+8n)×n=﹣14(n ﹣3)2+254, ∴n=3时,△BMN 的面积最大.22.(1)证明见解析;(2 【解析】试题分析:(1)连接OB ,由SSS 证明△PAO ≌△PBO ,得出∠PAO=∠PBO=90°即可;(2)连接BE ,证明△PAC ∽△AOC ,证出OC 是△ABE 的中位线,由三角形中位线定理得出BE=2OC ,由△DBE ∽△DPO 可求出.试题解析:(1)连结OB ,则OA=OB .如图1,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB.在△PAO和△PBO中,∵PA PB PO PO OA OB=⎧⎪=⎨⎪=⎩,∴△PAO≌△PBO(SSS),∴∠PBO=∠PAO.∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)连结BE.如图2,∵在Rt△AOC中,tan∠BAD=tan∠CAO=23OCAC=,且OC=4,∴AC=1,则BC=1.在Rt△APO中,∵AC⊥OP,∴△PAC∽△AOC,∴AC2=OC•PC,解得PC=9,∴OP=PC+OC=2.在Rt△PBC中,由勾股定理,得PB=22313PC BC+=,∵AC=BC,OA=OE,即OC为△ABE的中位线.∴OC=12BE,OC∥BE,∴BE=2OC=3.∵BE∥OP,∴△DBE∽△DPO,∴BD BEPD OP=,即813313BD=+,解得BD=2413.23.(1)反比例函数的表达式y=,(2)点P坐标(,0),(3)S△PAB= 1.1.【解析】(1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由S△PAB=S△ABD﹣S△PBD 即可求出△PAB的面积.解:(1)把点A(1,a)代入一次函数y=﹣x+4,得a=﹣1+4,解得a=3,∴A(1,3),点A(1,3)代入反比例函数y=kx,得k=3,∴反比例函数的表达式y=3x,(2)把B(3,b)代入y=3x得,b=1∴点B坐标(3,1);作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,331m nm n+=⎧⎨+=-⎩,解得m=﹣2,n=1,∴直线AD的解析式为y=﹣2x+1,令y=0,得x=52,∴点P坐标(52,0),(3)S△PAB=S△ABD﹣S△PBD=12×2×2﹣12×2×12=2﹣12=1.1.点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.24. (1) 3y x=,2y x =-;(2)10x -<<或3x >. 【解析】【分析】 (1)把点A 坐标代入()m y m 0x=≠可求出m 的值即可得反比例函数解析式;把点A 、点C 代入()1y kx b k 0=+≠可求出k 、b 的值,即可得一次函数解析式;(2)联立一次函数和反比例函数解析式可求出点B 的坐标,根据图象,求出一次函数图象在反比例函数图象的上方时,x 的取值范围即可.【详解】(1)把()A 3,1代入()m y m 0x=≠得m 3=. ∴反比例函数的表达式为3y x = 把()A 3,1和()B 0,2-代入y kx b =+得132k b b =+⎧⎨-=⎩, 解得12k b =⎧⎨=-⎩ ∴一次函数的表达式为y x 2=-.(2)由3x 2y y x ⎧=⎪⎨⎪=-⎩得()B 1,3--∴当1x 0-<<或x 3>时,12y y >.【点睛】本题考查了一次函数和反比例函数的交点问题,解决问题的关键是掌握待定系数法求函数解析式.求反比例函数与一次函数的交点坐标时,把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,若方程组无解,则两者无交点.25.(1)4(1)4(3)23±(4)①a=±12;②当时,1个公共点,当<m≤1或5≤m <时,1个公共点,【解析】【分析】(1)根据题意可以求得抛物线y=14x 1的焦点坐标以及直径的长; (1)根据题意可以求得抛物线y=14x 1-32x+174的焦点坐标以及直径的长; (3)根据题意和y=a (x-h )1+k (a≠0)的直径为32,可以求得a 的值; (4)①根据题意和抛物线y=ax 1+bx+c (a≠0)的焦点矩形的面积为1,可以求得a 的值;②根据(1)中的结果和图形可以求得抛物线y=14x1-32x+174的焦点矩形与抛物线y=x1-1mx+m1+1公共点个数分别是1个以及1个时m的值.【详解】(1)∵抛物线y=14x1,∴此抛物线焦点的横坐标是0,纵坐标是:0+1144⨯=1,∴抛物线y=14x1的焦点坐标为(0,1),将y=1代入y=14x1,得x1=-1,x1=1,∴此抛物线的直径是:1-(-1)=4;(1)∵y=14x1-32x+174=14(x-3)1+1,∴此抛物线的焦点的横坐标是:3,纵坐标是:1+1144⨯=3,∴焦点坐标为(3,3),将y=3代入y=14(x-3)1+1,得3=14(x-3)1+1,解得,x1=5,x1=1,∴此抛物线的直径时5-1=4;(3)∵焦点A(h,k+14a),∴k+14a=a(x-h)1+k,解得,x1=h+12a,x1=h-12a,∴直径为:h+12a-(h-12a)=1a=32,解得,a=±23,即a的值是23±;(4)①由(3)得,BC=1 a,又CD=A'A=12a.所以,S=BC•CD=1a•12a=212a=1.解得,a=±12;②当时,1个公共点,当<m≤1或5≤m <1个公共点, 理由:由(1)知抛,物线y=14x 1-32x+174的焦点矩形顶点坐标分别为: B (1,3),C (5,3),E (1,1),D (5,1),当y=x 1-1mx+m 1+1=(x-m )1+1过B (1,3)时,或,过C (5,3)时,(舍去)或,∴当时,1个公共点;当<m≤1或5≤m <时,1个公共点.由图可知,公共点个数随m 的变化关系为当m <当1个公共点;当<m≤1时,1个公共点;当1<m <5时,3个公共点;当5≤m <时,1个公共点;当1个公共点;当m >时,无公共点;由上可得,当或1个公共点;当<m≤1或5≤m <时,1个公共点.【点睛】考查了二次函数综合题,解答本题的关键是明确题意,知道什么是抛物线的焦点、直径、焦点四边形,找出所求问题需要的条件,利用数形结合的思想和二次函数的性质、矩形的性质解答.26.(1)2113362y x x =-++;(2)(1,0),(0,2)A B -;(3)192. 【解析】【分析】(1)将点(3,1)C -代入二次函数解析式即可;(2)过点C 作CD x ⊥轴,证明BAO ACD ≅V V 即可得到1,2OA CD OB AD ====即可得出点 A ,B 的坐标;(3)设点E 的坐标为()2(0)E m m ->,,解方程21132362mm -++=-得出四边形ABEF 为平行四边形,求出AC ,AB 的值,通过ABC V 扫过区域的面积=EFC ABEF S S ∆+四边形代入计算即可.【详解】解:(1)∵点(3,1)C -在二次函数的图象上,21333132b ∴-⨯++=-. 解方程,得16b = ∴二次函数的表达式为2113362y x x =-++. (2)如图1,过点C 作CD x ⊥轴,垂足为D .90CDA ∴∠=︒90CAD ACD ∴∠+∠=︒.90BAC ∠=︒Q ,90BAO CAD ∴∠+∠=︒BAO ACD ∴∠=∠.在Rt BAO V 和Rt ACD △中,∵90BOA ADC BAO ACD AB CA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,BAO ACD ∴≅V V .∵点C 的坐标为(3)1-,, 1,312OA CD OB AD ∴====-=.(1,0),(0,2)A B ∴-.(3)如图2,把ABC ∆沿x 轴正方向平移,当点B 落在抛物线上点E 处时,设点E 的坐标为()2(0)E m m ->,. 解方程21132362m m -++=-得:3m =-(舍去)或72m = 由平移的性质知,AB EF =且//AB EF ,∴四边形ABEF 为平行四边形,72AF BE ∴== 2222215AC AB OB AO ==+=+QABC ∴V 扫过区域的面积=EFC ABEF S S ∆+四边形=171255222OB AF AB AC ⋅+⋅=⨯+192=. 【点睛】本题考查了二次函数与几何综合问题,涉及全等三角形的判定与性质,平行四边形的性质与判定,勾股定理解直角三角形,解题的关键是灵活运用二次函数的性质与几何的性质.27.(1)见解析;(2)图见解析;14. 【解析】【分析】(1)根据网格结构找出点A 、B 、C 关于y 轴的对称点A 1、B 1、C 1的位置,然后顺次连接即可. (2)连接A 1O 并延长至A 2,使A 2O=2A 1O ,连接B 1O 并延长至B 2,使B 2O=2B 1O ,连接C 1O 并延长至C 2,使C 2O=2C 1O ,然后顺次连接即可,再根据相似三角形面积的比等于相似比的平方解答.【详解】解:(1)△A 1B 1C 1如图所示.(2)△A 2B 2C 2如图所示.∵△A 1B 1C 1放大为原来的2倍得到△A 2B 2C 2,∴△A 1B 1C 1∽△A 2B 2C 2,且相似比为12. ∴S △A1B1C1:S △A2B2C2=(12)2=14.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学一模试卷题号一二三四总分得分一、选择题(本大题共10小题,共40.0分)1.-的倒数是()A. -B.C. -3D. 32.“戴口罩、勤洗手”能有效预防新冠病毒,N95口罩对直径大于0.00 000 03米的颗粒,阻隔率达95%以上,数据0.00 000 03科学记数法表示为()A. 0.3×10-6B. 0.3×10-7C. 3×10-7D. 3×10-63.某几何体的左视图如图所示,则该几何体不可能是()A. B. C. D.4.已知正多边形的一个内角是135°,则这个正多边形的边数是()A. 3B. 4C. 6D. 85.下列说法正确的是()A. 了解某型导弹杀伤力的情况应使用全面调查B. 可能性是1%的事件在一次试验中一定不会发生C. 一组数据3、6、6、7、9的众数是6D. 甲,乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.3,S乙2=0.4,则乙的成绩更稳定6.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x人,所列方程正确的是()A. 5x-45=7x-3B. 5x+45=7x+3C. =D. =7.下列计算结果正确的是()A. 8a-a=8B. a3•a2=a6C. (-a)4=a4D. (a-b)2=a2-b28.点E(m,n)在平面直角坐标系中的位置如图所示,则坐标(m-1,n+1)对应的点可能是()A. A点B. B点C. C点9.如图,AB为⊙O的直径,点C、D在⊙O上,若∠BCD=30°,则∠ABD的大小为()A. 60°B. 50°C. 40°D. 20°10.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是()A. c<-3B. c<-2C. c<D. c<1二、填空题(本大题共6小题,共24.0分)11.计算:(-2020)0-()-1=______.12.在Rt△ABC中,∠C=90°,∠A=30°,AB=6cm,则BC=______cm.13.数轴的单位长度为1,如果点A表示的数是-2,那么点B表示的数是______.14.同时掷两枚质地均匀的骰子,每枚骰子的六个面上分别刻有1到6的点数,则这两枚骰子向上的一面出现的点数相同的概率为______.15.一副直角三角板如图放置,点C在FD的延长线上,已知AB∥FC,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=8,则CD的长为______.16.如图,矩形ABCD的顶点A、C都在曲线y=(k>0,x>0)上,若顶点D的坐标为(6,3),则直线BD的函数表达式是______.三、计算题(本大题共1小题,共8.0分)17.解方程组.四、解答题(本大题共8小题,共78.0分)18.AB∥CD,∠AEC+∠ABD=180°,BD=CE,求证:AB=DE.19.先化简,再求值:÷(1-),其中,x=-3.20.如图,在Rt△ABC中,∠ACB=90°,AC=2,BC=3.(1)尺规作图:不写作法,保留作图痕迹.①作∠ACB的平分线,交斜边AB于点D;②过点D作BC的垂线,垂足为点E.(2)在(1)作出的图形中,求DE的长.21.如图,四边形ABCD是平行四边形,延长AD至点E,使DE=AD,连接BD.(1)求证:四边形BCED是平行四边形;(2)若DA=DB=2,cos A=,求点B到点E的距离.22.在“我为祖国点赞“征文活动中,学校计划对获得一,二等奖的学生分别奖励一支钢笔,一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元.(1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30支时,每增加1支,单价降低0.1元;超过50支,均按购买50支的单价售,笔记本一律按原价销售.学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等奖学生多少人时,购买奖品总金额最少,最少为多少元?23.为了解某市快递员的收入情况,现随机抽取了甲、乙两家快递公司50天的送货单,对两个公司的快递员人均每天的送货单数进行统计,数据如下:已知这两家快递公司的快递员的日工资方案为:甲公司规定底薪元,每单抽成1元;乙公司规定底薪90元,每日前40单无抽成,超过40单的部分每单抽成3元.(1)现从这50天中随机抽取1天,求这一天乙公司快递员人均送货单数超过40(不含40)单的概率;(2)根据以上统计数据,若将各公司快递员的人均送货单数视为该公司各快递员的送货单数.①估计甲快递公可各快递员的日均送货单数;②小明拟到甲、乙两家快递公司中的一家应聘快递员的工作.如果仅从工资收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.24.如图①,AB为⊙O的直径,C为⊙O上一点,D为BC延长线一点,且BC=CD,直线CE与⊙O相切于点C,与AD相交于点E.(1)求证:CE⊥AD;(2)如图②,设BE与⊙O交于点F,AF的延长线与CE交于点P.①求证:∠PCF=∠CBF;②若PF=6,tan∠PEF=,求PC的长.25.已知二次函数y=ax2+bx+c的图象经过A(n,b),B(m,a)且m-n=1.(1)当b=a时,直接写出函数图象的对称轴;(2)求b和c(用只含字母a、n的代数式表示);(3)当a<0时,函数有最大值-1,b+c≥a,n≤,求a的取值范围.答案和解析1.【答案】C【解析】【解答】解:-的倒数是-3.故选:C.【分析】乘积是1的两数互为倒数.本题主要考查的是倒数的定义,熟练掌握倒数的定义是解题的关键.2.【答案】C【解析】解:数据0.00 000 03科学记数法表示为3×10-7,故选:C.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】D【解析】【分析】考查了由三视图判断几何体的知识,解题的关键是了解该几何体的构成,难度不大.左视图是从左边看到的,据此求解.【解答】解:对照各个选项的左视图与已知左视图可以发现D不符合,故选:D.4.【答案】D【解析】解:∵正多边形的一个内角是135°,∴该正多边形的一个外角为45°,∵多边形的外角之和为360°,∴边数=,∴这个正多边形的边数是8.故选:D.根据正多边形的一个内角是135°,则知该正多边形的一个外角为45°,再根据多边形的外角之和为360°,即可求出正多边形的边数.本题主要考查多边形内角与外角的知识点,解答本题的关键是知道多边形的外角之和为360°,此题难度不大.5.【答案】C【解析】解:A、了解某型导弹杀伤力的情况因破坏性大,故应使用抽样调查,故错误,C、一组数据3、6、6、7、9的众数是6,正确,符合题意;D、甲,乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,因甲的方差小于乙的方差,所以甲的成绩更稳定,故原命题,错误,2=0.3,S乙不符合题意;故选:C.利用概率的意义、随机事件众数的定义及方差的知识分别判断后即可确定正确的选项.考查了概率的意义、随机事件众数的定义及方差的知识,综合性较强,难度不大.6.【答案】B【解析】解:设合伙人数为x人,依题意,得:5x+45=7x+3.故选:B.设合伙人数为x人,根据羊的总价钱不变,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.7.【答案】C【解析】解:A、原式=7a,不符合题意;B、原式=a5,不符合题意;C、原式=a4,符合题意;D、原式=a2-2ab+b2,不符合题意,故选:C.各项计算得到结果,即可作出判断.此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.8.【答案】A【解析】解:m-(m-1)=1,(n+1)-n=1,则点E(m,n)到(m+1,n-1)横坐标向左移动1单位,纵坐标向上移动1个单位.故选:A.由(m,n)移动到(m-1,n+1),横坐标向左移动1个单位,纵坐标向上移动1个单位,依此观察图形即可求解.本题考查了点的坐标,解题的关键是得到点的坐标移动的规律.9.【答案】A【解析】解:连接AD.∵AB是直径,∴∠ADB=90°,∴∠A+∠ABD=90°,∵∠A=∠BCD=30°,连接AD.利用圆周角定理求出∠ADB=90°,∠A=∠BCD=30°即可解决问题.本题考查圆周角定理,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【答案】B【解析】解:由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2是方程x2+2x+c=x 的两个实数根,且x1<1<x2,整理,得:x2+x+c=0,则.解得c<-2,故选:B.由函数的不动点概念得出x1、x2是方程x2+2x+c=x的两个实数根,由x1<1<x2知,解之可得.本题主要考查二次函数图象与系数的关系,解题的关键是理解并掌握不动点的概念,并据此得出关于c的不等式.11.【答案】-2【解析】解:原式=1-3=-2.故答案为:-2.直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.12.【答案】3【解析】解:∵在Rt△ABC中,∠C=90°,∠A=30°,AB=6cm,∴BC=AB=3cm,故答案为:3.根据含30度角的直角三角形性质得出BC=AB,代入求出即可.本题考查了含30度角的直角三角形性质的应用,关键是得出BC=AB.13.【答案】2【解析】解:点B在点A的右边,距点A4个单位长度,因此,点B所表示的数为:-2+4=2,故答案为:2.根据点B与点A在数轴上的位置,由数轴上两点的距离求解即可.考查数轴表示数的意义,根据符号和绝对值可以确定有理数.14.【答案】【解析】解:列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)由表可知一共有种情况,两枚骰子点数相同的有种,所以两枚骰子点数相同的概率为=,故答案为:.首先根据题意列出表格,然后由表格即可求得所有等可能的结果与两枚骰子点数相同的情况,再利用概率公式即可求得答案.本题考查了列表法与树状图法求随机事件的概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.15.【答案】12-4【解析】解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=8,∴∠ABC=30°,BC=AC×tan60°=8,∵AB∥CF,∴BM=BC×sin30°=8×=4,CM=BC×cos30°=12,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=4,∴CD=CM-MD=12-4.过点B作BM⊥FD于点M,根据题意可求出BC的长度,然后在△EFD中可求出∠EDF=45°,进而可得出答案.本题考查了解直角三角形的性质及平行线的性质,难度较大,解答此类题目的关键根据题意建立三角形利用所学的三角函数的关系进行解答.16.【答案】y=x【解析】解:∵D(6,3),∴A(,3),C(6,),∴B(,),把D(6,3),B(,)代入得,解得,∴直线BD的解析式为y=x.故答案为:y=x.利用矩形的性质和反比例函数图象上点的坐标特征得到A(,3),C(6,),于是得到B(,),然后利用待定系数法求直线BD的解析式.本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了矩形的性质.17.【答案】解:①-②得:(x+y)-(x-2y)=4-1y+2y=33y=3y=1把y=1代入①得:x+1=4,x=3∴原方程组的解为【解析】用加减消元法解方程组即得到答案.本题考查了二元一次方程组的解法,解题关键是认真观察未知数系数并适当选用消元方法解方程.18.【答案】证明:∵∠AEC+∠ABD=180°,∠AEC+∠CED=180°,∴∠ABD=∠CED,∵AB∥CD,∴∠A=∠CDE,在△ABD和△DEC中,∵,∴△ABD≌△DEC(AAS),∴AB=DE.【解析】利用AAS证明△ABD≌△DEC(AAS),可得结论.本题考查全等三角形的判定和性质,平行线的性质、等角的补角相等,证明全等三角形是解题的关键.19.【答案】解:原式=÷(-)=•=,当x=-3时,原式===.【解析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.20.【答案】解:(1)如图,DE为所作;(2)∵CD平分∠ACB,∴∠BCD=∠ACB=45°,∵DE⊥BC,∴△CDE为等腰直角三角形,∴DE=CE,∵DE∥AC,∴△BDE∽△BAC,∴=,即=,∴DE=.【解析】(1)利用基本作图,先画出CD平分∠ACB,然后作DE⊥BC于E;(2)利用CD平分∠ACB得到∠BCD=45°,再判断△CDE为等腰直角三角形,所以DE=CE,然后证明△BDE∽△BAC,从而利用相似比计算出DE.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.21.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵DE=AD,∴DE=BC,DE∥BC,∴四边形BCED是平行四边形;(2)解:连接BE,∵DA=DB=2,DE=AD,∴AD=BD=DE=2,∴∠ABE=90°,AE=4,∵cos A=,∴AB=1,∴BE==.【解析】(1)根据平行四边形的性质得到AD=BC,AD∥BC,等量代换得到DE=BC,DE∥BC,于是得到四边形BCED是平行四边形;(2)连接BE,根据已知条件得到AD=BD=DE=2,根据直角三角形的判定定理得到∠ABE=90°,AE=4,解直角三角形即可得到结论.本题考查了平行四边形的判定和性质,直角三角形的判定和性质,三角函数的定义,证得∠ABE=90°是解题的关键.22.【答案】解:(1)钢笔、笔记本的单价分别为x、y元,根据题意得,,解得:,答:钢笔、笔记本的单价分别为10元,6元;(2)设钢笔的单价为a元,购买数量为b元,支付钢笔和笔记本的总金额w元,①当30≤b≤50时,a=10-0.1(b-30)=-0.1b+13,w=b(-0.1b+13)+6(100-b)=-0.1b2+7b+600=-0.1(b-35)2+722.5,∵当b=30时,w=720,当b=50时,w=700,∴当30≤b≤50时,700≤w≤722.5;②当50<b≤60时,a=8,w=8b+6(100-b)=2b+600,700<w≤720,∴当30≤b≤60时,w的最小值为700元,∴这次奖励一等奖学生50人时,购买奖品总金额最少,最少为700元.【解析】(1)钢笔、笔记本的单价分别为x、y元,根据题意列方程组即可得到结论;(2)设钢笔的单价为a元,购买数量为b元,支付钢笔和笔记本的总金额w元,①当30≤b≤50时,求得w=-0.1(b-35)2+722.5,于是得到700≤w≤722.5;②当50<b≤60时,求得w=8b+6(100-b)=2b+600,700<w≤720,于是得到当30≤b≤60时,w的最小值为700元,于是得到结论.本题考查了二次函数的应用,二元一次方程组的应用,正确的理解题意求出二次函数的解析式是解题的关键.23.【答案】解:(1)因为乙公司快递员人均揽件数超过40的50天中有25天,所以乙公司快递员人均揽件数超过40(不含40)的概率为=,(2)①甲快递公司各快递员的日均送货单数为(30×15+40×10+50×20+60×5)=43(件);②甲快递公司各快递员的日平均工资为70+43×1=113(元),乙快递公司各快递员的日平均工资为90+(20×10×3+5×20×3)=108(元),因为113>108,所以仅从工资收入的角度考虑,小明应到甲公司应聘.【解析】(1)直接利用概率公式求解即可;(2)①用加权平均数的计算方法求得平均数即可;②计算平均工资,通过比较平均工资进行判断即可.考查了概率公式及用样本估计总体的知识,解题的关键是了解加权平均数的计算方法,难度不大.24.【答案】(1)证明:如图①,连结OC.∵直线CE与⊙O相切于点C,∴OC⊥CE,即∠OCE=90°.∵OA=OB,BC=CD,∴OC是△BDA的中位线.∴OC∥AD.∴∠CED=∠OCE=90°,即OC⊥AD;(2)①证明:如图②,作直径CG,连结FG,连结CF,∵CG是直径,点F在圆上,∴∠CFG=90°.∴∠G+∠FCG=90°.由(1)可知∠OCE=∠PCF+∠FCG=90°,∴∠G=∠PCF.又∵∠G=∠CBF,∴∠PCF=∠CBF;②如图②,连结AC.∵AB是直径,点F在圆上,∴∠AFB=∠PFE=90°=∠CEA.又∵∠EPF=∠APE,∴△PEF∽△PAE.∴=,即PE2=PF•PA.在直角△PEF中,tan∠PEF==,又∵PF=6,∴EF=8,由勾股定理,可求得PE=10.∵∠FBC=∠PCF=∠CAF,∠CPF=∠APC∴△PCF∽△PAC.∴=,即PC2=PF×PA.∴PC2=PE2,则PC=PE=10.【解析】(1)说明OC是△BDA的中位线,利用中位线的性质,得到∠OCE=∠CED=90°,从而得到CE是圆O的切线.(2)①如图②,作直径CG,连结FG,根据圆周角定理知,∠G+∠FCG=90°.由(1)可知∠OCE=∠PCF+∠FCG=90°,则∠G=∠PCF.结合已知条件∠G=∠CBF证得结论;②如图②,连结AC.构造相似三角形:△PEF∽△PAE,由该相似三角形的对应边成比例推知PE2=PF•PA;在直角△PEF中,根据锐角三角函数定义求得EF=8;结合由勾股定理,可求得PE=10;所以由相似三角形△PCF∽△PAC的对应边成比例推知PC2=PF×PA,故PC2=PE2.本题是圆的综合题,考查了切线的判定、三角形的中位线定理、相似三角形的性质和判定等知识点.利用三角形相似,说明PE=PC是解决本题的难点和关键.25.【答案】解:(1)函数的对称轴为直线x=-=-;(2)∵二次函数经过A(n,b),B(m,a),则①,整理得:(m-n)[a(m+n)+b]=a-b,∵m-n=1,∴a(m+n)+b=a-b,∴b=-na,将b=-na代入①得:c=-na;(3)∵b+c≥a,∴-2na≥a,当a<0时,n≥;而n≤,故-n≤;∵y=a(x+)2+(a<0),∴=-1,∴4ac-b2=-4a,且bc=-na,∴4a(-na)-(-na)2=4,化简得:=n2+n=(n+2)2-1,∵-n≤时,随n的增大而增大,当n=-时,=-,当n=-时,=,∴-≤a≤.【解析】(1)函数的对称轴为直线x=-,即可求解;(2)把A、B坐标代入抛物线表达式并整理得:(m-n)[a(m+n)+b]=a-b,即可求解;(3)确定n的取值范围:-n≤-,根据=-1,得到=n2+n=(n+2)2-1,即可求解.本题考查的是二次函数图象与系数的关系,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.。

相关文档
最新文档