数学人教版七年级上册正数和负数第一课时教案
1.1正数和负数教案2023-2024学年人教版数学七年级上册

习题练习
课后习题: 1.小明先向前走了17m,又向后走了12m,小明现在离原来的位置多远? 2.小明发烧时温度升到38℃,在第二天退烧后温度为37℃,第二天 和第一天的温度差是多少? 3.小明向西走了100米,又向东走了50米,向东记作正方向,那么 分别表示出向西走100米和向东走50米
谢谢大家
正数和负数
目标: 认识正数,零和负数 学会使用正数和负数
数学人教版 七年级上
激趣导入
你知道的数 字类型有哪
些?
这些在生 活中够用吗?
激趣导入
0,1,2,3,4...... 1/2,2/3,3/4...... 0.1,0.2,0.3......
你知道的数 字类型有哪
些?
这些在生 活中够用吗?
探究新知
数学人教版 七年级上
习题练习
2.填空。
(1)60m表示向北走60m,那么-60m表示_向__南_走__6_0_m__。 (2)月球表面的白天温度平均零上126℃,记作_+_1_2_6_℃__。 (3)水位上升5cm时水位变化记作+5cm,则水位下降7cm时水 位变化记作_-7_c_m__,水位不升不降时水位变化记作0_c_m___。
探究新知
• 在同一个问题中,分别用正数和负数表示相反意义的量
例:一个月内,小明的体重增加2千克,妈妈的Байду номын сангаас重减少3千克,爸爸的体 重没有变化,求他们三个人的体重增长值?
探究新知
• 在同一个问题中,分别用正数和负数表示相反意义的量
例:一个月内,小明的体重增加2千克,妈妈的体重减少3千克,爸爸的体 重没有变化,求他们三个人的体重增长值?
解:小明体重增加2kg 妈妈体重增加-3kg 爸爸体重增加0kg
人教版七年级上册1.1正数和负数第1课时正数和负数(1)课程设计

人教版七年级上册1.1正数和负数第1课时正数和负数(1)课程设计课程背景正数和负数是初中数学中的基础概念,正负数的认识和运算是初中数学课程中的重中之重。
本课程从初步了解正数和负数入手,逐步引导学生掌握正负数的基本概念、性质和运算规律,为进一步学习打下基础。
教学目标知识目标1.了解正数和负数的定义2.掌握正数与负数的相互转化方法3.理解相反数的概念,并会求其相反数4.了解数轴的概念,能够将数表示在数轴上。
能力目标1.能够判断数的符号大小关系2.能够比较正负数的大小3.能够计算正负数的加减法并理解计算规则4.能够运用所学知识解决实际问题。
情感目标1.培养学生的数学思维能力2.增强学生学习数学的兴趣和信心3.培养合作意识,促进与他人交流和合作。
教学内容1. 正数和负数1.定义正数和负数,了解负数的实际意义2.正数和负数的相互转化方法及其实际应用3.正数和负数在数轴上的表示及其作用。
2. 相反数1.相反数的概念及其性质2.相反数的计算方法及实际应用。
3. 正数和负数的运算1.正数和正数的加法和减法2.负数和负数的加法和减法3.正数和负数的加法和减法4.了解负数乘以正数的规律,并且能够应用规律计算。
教学步骤第一步:导入新课1.通过课件、多媒体等方式呈现负温度的气象数据,并引导学生发现其中的规律和规律性。
2.引导学生思考冬季缺电用电量问题及解决的方法,并且探讨在寒冷季节如何储存食物、水等资源。
3.回顾本学期已经学过的有关数学知识,引导学生认识数轴,了解正数和负数的概念。
第二步:讲授新知1.通过图示与实物直观展示来引入正数、负数的概念,让学生初步进行认识。
2.了解正数和负数的相互转化方法及其实际应用,带领学生通过实例理解。
3.引导学生完成相反数的计算,并让学生能深入理解相反数的性质。
4.讲解正数和负数的运算,逐步引导学生掌握加法、减法算法,并让学生应用这些算法进行真实的计数操作。
第三步:拓展与巩固1.通过图像展示,让学生更直观的理解数轴中正负数的位置关系。
新人教版七年级数学上1.1《正数和负数》教案

正数和负数( 1)1.整理前两个学段学的整数、分数(包含小数)的知,掌握正数和数的观点;教课目 2. 能划分两种不一样意的量,会用符号表示正数和数;3.体数学展的一个重要原由是生活的需要,激学生学数学的趣。
教课点正确划分两种不一样意的量。
知要点两种相反意的量教课程(生活)理念上开始,教通详细的例子,要明在先回小学前两个学段我已学的数,并由此学生思虑:生里学的数的活中有些“从前学的数” 用了?下边的例子型,出我已供参照.学了整数和分:今日我已是七年的学生了,我是你的数,而后,一些数学老.下边我先向你做一下自我介,我的名字生活中共有置情境是 XXX,身高 1.69 米,体重 74.5 千克,今年 43 .我相反意的量,引入的班是七 (2) 班,有 50 个同学,此中男同学有27明了表示相反个,占全班人数的 54%⋯意的量,我需1:老才的介中出了几个数?分是什要引入数,么?你能将些数按从前学的数的分方法行分做了数学的?密性,但于学学生活:思虑,沟通生来,更多地感师:从前学过的数,实质上主要有两大类,分别是整数和分数(包含小数).问题 2:在生活中,仅有整数和分数够用了吗?请同学们看书(察看本节前方的几幅图顶用到了什么数,让学生感觉引入负数的必需性)并思虑议论,然后进行沟通。
(也能够出示气象预告中的气温图,地图中表示地形高低地形图,薪资卡中存取钱的记录页面等)学生沟通后,教师概括:从前学过的数已经不够用了,有时需要一种前方带有“-”的新数。
问题 3:前方带有“一”号的新数我们应如何命名到了数学的无聊无聊为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设以下的问题情境,以尽量切近学生的实质.这个问题能激发学生探究的欲念,学生自己看书学习是培养学生自主学习的重要门路,都应予以重视。
以上的情境和实例使学生体会生活中到处有数学,经过实例,使学生获得大量的感性资料,为正确成立相反意义的量奠定基础。
这些问题是剖析问题研究新知它呢?为何要引人负数呢?往常在平时生活中我们用这节课的主要知正数和负数分别表示如何的量呢?识,教师要清楚地这些问题都一定要修业生理解.向学生说明,并且教师能够用多媒体出示这些问题,让学生带着这些要注意语言的准问题看书自学,而后师生沟通.确与规范,要舍得这阶段主假如让学生学会正数和负数的表示.花时间让学充足重申:用正,负数表示实质问题中拥有相反意义的发布想法。
初一上册数学《正数和负数》教案(精选10篇)

初一上册数学《正数和负数》教案(精选10篇)初一上册数学《正数和负数》教案 1一、内容和内容解析1、内容正数和负数的意义。
2、内容解析引入负数,将数的范围扩充到有理数,是解决实际问题的需要,也是为了解决数学内部的运算、解方程等问题的需要。
本课内容是本章后续的有理数的相关概念及运算的基础。
通过实例引入正数与负数,既能让学生感受负数与现实生活的紧密联系,体会引入负数的必要性,又有助于学生了解正数和负数的意义,从而学会用正数、负数去刻画现实中具有相反意义的量。
在刻画现实问题时,通常将“上升”“增加”“盈利”等确定为正,相应地将“下降”“减少”“亏欠”等确定为负。
基于以上分析,确定本节课的教学重点为:感受引入负数的必要性;能用正数和负数表示具有相反意义的量。
二、目标和目标解析1、教学目标(1)体会引入负数的必要性;(2)了解负数的意义,会用正数、负数表示具有相反意义的量。
2、目标解析(1)学生能自己举出含有相反意义的量的生活实例,说明引入负数的必要性;(2)学生能借助具体例子,用实际意义(如“增加”与“减少”,“收入”与“支出”等)说明负数的含义。
在含有相反意义的量的问题情境中,学生能用正数和负数来表示相应的量。
三、教学问题诊断分析学生在小学已经学习了整数、分数(包括小数),即正有理数及0的知识,对负数的意义也有初步的了解,还会用负数表示日常生活中的一些量,但他们对负数意义的了解非常有限。
在一些比较复杂的实际问题中,需要针对问题的具体特点规定正、负,特别是要用正数与负数描述向指定方向变化的现象(如“负增长”)中的量,大多数学生都会有困难。
这既与学生的生活经验不足有关,同时也因为这样的表示与日常习惯不一致。
突破这一难点,需要多举日常生活、生产中的实例,让学生通过例子来理解正数与负数的意义,学会用正数、负数表示具有相反意义的量。
本节课的教学难点为:用正数、负数表示指定方向变化的量。
四、教学过程设计1、创设情境,引入新知教师展示教科书图1。
1.1 正数和负数 教案 2024-2025-学年度-人教版(2024)数学七年级上册

1.1正数和负数教学过程设计课题1.1正数和负数授课人教学目标1.理解正、负数的概念,会判断一个数是正数还是负数.2.会用正、负数表示具有相反意义的量,会用数学的方法表达实际情境.3.通过对具体情境的观察和思考,知晓负数概念形成的过程,培养学生的数感、符号意识,培养学生用数学眼光看待、观察现实世界的意识与习惯.教学重点能理解正、负数的概念,会判断一个数是正数还是负数.教学难点会用正、负数表示具有相反意义的量.教学活动教学步骤师生活动设计意图活动一: 创设情境导入新课【课堂引入】数的产生和发展离不开生活和生产的需要.人们对于数的认识就是伴随着记数、测量、运算等方面的需求不断拓展的(如图1-1-2).在小学,我们学过自然数、小数和分数,它们都是大于或等于0的数,但是在日常生活和生产实践中,为了表达和运算的需要,还有必要引入一类新的数.图1-1-2(1)北京冬季某一天的最高气温为零上3摄氏度,最低气温为零下结合已有的知识经验和生活常识,通过问题的形式引导学生发现“新数”,进而引入课题.3摄氏度.如何用数区分“零上3摄氏度”和“零下3摄氏度”? (2)某公司今年7月份盈利50万元,8月份亏损10万元.该公司在记账时如何用数分别表示“盈利50万元”和“亏损10万元”? (3)某年,我国棉花产量比上年增长7.8%,玉米产量比上年减少0.7%.统计这两种农作物产量的变化情况时,如何用数分别表示“增长7.8%”和“减少0.7%”?活动二: 探究与应用【探究1】正、负数的概念正数:像3,50,7.8%这样大于0的数叫作正数.负数:像-3,-10,-0.7%这样在正数前加上符号“-”的数叫作负数.3或+3读作“3或正3”,-3读作“负3”.注意:(1)有时,为了明确表达与负数的相反意义,在正数的前面也加上符号“+”.例如,+10,+2,+2.7%.一般情况下,正数前面的“+”省略不写.采取比较轻松的方式,尽量避免使概念复杂化,让学生觉得数学并不难学,增强学生的自信心!活动二: 探究与应用(2)一个数前面的“+”“-”号叫作这个数的符号.例如,+10读作“正10”;-3读作“负3”.【探究2】0我们在小学时知道:0表示没有,0不能作除数,0乘任何数都等于0.从本节课的学习中我们知道,0不仅仅表示没有,0 ℃不是没有温度,而是规定冰水混合物的温度为0 ℃.在实际意义中,0往往表示基准,比如海平面、警戒水位等,有着丰富的内涵.总结:0既不是正数,也不是负数.【探究3】用正、负数表示具有相反意义的量甲汽车向东行驶3 km,乙汽车向西行驶1 km.蔬菜店某天上午购进黄瓜50 kg,下午售出黄瓜2 kg.教师:你会用正、负数来表示这些具有相反意义的量吗?总结:对0的分析,能够帮助学生加深对0的内涵的理解.用趣味情境启发学生用正、负数表示具有相反意义的量.让学生初步认识负数,知道负数的产生是生活的需要.(1)定义:在生活中存在各种各样的量,其中有一种量,它们的属性相同(即同类量),但表示的意义却相反,我们把这样的量叫作相反意义的量.(2)表示法:用正数与负数表示一对具有相反意义的量.把其中一种意义的量规定为正,把另一种与之意义相反的量规定为负. 【应用举例】例1 指出下面各数中的正数、负数: -2,+313,0,45,2024,-0.02,+3.65,-112.例2 某校组织学生去劳动实践基地采摘橘子,并称重、封装.一箱橘子的标准质量为2.5 kg .如果用正数表示超出标准质量的克数,那么(1)比标准质量多65 g 和比标准质量少30 g 各怎么表示? (2)50 g,-27 g 各表示什么意思?例3 (1)一个月内,李明体重增加1.2 kg,张华体重减少0.5 kg,刘伟体重无变化,写出他们这个月的体重增长值.(2)四种品牌的手机今年第二季度的销售量与第一季度相比,变化率如下:A 品牌减少2%,B 品牌增长4%,C 品牌增长1%,D 品牌减少3%.写出今年第二季度这些品牌的手机销售量的增长率. 通过对实例的分析,让学生知道如何用正、负数表示具有相反意义的量.【拓展提升】例4 一批螺帽产品的内径允许的偏差是±0.02 mm,现抽查5个样品,超过规定的毫米数记为正数,不足的毫米数记为负数,检查结果(单位:mm)如下表,则符合要求的产品有 ( )序号 12345结果+0.031 +0.017 +0.023 -0.021 -0.015A .1个B .2个C .3个D .5个例5 某粮食加工厂生产的大米,每袋的标准质量是20 kg,规定合格产品最重不超过20.5 kg,最轻不低于19.8 kg .用正数表示超通过练习进行针对性的巩固,使学生在掌握基础知识的同时,拓展提升.过标准的质量,用负数表示不足标准的质量,现有10袋大米,它们的质量分别记作-0.3 kg,0.4 kg,-0.1 kg,-0.2 kg,0 kg,-0.25 kg,0.5 kg,-0.15 kg,0.6 kg,-0.06 kg,则这10袋大米的合格率是多少? 活动 三: 课堂 总结 反思【当堂训练】1.下列结论正确的是 ( )A .0既是正数,又是负数B .0是最小的正数C .0是最大的负数D .0既不是正数,也不是负数 2.在-7,0,-3.78,+100,-0.27中,负数有 ( )A .0个B .1个C .2个D .3个 3.若-50元表示支出50元,则+100元表示 .4.正常水位为0 m,如果用正数表示水面高于正常水位的高度,那么水位高于正常水位0.2 m 记作 ,低于正常水位0.3 m 记作 .5.指出下面各数中的正数、负数:-0.3,52,+312,-135,0,-4,2024.6.某商店利用公式:利润=售价-进价,计算该商店星期一的利润为-30元,星期二的利润为+300元,请说明-30元和+300元的含义. 通过检测发现学生对本节课知识的掌握情况,总结本节课的教学效果,并为课下辅导做好准备.【知识网络】提纲挈领,重点突出. 【作业布置】教材P3练习,P5练习、习题1.1T4,T5,T6.根据内容,重点设置作业,巩固课堂教学效果.【教学反思】①[授课流程反思]通过身边常见的生活情境,让学生感受到数不够用了,进而引入新课,容易调动学生的积极性,更能体现正、负数的实际意义.②[讲授效果反思]通过对实际问题的探究,感受正、负数的实际意义,更好地理解负数的概念.让学生正确理解“一个数,如果不是正数,必定是负数或0”,强调“0既不是正数,也不是负数”.③[师生互动反思]④[习题反思]好题题号错题题号反思,更进一步提升.。
2024-2025学年初中数学七年级上册(人教版)教案1.1正数和负数

第一章有理数1.1 正数和负数教学目标课题 1.1 正数和负数授课人素养目标1.理解具有相反意义的量及正数、负数的意义.2.会用正数、负数表示具体情境中具有相反意义的量,体会数学知识与生活的密切联系,进一步增强符号意识,培养应用意识.3.理解0的意义,体会0在解决实际问题中的“基准”作用,初步培养抽象能力.教学重点1.能理解正数、负数的概念,会判断一个数是正数还是负数.2.会用正数、负数表示具体情境中具有相反意义的量.教学难点1.用正数、负数表示具有相反意义的量时描述向指定方向变化的情况.2.理解0的意义,体会0在解决实际问题中的“基准”作用.教学活动教学步骤师生活动活动一:创设情境,导入新课【情境导入】1.观察下面三幅图,这些自然数、分数以及小学时学过的小数是由生活实际的需要产生的,那么它们能否完全满足我们目前生产、生活的需要呢?2.思考教材P1引言中的三个问题.在这三个问题中,“零下3摄氏度”“亏损10万元”“减少0.7%”能够用上面的数表示吗?这说明了什么?【教学建议】引导学生通过观察三幅图,体会小学学过的几个数都是基于现实需要产生的,然后引导学生思考三个问题,提出疑问,使学生产生探索欲望.设计意图先通过图片形式让学生体会已学过的数的产生具有必然性与局限性,然后通过列举的三个问题为引入新知做准备.活动二:实践探究,获取新知探究点1 具有相反意义的量及正数、负数的认识Ⅰ.具有相反意义的量问题1结合下面图示,对于引言中的问题(1),我们如何用数区分“零上3摄氏度”和“零下3摄氏度”呢?观察图①,零上温度和零下温度是以0 ℃为分界点的具有相反意义的量.观察图②中的天气预报可以看出,零上3摄氏度用3 ℃表示,零下3摄氏度用-3 ℃表示.问题2类似地,对于引言中的问题(2)(3),应如何用【教学建议】这里要结合教材引言中的问题进行分析,其中第一个问题与生活实际密切相关,学生通过平时看天气预报已经对此有一定的了解,教师要结合实际情境进行说明.可在最后指出具有相反意义的量的一些特点.“属性相同”,也就是同类量,比如“盈利”与“亏损”是同类量,但“盈利”与“减少”就不是设计意图借助生活实例,引导学生理解具有相反意义的量,通过相应出现的数,进一步引入正数、负数的概念,并借此体会正数、负数的意义.数分别表示“盈利50万元”“亏损10万元”以及“增长7.8%”“减少0.7%”呢?如果用“50万元”表示盈利50万元,就可以用“-10万元”表示亏损10万元.如果用“7.8%”表示增长7.8%,就可以用“-0.7%”表示减少0.7%.问题3通过问题1,2,你认为具有相反意义的量有哪些特点?成对出现、属性相同(同类量)、意义相反.Ⅱ.正数、负数的认识问题1通过上面对“具有相反意义的量”的介绍,我们已经知道有-3,-10,-0.7%这样的数,对于这种类型的数,我们该如何进行定义?概念引入:问题2正数前面的“+”号和负数前面的“-”号是否都可以去掉?为什么?正数前面的“+”号可以去掉也可以不去掉,负数前面的“-”号不能去掉.因为正数就是大于0的,加不加“+”号都没有影响;但对负数而言,只有在正数前面加上“-”号才是负数,所以“-”号不能去掉.如果一个问题中出现具有相反意义的量,就可以用正数和负数分别表示它们.我们一起来看下面的例题.例1(教材P3例1)某校组织学生去劳动实践基地采摘橘子,并称重、封装.一箱橘子的标准质量为2.5 kg.如果用正数表示超过标准的质量,那么(1)比标准质量多65 g和比标准质量少30 g各怎么表示?(2)50 g,-27 g各表示什么意思?填空分析:(1)前面我们讲到“零上温度和零下温度是以0 ℃为分界点的具有相反意义的量”,那么本题中的分界点是标准质量2.5 kg.(2)题目中比标准质量多×× g 和比标准质量少×× g 是具有相反意义的量.解:(1)比标准质量多65 g用+65 g表示,比标准质量少30 g用-30 g表示.(2)50 g表示这箱橘子的质量比标准质量多50 g,-27 g表示这箱橘子的质量比标准质量少27 g.【对应训练】教材P3练习同类量;“意义相反”指变化的方向相反,不要与意义相近混淆(比如增长与增加就不构成具有相反意义的量).另外需注意:具有相反意义的量要求意义相反,但不要求数量相等.如盈利3`000元与亏损400元是具有相反意义的量.【教学建议】这里注意引导学生正确理解正数、负数的概念.注意前面有“-”号的数不一定是负数,比如-(-3)就不是负数,这涉及后面的知识,教师知道即可,如学生有疑问可适当解释,本课时不作要求. 【教学建议】例1可让学生回答下什么是“分界点”,什么是具有相反意义的量,便于加深理解.设计意图探究点20的意义正数和负数在实践中有着广泛的应用.如图,在表示某地的高度时,通常以海平面为基准,用0 m表示海平面的海拔.【教学建议】教师提醒学生注意,生活中有在用正数、负数表示具有相反意义的量的基础上,以海拔说明0的“基准”作用,丰富0的意义. 用正数表示高于海平面的海拔,用负数表示低于海平面的海拔,如图中用正数、负数分别表示世界最高峰的海拔和我国陆地最低处的海拔.问题1结合上面这个实际应用和上面所学知识,你认为0还只仅仅表示“没有”吗?0是正数与负数的分界.0 ℃是一个确定的温度,海拔0 m是一个确定的海拔.0已不只是表示“没有”.问题2(教材P4思考)如图①是地理中的分层设色地形图,图②是手机中的部分收支款账单,其中的正数和负数的意义分别是什么?你能再举一些用正数、负数表示具有相反意义的量的例子吗?图①中的正数表示A地高于海平面4 600 m,负数表示B地低于海平面100 m.图②中的正数表示收入15元,负数分别表示支出10元、支出30元.其他例子:比如叶宇同学向南走20 m记为+20 m,那么他向北走30 m可记为-30 m.例2(教材P4例2)(1)一个月内,李明体重增加1.2 kg,张华体重减少0.5 kg,刘伟体重无变化,写出他们这个月的体重增长值.(2)四种品牌的手机今年第二季度的销售量与第一季度相比,变化率如下:A品牌减少2%,B品牌增长4%,C品牌增长1%,D品牌减少3%.写出今年第二季度这些品牌的手机销售量的增长率.填空分析:第(1)小题要求写出“增长值”,所以,用正数表示体重增加量,用负数表示体重减少量.这样,直接翻译“体重减少1 kg”就是体重增长-1 kg.第(2)小题可以此类推.解:(1)这个月李明体重增长1.2 kg,张华体重增长-0.5 kg,刘伟体重增长0 kg.(2)四种品牌的手机今年第二季度销售量的增长率是:A品牌-2%,B品牌4%,C品牌1%,D品牌-3%.追问增长-2%是什么意思?什么情况下增长率是0?增长-2%就是减少2%.第二季度的手机销售量与第一季度相同时,增长率是0.【对应训练】些具有相反意义的量没有明确的分界,一般把某一个量规定为“0”,即基准,习惯上,超过基准的部分用正数表示,低于基准的部分用负数表示.【教学建议】这个问题2继续说明0作为正数、负数的“分界”,在解决实际问题中的“基准”作用.注意例子中地形图上的海拔一般不标单位,实际采用米作单位W.手机收付款的收支平衡可以用0表示.【教学建议】用正数、负数表示具有相反意义的量时,难点是描述向指定方向变化的情况,即:向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示.这与学生的日常经验有一定的矛盾,需要一个“心理转换”:把“体重减少0.5 kg”,转换为“体重增加-0.5 kg”,需要对“负”与“正”的相对性有较好的理解.实际上,只要问题中包含具有相反意义的量,就可以用正数和负数分别表示,而哪个量用负数表示,可以视实际需要而定,教学时要注意引导.教材P5练习.活动三:知识升华,巩固提升例3(教材P5习题1.1第6题)某班七组同学分别测量同一座楼的高度,测得的数据(单位:m)分别是:79.4,80.6,80.8,79.1,80,79.6,80.5.这些数据的平均值是多少?以平均值为标准,用正数表示超出的部分,用负数表示不足的部分,它们对应的数分别是什么?解:平均值是(79.4+80.6+80.8+79.1+80+79.6+80.5)÷7=560÷7=80.即这些数据的平均值是80 m.它们对应的数分别是-0.6 m,0.6 m,0.8 m,-0.9 m,0 m,-0.4 m,0.5 m.【对应训练】1.体育锻炼标准规定:13岁男生每分钟做22个仰卧起坐为达标,超过标准的个数用正数表示,不足标准的个数用负数表示.八位同学的成绩分别记录为:+3,-1,+1,0,-2,+2,+4,-3.这八位同学中达标的有(B)A.4人B.5人C.6人D.8人2.某校七年级利用劳动实践课开展创意点心制作比赛活动.李龙制作了一盒精美点心(共计6枚),现在他把6枚点心称重(单位:g)后统计列表如下:第1枚第2枚第3枚第4枚第5枚第6枚68.4 g 71.3 g 70.7 g 68.6 g 69.1 g 72 g为了简化运算,李龙依据比赛的标准质量,把超出部分记为正,不足部分记为负,列出下表(数据不完整),请你把表格补充完整:第1枚第2枚第3枚第4枚第5枚第6枚-1.6 g +1.3 g +0.7 g -1.4 g -0.9 g +2 g解:补充表格如上所示.【教学建议】对于例题中求平均值,小学时已经学过,只要将各个数据相加求和再除以7即可,这个可由学生自主完成.难点主要在于以平均值为标准,用负数表示不足的部分.这里没学有理数的加减运算,可让学生用较大数减去较小数,然后根据具有相反意义的量的知识来表示.设计意图安排此例题和对应训练是想让学生体会以平均值为标准,用正数表示超出的部分,用负数表示不足的部分的方法.活动四:随堂训练,课堂总结【随堂训练】见《创优作业》“随堂小练”册子相应课时随堂训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.什么是正数,什么是负数,0是什么数?2.怎么表示具有相反意义的量?3.0的意义是什么?【知识结构】【作业布置】1.教材P5习题1.1第1,2,3,4,5题.2.《创优作业》主体本部分相应课时训练.板书设计1.1 正数和负数1.具有相反意义的量:①“零上3摄氏度”与“零下3摄氏度”②“盈利50万元”与“亏损10万元”……2.正数和负数教学反思本节课通过学生身边熟悉的事物,让学生感受到负数的引入确实是实际生活的需要,数学与我们的生活密不可分.学生通过经历讨论、探索、交流、合作等过程获得新知,并能用所学的新知识来解决实际问题.这样教学更能激发学生学习数学的兴趣,提升学生的能力,促进学生的发展,使每个学生在教学中都能得到收获.解题大招一用正数、负数表示具有相反意义的量当题目中已明确“一种意义”的量对应的是正数(负数)时,我们就可以判断“与之具有相反意义”的量所对应的是负数(正数).如果没有明确哪种意义的量用正数表示,那么我们可以任选一种意义的量用正数表示,而另一种意义的量必须用负数表示.例1(1)在知识竞赛中,如果用-10分表示扣10分,那么加20分记为(C)A.+10分B.-10分C.+20分D.-20分(2)如果风车顺时针旋转66°,记作+66°,那么逆时针旋转78°,记作(A)A.-78°B.78°C.-12°D.12°(3)我国古代数学名著《九章算术》中对正数和负数的概念注有“今两算得失相反,要令正负以名之”.如:库管员把仓库运进30 t粮食记为“+30”,则“-30”表示运出30 t粮食.解题大招二用正负数表示允许偏差例2某品牌饮料外包装上标明“净含量:200 mL ±5 mL”,随机抽取四种口味的这种饮料分别检测如表.其中,净含量不合格的是(B)种类原味草莓味香草味巧克力味净含量/ mL 195 210 200 205A.原味B.草莓味C.香草味D.巧克力味分析:先计算净含量范围,比较即可求解.由题目中200 mL±5 mL可知,200+5=205(mL),200-5=195(mL),所以净含量合格范围是195 mL~205 mL之间.因为210>205,所以净含量不合格的是草莓味.故选B.解题策略:解这类题关键是知道“±××”表示的是允许偏差的范围.以本题为例,200 mL±5 mL表示饮料净含量最大可以是(200+5)mL,最小可以是(200-5)mL.培优点实际问题中“基准”的相对性例如图,已知摩天轮的最高点距地面165 m,最低点距地面5 m.(1)若以地面为基准,则摩天轮最高点和最低点的高度分别如何表示?(2)若以摩天轮最低点的位置为基准,则最高点和地面的高度分别如何表示?分析:(1)以地面为0 m时,高出地面都记为正数;(2)以该摩天轮最低点的位置为0 m时,最高点的高度为正数,地面高度为负数.解:(1)若以地面为基准,该摩天轮最高点和最低点的高度分别表示为+165 m,+5 m.(2)若以该摩天轮最低点的位置为基准,则最高点的高度为165-5=160(m).最高点的高度可表示为+160 m,地面高度表示为-5 m.。
七年级数学人教版上册1.1正数和负数优秀教学案例

二、教学目标念,理解正数表示收入、支出等正面的量,负数表示债务、亏损等负面的量。
2.让学生掌握正数和负数的性质,如正数大于0,负数小于0,正数和负数互为相反数等。
3.培养学生运用正数和负数解决实际问题的能力,能够运用正数和负数进行简单的计算和解决问题。
(二)过程与方法
1.通过生活情境的引入,激发学生的学习兴趣,引导学生观察、思考和讨论,培养学生的自主学习能力。
2.运用问题驱动的教学方法,引导学生通过观察、思考、讨论和总结,掌握正数和负数的概念和性质。
3.设计实际问题,让学生通过计算和解决问题,培养学生的实际应用能力和解决问题的能力。
2.提出问题:“小明和小华购物过程中,他们所花费的金额有什么不同?”引导学生思考和讨论,引发对正数和负数的兴趣。
3.引导学生思考:“负数是什么意思?它是如何产生的?”激发学生的好奇心和求知欲。
(二)讲授新知
1.介绍正数和负数的概念,解释正数表示收入、支出等正面的量,负数表示债务、亏损等负面的量。
2.引导学生通过观察和思考,总结正数和负数的性质,如正数大于0,负数小于0,正数和负数互为相反数等。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和好奇心,激发学生对数学知识的热爱和追求。
2.培养学生团队合作的精神,通过小组讨论和合作解决问题,培养学生的合作能力和沟通能力。
3.培养学生积极面对困难和挑战的态度,通过解决实际问题,培养学生的自信心和自主性。
三、教学策略
(一)情景创设
1.利用多媒体展示小明和小华购物的图片和信息,让学生直观地感受到正数和负数的实际应用。
1.1 正数和负数 教案 数学人教版七年级上册(2024年)新版教材

第一章有理数1.1正数和负数【教学目标】1.经历从现实生活中的实例引入负数的过程,体会引入负数的必要性与合理性;掌握正、负数的概念和表示方法,会判断一个数是正数还是负数;理解数0表示的量的意义.2.理解具有相反意义的量的含义,熟练地运用正、负数描述现实世界具有相反意义的量,体会数学符号与对应的思想,掌握用正、负数表示具有相反意义的量的符号化方法.3.通过用正负数表示相反意义的量的教学,培养学生观察、比较和概括的能力.【重点难点】重点:灵活掌握正负数的概念,理解正数、负数及0的意义.难点:1.正确了解负数,能准确地举出具有相反意义的量的典型例子;2.会用正数、负数表示具有相反意义的量.【教学过程】一、创设情境在小学,我们从日常生活中的实例出发,先后学习了整数、小数、分数及其运算,在日常生活、生产和科研中,还会遇到另外一些数的表示问题,例如:教师出示教材P1的问题(1)-(3).上面的问题都涉及意义相反的两个量,如何用数表示像这样具有相反意义的两个量,需要引入负数.今天我们就来学习正数与负数.二、新知探究探究点1:正、负数的认识问题1:(1)负数有什么特点?(2)如果一个数不是正数就是负数,对吗?问题2:0只表示没有吗?要点归纳:引入正、负数后,0不再简简单单的只表示没有.它具有丰富的意义,是正负数的分界点.1.正数和负数的定义:像3,50,7.8%这样大于0的数叫作正数,正数的“+”有时可以省去不写.在正数前加上符号“-”的数叫作负数,其中符号“-”是负号,例如-10,-3,…,负数的“-”不能省去不写.2.正数与负数的表示法及读法一个数前面的“+”“-”号叫作这个数的符号.+3读作正3或3,-3读作负3.讨论思考:你认为0应该放在什么地方?+0与-0都是0,0是正数与负数的分界.0的意义不仅是表示“没有”,如0 ℃是一个确定的温度,海拔0表示海平面的平均高度.注:0既不是正数,也不是负数.探究点2:用正负数表示具有相反意义的量在日常生活中,你会遇到:(1)你向东走了5米和向西走了3米;(2)你的爸爸给(收入)你20元和你用了(支出)8元;(3)下雨池塘里的水位升高了0.01米和干旱池塘里的水位降低了0.03米;(4)温度是零上10度和零下6度.问题:上面出现的每一对量有什么共同特点?向东和向西,给(收入)和用了(支出),升高和降低,零上和零下都是具有相反意义的量.为了用数表示具有相反意义的量,我们把某种量的一种意义规定为正的,而把与它相反的一种意义规定为负的,负数是根据实际需要而产生的.要点归纳:具有相反意义的量包含两层含义:一是意义相反,二是必须含有具体的量.探究点3:0的意义及用正负数表示相对基准量问题:下图是吐鲁番盆地的示意图,你能用语言表述它与海平面的高度关系吗?它的含义是什么?要点归纳:“0”可以表示一种基准,高于基准的量用正数来表示,低于基准的量用负数表示.解题时注意,一定要先弄清“基准”是什么,再把数据还原成原数据.【典例评析】例1:读出下列各数,并把它们填在相应的圈里:,+38,-0.36,2.7,0,+9-11,49例2:教材P3【例1】.例3:教材P4【例2】.三、检测反馈1.下列语句正确的是()A.零上与零下是具有相反意义的量B.快和慢是具有相反意义的量C.向东走10米与向西走8米是具有相反意义的量D.+15米表示向南走15米2.飞机上升-50米实际上就是()A.上升50米B.下降50米C.下降-50米D.先上升50米,再下降50米3.如果收入300元表示为+300元,那么支出200元用表示.4.向南走-4米实际上是向走了米.5.在数-6,2.5,+23,0,-45,+8中,正数是,负数是,非正非负的数是.6.思考:某学校地面上的旗杆高28米,甲楼高26米,乙楼高35米,若以旗杆的高为基准,记作“0”米,如何表示甲、乙两大楼的高度?同学们,你能再举一些用正负数表示数量的实际例子吗?四、本课小结1.相反意义的量和正数、负数(1)为了用数表示具有相反意义的量,我们把某种量的一种意义规定为正的,而把与它相反的一种意义规定为负的,负数是根据实际需要而产生的.(2)0既不是正数也不是负数,正负数以0为界.2.基准在用正负数表示相反意义的量时,实际上除了规定正负外,还必须确定以什么为基准,并把它记为0.五、布置作业课堂作业:P3,P5练习课后作业:P5T1,4,5,6,P6T7六、板书设计七、教学反思本节是小学所学算数之后数的范围的第一次扩充,是从算数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础.本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指定方向变化的量.本节的重点是通过熟悉的实例引入负数的概念,使学生明确数学知识来源于实践又服务于实践.能正确识别负数、用正负数表示具有相反意义的量是本节的难点.教学中要特别强调“0”的特殊身份,明确“0”既不是正数,也不是负数,它是正、负数的分界点.教学中应多结合实例让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识,通过实际例子的学习激发学生学习数学的兴趣.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 正数与负数教案
(第1课时)
一、教学目标
知识与技能:使学生了解正数与负数是从实际需要中产生的;
过程与方法:使学生理解正数与负数的概念,并会判断一个数是正数还是负数,初步会用正负数表示具有相反意义的量;
情感与态度:在负数概念的形成过程中,培养学生的观察、归纳与概括的能力
二、教学重点和难点
负数的引入和意义
三、教学过程
创设情景,生活实例引入,观察猜想,合作探究
(一)、从学生原有的认知结构提出问题
大家知道,数学与数是分不开的,它是一门研究数的学问现在我们一起来回忆一下,小学里已经学过哪些类型的数?
学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.
为了表示一个人、两只手、……,我们用到整数1,2,……
为了表示半小时、四元八角七分、……,我们需用到分数1/2和小数4.87、……
为了表示“没有人”、“没有羊”、……我们要用到0.
但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示.
(二)、师生共同研究形成正负数概念
某市某一天的最高温度是零上5℃,最低温度是零下5℃.要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚.
它们是具有相反意义的两个量.
现实生活中,像这样的相反意义的量还有很多.
例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155 米,“高于”和“低于”其意义是相反的.
又如,某仓库昨天运进货物吨,今天运出货物吨,“运进”和“运出”,其意义是相反的.
同学们能举例子吗?
学生回答后,教师提出:怎样区别相反意义的量才好呢?
现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃).这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量筒明地表示出来了.
让学生用同样的方法表示出前面例子中具有相反意义的量:
高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;
运进纲物吨,记作+;运出货物吨,记作- .
教师讲解:什么叫做正数?什么叫做负数.
强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量.并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号
(三)、运用举例变式练习
例1 所有的正数组成正数集合,所有的负数组成负数集合把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:
-11,4,8,+73,-2,7,,,-8,12, -;
正数集合负数集合
此例由学生口答,教师板书,注意加上省略号,说明这是因为正(负)数集合中包含所有正(负)数,而我们这里只填了其中一部分.然后,指出不仅可以用圈表示集合,也可以用大括号表示集合课堂练习
任意写出6个正数与6个负数,并分别把它们填入相应的大括号里:
正数集合:{…},
负数集合:{…}
四、课堂小结
由于实际生活中存着许多具有相反意义的量,因此产生了正数与负数正数是大于0的数,负数就是在正数前面加上“-”号的数0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃
五、作业布置
1.北京一月份的日平均气温大约是零下3℃,用负数表示这个温度
2.在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖,图中标着-392,这表明死海的湖面与海平面相比的高度是怎样的?
3.在下列各数中,哪些是正数?哪些是负数?
-16,0,004,+,-,,25,8,-3,6,-4,9651,-0,1.
4.如果-50元表示支出50元,那么+200元表示什么?
5.河道中的水位比正常水位低0.2米记作-0.2米,那么比正常水位温0.1米记作什?
6.如果自行车车条的长度比标准长度长2毫米记作+2毫米,那么比标准长度短3毫米记作么?
7.一物体可以左右移动,设向右为正,问:
(1)向左移动12米应记作什么?(2)“记作8米”表明什么?。