中考数学压轴题代数综合题(PDF版)
(完整word版)中考数学压轴题100题精选

我选的中考数学压轴题100题精选【001】如图,已知抛物线y a(x 1)2 3.3 (0)经过点A( 2, 0),抛物线的顶点为D,过O作射线OM // AD •过顶点D平行于x轴的直线交射线OM于点C , B在x轴正半轴上,连结BC•(1 )求该抛物线的解析式;(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动, 设点P运动的时间为t(s) •问当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t (s), 连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.My【002】如图16,在Rt A ABC中,/ C=90° AC = 3, AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP 于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t> 0).(1) ____________________ 当t = 2时,AP = __________ ,点Q到AC 的距离是_______________________ ;(2)在点P从C向A运动的过程中,求△ APQ的面积S与t的函数关系式;(不必写出t的取值范围)【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C (8,0)、D (8,8)•抛物线y=ax2+bx过A、C两点.(1) 直接写出点A的坐标,并求出抛物线的解析式;⑵动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE± AB 交AC于点E,①过点E作EF丄AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得厶CEQ是等腰三角形?请直接写出相应的t值。
2022北京中考数学题型专练:代数压轴题

2022北京中考数学题型专练:代数压轴题一、解答题1.在平面直角坐标系中,点和点在抛物线上.xOy ()1,m ()3n ,()20y ax bx a =+>(1)若,求该抛物线的对称轴;3,15m n ==(2)已知点在该抛物线上.若,比较的大小,并说明理由. ()()()1231,,2,,4,y y y -0mn <123,,y y y 2.在平面直角坐标系中,抛物线与轴交于点A ,将点A 向右平移2个单位长度,得到点xOy 21y axbx a=+-y B ,点B 在抛物线上. (1)求点B 的坐标(用含的式子表示);a (2)求抛物线的对称轴; (3)已知点,.若抛物线与线段PQ 恰有一个公共点,结合函数图象,求的取值范围. 11(,)2P a-(2,2)Q a 3.在平面直角坐标系中,直线与轴、轴分别交于点,,抛物线经过点,xOy 44y x =+x y A B 23y ax bx a =+-A 将点向右平移5个单位长度,得到点.B C (1)求点的坐标;C (2)求抛物线的对称轴;(3)若抛物线与线段恰有一个公共点,结合函数图象,求的取值范围.BC a 4.在平面直角坐标系中,抛物线的对称轴是直线.xOy 24(0)y ax bx a a =++-≠1x =(1)求抛物线的顶点坐标;24(0)y ax bx a a =++-≠(2)当时,y 的最大值是5,求a 的值;23x -≤≤(3)在(2)的条件下,当时,y 的最大值是m ,最小值是n ,且,求t 的值. 1t x t ≤≤+3m n -=5.在平面直角坐标系中,抛物线.分别过点和点作x 轴的垂线,交抛xOy 222(0)y ax ax a a =-+->(,0)M t (2,0)N t +物线于点A 和点B .记抛物线在A ,B 之间的部分为图象G (包括A ,B 两点).(1)求抛物线的顶点坐标;(2)记图形G 上任意一点的纵坐标的最大值与最小值的差为m .①当时,若图形G 为轴对称图形,求m 的值;2a =②若存在实数t ,使得,直接写出a 的取值范围.2m =6.在平面直角坐标系中,点在抛物线上,其中. xOy ()()1122,,,A x y B x y 22(22)2y x a x a a =-+--+12x x <(1)求抛物线的对称轴(用含a 的式子表示);(2)①当时,求y 的值;x a =②若,求x 1的值(用含a 的式子表示);120y y ==(3)若对于,都有,求a 的取值范围.124x x +<-12y y <7.在平面直角坐标系中,抛物线与y 轴交于点A ,过点A 作x 轴的平行线与抛物线xOy 2221(0)y ax a x a =-+≠交于点B .(1)直接写出抛物线的对称轴;(2)若,求抛物线所对应的函数解析式;4AB =(3)已知点,如果抛物线与线段恰有一个公共点,结合函数图象,求a 的取值范围. (4,1),(0,1)P a Q a ++PQ 8.在平面直角坐标系中,点A 是抛物线的顶点.xOy 22221y x mx m m =-+-++(1)求点A 的坐标(用含m 的代数式表示);(2)若射线与x 轴所成的锐角为,求m 的值;OA 45︒(3)将点向右平移4个单位得到点Q ,若抛物线与线段只有一个公共点,直接写出m 的取值范围. (0,1)P PQ 9.在平面直角坐标系中,抛物线经过点.xOy 2222(0)y x bx b b =-+->(,)A m n (1)用含b 的代数式表示抛物线顶点的坐标;(2)若抛物线经过点,且满足,求n 的取值范围;(0,2)B 03m <<(3)若时,,结合函数图象,直接写出b 的取值范围.35m ≤≤2n ≤10.已知二次函数.221(0)y ax ax a =-+≠(1)求此二次函数图象的对称轴;(2)设此二次函数的图象与x 轴交于不重合两点,(其中),且满足,求a 的()1,0M x ()2,0N x 12x x <1262x x <-取值范围.11.在平面直角坐标系xOy 中,抛物线与y 轴交于点A .231y ax ax =-+(1)求抛物线的对称轴;(2)点B 是点A 关于对称轴的对称点,求点B 的坐标;(3)已知点P (0,2),Q ,若线段PQ 与抛物线与恰有一个公共点,结合函数图象,求a 的取值范围. ()1,1a +12.在平面直角坐标系中,抛物线与y 轴的交点为A ,过点A 作直线l 垂直于y 轴. xOy 222y x mx m =-+(1)求抛物线的对称轴(用含m 的式子表示);(2)将抛物线在y 轴右侧的部分沿直线l 翻折,其余部分保持不变,组成图形G .点,图形G ()11,M x y ()22,N x y 上任意两点.①当时,若,判断与的大小关系,并说明理由;0m =12x x <1y 2y ②若对于,都有,求m 的取值范围.122,2x m x m =-=+12y y >13.在平面直角坐标系xOy 中,点,为抛物线上的两点. ()11,P x y ()22,Q x y 2221(0)y ax ahx ah a =-++<(1)当h=1时,求抛物线的对称轴;(2)若对于,,都有,求h 的取值范围.102x ≤≤245h x h -≤≤-12y y ≥14.在平面直角坐标系中,抛物线().xOy 223y ax ax a =--0a ≠(1) 求抛物线的对称轴及抛物线与y 轴交点坐标.(2) 已知点B (3,4),将点B 向左平移3个单位长度,得到点C .若抛物线与线段BC 恰有一个公共点,结合函数的图象,求a 的取值范围.15.已知抛物线经过点. 点,为抛物线上两个不同的点,且满足,2(0)y ax bx a =+≠(3,3)A 11(,)M x y 22(,)N x y 12x x <.122x x +=(1)用含的代数式表示;a b (2)当时,求抛物线的对称轴及的值;12y y =a (3)当时,求的取值范围.12y y <a 16.在平面直角坐标系中,抛物线的顶点为xOy 222y x mx m m =-+-+A (1)求抛物线的顶点坐标(用表示);m(2)若点在第一象限,且A OA =(3)已知点,,若抛物线与线段有公共点,结合函数图象,直接写出的取值范围 (1,2)B m m --(2,2)C BC m 17.在平面直角坐标系xOy 中,抛物线的对称轴为直线x =2.223y x bx =-+-(1)求b 的值;(2)在y 轴上有一动点P (0,),过点P 作垂直y 轴的直线交抛物线于点 A (x 1,y 1),B (x 2,y 2),其中n .12x x <①当时,结合函数图象,求出n 的值;213x x -=②把直线PB 上方的函数图象,沿直线PB 向上翻折,图象的其余部分保持不变,得到一个新的图象W ,新图象W 在0≤x ≤5时,满足,求的取值范围.44y -≤≤n18.已知抛物线y=ax 2+bx+a+2(a≠0)与x 轴交于点A(x 1,0),点B(x 2,0),(点A 在点B 的左侧),抛物线的对称轴为直线x=-1.(1)若点A 的坐标为(-3,0),求抛物线的表达式及点B 的坐标;(2)C 是第三象限的点,且点C 的横坐标为-2,若抛物线恰好经过点C ,直接写出x 2的取值范围;(3)抛物线的对称轴与x 轴交于点D ,点P 在抛物线上,且∠DOP=45°,若抛物线上满足条件的点P 恰有4个,结合图象,求a 的取值范围.19.在平面直角坐标系xOy 中,一次函数的图象与y 轴交于点A ,与抛物线的对称3y ax =-+()2230y ax ax a a =--≠轴交于点B ,将点A 向右平移5个单位得到点C ,连接AB ,AC 得到的折线段记为图形G .(1)求出抛物线的对称轴和点C 坐标;(2)①当时,直接写出抛物线与图形G 的公共点个数.1a =-223y ax ax a =--②如果抛物线与图形G 有且只有一个公共点,求出a 的取值范围.223y ax ax a =--20.在平面直角坐标系中,抛物线与y 轴交于点.xOy 22y ax a x c =++(0,2)(1)求c 的值;(2)当时,求抛物线顶点的坐标;2a =(3)已知点,若抛物线与线段有两个公共点,结合函数图象,求a 的取值范(2,0),(1,0)A B -22y ax a x c =++AB 围.参考答案1.(1);(2),理由见解析1x =-213y y y <<【分析】(1)由题意易得点和点,然后代入抛物线解析式进行求解,最后根据对称轴公式进行求解即可; ()1,3()3,15(2)由题意可分当时和当时,然后根据二次函数的性质进行分类求解即可.0,0m n <>0,0m n ><【详解】解:(1)当时,则有点和点,代入二次函数得:3,15m n ==()1,3()3,15()20y ax bx a =+>,解得:, 39315a b a b +=⎧⎨+=⎩12a b =⎧⎨=⎩∴抛物线解析式为,22y x x =+∴抛物线的对称轴为; 12b x a=-=-(2)由题意得:抛物线始终过定点,则由可得:()20y ax bx a =+>()0,00mn <①当时,由抛物线始终过定点可得此时的抛物线开口向下,即,与矛0,0m n ><()20y ax bx a =+>()0,00a <0a >盾;②当时,0,0m n <>∵抛物线始终过定点,()20y ax bx a =+>()0,0∴此时抛物线的对称轴的范围为, 1322x <<∵点在该抛物线上,()()()1231,,2,,4,y y y -∴它们离抛物线对称轴的距离的范围分别为, ()3513571,2,4222222x x x <--<<-<<-<∵,开口向上,0a >∴由抛物线的性质可知离对称轴越近越小,∴.213y y y <<【点睛】本题主要考查二次函数的综合,熟练掌握二次函数的图象与性质是解题的关键.2.(1)点B 的坐标为;(2)对称轴为直线;(3)当时,抛物线与线段PQ 恰有一个公共点. 1(2,)a -1x =12a ≤-【分析】(1)向右平移2个单位长度,得到点; 10,⎛⎫- ⎪⎝⎭A a 12,⎛⎫- ⎪⎝⎭B a (2)A 与B 关于对称轴x=1对称;(3))①a >0时,当x=2时,,当时,x=0或x=2,所以函数与AB 无交点;②a <0时,当y=212=-<y a 1=-y a 时,,或当时,; 2122--=ax ax a |1|++=a a x a |1|-+=a a x a |1|2++a a a 12-a 【详解】解:(1)∵抛物线与轴交于点A ,∴令,得, y 0x =1=-y a∴点A 的坐标为,∵点A 向右平移两个单位长度,得到点B , 1(0,a-∴点B 的坐标为; 1(2,)a-(2)∵抛物线过点和点,由对称性可得,抛物线对称轴为 1(0,)A a -1(2,B a-直线,故对称轴为直线 0212x +==1x =(3)∵对称轴x=1,∴b-2a ,, 212∴=--y ax ax a①a >0时,当x=2时,,当x=0或x=2, 12=-<y a 1=-y a∴函数与AB 无交点;②a <0时,当y=2时,, 2122--=ax ax a或当时,; |1|++=a a x a |1|-+=a a x a |1|2++a a a 12-a ∴当时,抛物线与线段PQ 恰有一个公共点; 12-a(3)①当时,则,分析图象可得:根据抛物线的对称性,抛物线不可能同时经过点A 和点P ;也不可0a >10a-<能同时经过点B 和点Q ,所以,此时线段PQ 与抛物线没有交点.②当时,则. 0a <10a ->分析图象可得:根据抛物线的对称性,抛物线不可能同时经过点A 和点P ;但当点Q 在点B 上方或与点B 重合时,抛物线与线段PQ 恰有一个公共点,此时即 12,a-≤ 12a ≤-综上所述,当时,抛物线与线段PQ 恰有一个公共点. 12a ≤-【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.3.(1)(5,4);(2)x=1;(3)或或. C 43a <-13a ≥1a =-【详解】分析:(1)根据直线与轴、轴交于、.即可求出(,0),(0,4),根据点的平移即可44y x =+x y A B A 1-B 求出点的坐标;C (2)根据抛物线过(,),代入即可求得,根据抛物线的对称轴方程即可求出抛物23y ax bx a =+-A 1-02b a =-线的对称轴;(3)分①当抛物线过点时.②当抛物线过点时.③当抛物线顶点在上时.三种情况进行讨论即可. C B BC 详解:(1)解:∵直线与轴、轴交于、.44y x =+x y A B ∴(,0),(0,4)A 1-B ∴(5,4)C(2)解:抛物线过(,) 23y ax bx a =+-A 1-0∴. 30a b a --=2b a =-∴223y ax ax a =--∴对称轴为.212ax a -=-=(3)解:①当抛物线过点时. C,解得.251034a a a --=13a =②当抛物线过点时.B,解得.34a -=43a =-③当抛物线顶点在上时.BC此时顶点为(1,4)∴,解得.234a a a --=1a =-∴综上所述或或. 43a <-13a ≥1a =-点睛:属于二次函数的综合题,考查了一次函数与坐标轴的交点,点的平移,抛物线对称轴,抛物线与线段交点问题,注意分类讨论思想在解题中的应用.4.(1)顶点坐标为;(2);(3)或()1,4-1a =1t =-2t =【分析】(1)根据对称轴可得a 与b 间的关系b =-2a ,把这个关系式代入函数解析式中,配方即可得顶点坐标;(2)首先,由于抛物线的顶点在所给自变量的范围内,若a 为负,则在所给自变量范围内,函数的最大值是相互矛盾的,故可排除a 为负的情况,所以a 为正.再由于x 轴上-2与1的距离大小3与1的距离,根据抛物线的性质,函数在x =-2处取得最大值,从而可求得a 的值.(3)分三种情况讨论:即分别考虑顶点的横坐标是在范围内、在这个范围的左边、在这个范围的右边三1t x t ≤≤+种情况;对每种情况分别求出最大值和最小值,然后可求得t 的值.【详解】解:(1)∵对称轴是直线,1x =∴. 12b a-=∴.2b a =-∴.2224(1)4=-+-=--y ax ax a a x ∴顶点坐标为.()1,4-(2)若a <0,则抛物线的开口向下,从而y 有最大值4∵当时,y 的最大值是5,且抛物线的对称轴为直线x =1,23x -≤≤∴函数此时在时取得最大值5,1x =这与y 有最大值4矛盾,从而a >0.∴抛物线的顶点为图象的最低点.∵1-(-2)>3-1∴当时,.2x =-5y =代入解析式,得2(21)45,a ⨯---= .∴1a =(3)①当时,此时0≤t ≤1,11t t ≤≤+∴,函数的最大值在t +1或t 处取得,即或4n =-24m t =-2(1)4m t =--∴m 的最大值为.3-此时.1m n -=不符合题意,舍去.②当,即时,11t +<0t <.22(1)4,(11)4=--=+--m t n t ∵,3m n -=∴.1t =-③当时,1t >同理可得.2t =综上所述,或.1t =-2t =【点睛】本题是二次函数的综合题,解决后两问的关键是分清顶点的横坐标与所给自变量的范围之间的位置关系,即它是在自变量的范围内、还是在自变量范围左边或自变量范围右边,才能确定函数的最大值与最小值,这其实就是分类讨论,这也是同学们易于忽略的.5.(1) ;(2) ① ;②.(1,2)-2m =02a <≤【分析】(1)将抛物线的一般式改为顶点式即可写出其顶点坐标.(2)①由可知抛物线解析式为,再由对称的性质即可求出t 的值.最后由增减性即可求出m 的2a =22(1)2y x =--值.②分四种情况讨论:t ≤-1,-1<t ≤0,0<t <1,t ≥1,根据m =2分别列出方程,由t 的范围即可求出a 的范围..【详解】(1)抛物线的解析式为,2222(1)2y ax ax a a x =-+-=--∴抛物线的顶点坐标为. (1)2-,(2)①当时,抛物线为,其对称轴为.2a =22(1)2y x =--1x =∵图象G 为轴对称图形,∴点A ,B 必关于对称轴对称.1x =∵点A 的横坐标为t ,点B 的横坐标为,2t +∴,2AB =∴,即点A 为,点B 为. 0t =(0)0,(2)0,∵当时,y 随x 的增大而减小;当时,y 随x 的增大而增大,01x ≤<12x ≤≤∴图象G 上任意一点的纵坐标最大值为0,最小值为.2-∴.0(2)2m =--=②∵过点M (t ,0)和点N (t +2,0)作x 轴的垂线,交抛物线于点A 和点B ,∴A (t ,at 2-2at +a -2),B (t +2,a (t +2)2-2a (t +2)+a -2),又a >0,抛物线对称轴x =1,(Ⅰ)当t +2≤1,即t ≤-1时,图象G 上A 的纵坐标的值最大,B 的纵坐标的值最小,(at 2-2at +a -2)-[a (t +2)2-2a (t +2)+a -2]=2,解得t =-, 12a∴-≤-1, 12a∴a ≤;12(Ⅱ)当t <1<t +2,且t +2-1≤1-t ,即-1<t ≤0时,图象G 上A 的纵坐标的值最大,顶点纵坐标的值最小, ∴(at 2-2at +a -2)-(-2)=2,∴, 22(1)a t =-又-1<t ≤0, ∴<a ≤2;12(Ⅲ)当t <1<t +2,且t +2-1>1-t ,即0<t <1时,图象G 上B 的纵坐标的值最大,顶点纵坐标的值最小, ∴a (t +2)2-2a (t +2)+a -2-(-2)=2,∴, 22(+1)a t =又0<t <1, ∴<a <2;12(四)当t ≥1时,图象G 上B 的纵坐标的值最大,A 的纵坐标的值最小,∴a (t +2)2-2a (t +2)+a -2-(at 2-2at +a -2)=2,∴t =, 12a 又t ≥1,∴a ≤,12综上所述,若存在实数t ,使得m =2,则0<a ≤2.【点睛】本题考查二次函数知识的综合应用,解题的关键是分类讨论图象G 上纵坐标的最大值与最小值列方程. 6.(1);(2)①;②;(3)1x a =-0y =12x a =-1a ≥-【分析】(1)根据对称轴公式计算即可;(2)①把代入即可得解;②令,求出方程的解,再根据已知条件判断即可;x a =0y =(3)分三种情况根据二次函数的性质讨论即可;【详解】(1)∵,22(22)2y x a x a a =-+--+∴对称轴; ()22112a x a -=-=--⨯(2)①当时,;x a =()222222222220y a a a a a a a a a a =-+--+=-+--+=②令,则,。
2024年中考数学重难点- 选择压轴题(代数篇)(原卷版)

重难点选择压轴题(代数篇)目录题型01 数与式的运算类型一实数的运算及其应用类型二整式运算及其应用类型三分式的计算及其应用题型02 方程与不等式组类型四一次方程(组)及其应用类型五分式方程及其应用类型六不等式与不等式组题型03 函数及其应用类型七动点问题的函数图象类型八一次函数及其应用类型九类型十反比例函数及其应用类型十一双函数的综合问题题型01 数与式的运算 类型一 实数的运算及其应用1.有这样一种算法,对于输入的任意一个实数,都进行“先乘以12−,再加3”的运算.现在输入一个4x =,通过第1次运算的结果为1x ,再把1x 输入进行第2次同样的运算,得到的运算结果为2x ,…,一直这样运算下去,当运算次数不断增加时,运算结果n x ( ) A .越来越接近4 B .越来越接近于-2C .越来越接近2D .不会越来越接近于一个固定的数2.如图,在数轴上,点P 表示1−,将点P 沿数轴做如下移动,第一次点P 向右平移2个单位长度到达点1P ,第二次将点1P 向左移动4个单位长度到达2P ,第三次将点2P 向右移动6个单位长度,按照这种移动规律移动下去,第n 次移动到点n P ,给出以下结论:①5P 表示5;②1211P P >;③若点n P 到原点的距离为15,则15n =; ④当n 为奇数时,12n n n P P P −−=;以上结论正确的是( )A .①②③B .①②④C .②③D .①④3.潼铜在研究数学问题时遇到一个定义:将三个已经排好顺序的数:123,,x x x ,称为数列123,,x x x .计算121231,,23x x x x x x +++,将这三个数的最小值称为数列123,,x x x 的最佳值.例如,对于数列2,1,3−,因为()()212131422,,2233+−+−+===,所以数列2,1,3−的最佳值为12.潼铜进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列1,2,3−的最佳值为12;数列3,1,2−的最佳值为1;…经过研究,潼铜发现,对于“2,1,3−”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12;….根据以上材料,下列说法正确的个数有 ①数列4,3,2−−的最佳值为53;②将“4−,3−,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列取得最佳值最小值的数列为3,2,4−−;③将2,9−,(1)a a >这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,则满足条件a 的值有4个. A .3个B .2个C .1个D .0个4.(2024·重庆大渡口·一模)(),,,a b c d 表示由四个互不相等的正整数组成的一个数组,(),,,a b b c c d d a ++++表示由它生成的第一个数组,(),,,a b b c b c c d c d d a d a a b ++++++++++++表示由它生成的第二个数组,按此方式可以生成很多数组,记0M a b c d =+++,第n 个数组的四个数之和为n M (n 为正整数). 下列说法:①n M 可以是奇数,也可以是偶数; ②n M 的最小值是20; ③若010002000nM M <<,则10n =. 其中正确的个数( ) A .0B .1C .2D .35.一个正整数等于两个不相等的正整数的和与这两个不相等的正整数的积之和,称这个整数为“可拆分”整数,反之则称“不可拆分”111515=++×,11是一个“可拆分”整数.下列说法: ①最小的“可拆分”整数是5;②一个“可拆分”整数的拆分方式可以不只有一种; ③最大的“不可拆分”的两位整数是96. 其中正确的个数是( ) A .0B .1C .2D .36.观察下列算式:15a =,211a =,319a =,…,它有一定的规律性,把第n 个算式的结果记为n a ,则123711111111a a a a ++++−−−− 的值是( ) A .12B .121360C .5391080D .1192407.对于任意实数x ,x 均能写成其整数部分[]x 与小数部分{}x 的和,其中[]x 称为x 的整数部分,表示不超过x 的最大整数,{}x 称为x 的小数部分,即[]{}x x x =+.比如[]{}1.7 1.7 1.710.7=+=+,[]1.71=,{}1.70.7=,[]{}1.7 1.7 1.720.3−=−+−=−+,[]1.72−=−,{}1.70.3−=,则下列结论正确的有( ) ①1233−= ;②{}01x < ;③若{}20.3x −=,则 2.3x =;④{}{}{}1x y x y +=++对一切实数x 、y 均成立;⑤方程{}11x x+=无解. A .2个 B .3个 C .4个 D .5个8.我们知道,任意一个正整数n 都可以进行这样的分解:n =p ×q (p ,q 是正整数,且p ≤q ),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解,并规定:F (n )=pq.例如:12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F (12)=34.如果一个两位正整数t ,t =10x +y (1≤x ≤y ≤9,x ,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t 为“吉祥数”.根据以上新定义,下列说法正确的有:(1)F (48)=34;(2)如果一个正整数m 是另外一个正整数n 的平方,我们称正整数m 是完全平方数,则对任意一个完全平方数m ,总有F (m )=1;(3)15和26是“吉祥数”;(4)“吉祥数”中,F (t )的最大值为34. ( )A .1个B .2个C .3个D .4个类型二 整式运算及其应用9.对任意代数式,每个字母及其左边的符号(不包括括号外的符号)称为一个数,如:()()a b c d e −+−−−,其中称a 为“数1”,b 为“数2”,+c 为“数3”,d −为“数4”,e −为“数5”,若将任意两个数交换位置,则称这个过程为“换位运算”,例如:对上述代数式的“数1”和“数5”进行“换位运算”,得到:()()e b c d a −−+−−+,则下列说法中正确的个数是( )①代数式()a b c d e −+−−进行1次“换位运算”后,化简后结果可能不发生改变 ②代数式()()a b c d e −+−−进行1次“换位运算”,化简后只能得到a b c d e −+−− ③代数式()a b c d e +−−− 进行1次“换位运算”,化简后可能得到7种结果 A .0B .1C .2D .310.对多项式21234x x +−+添加一次绝对值运算(只添加一个绝对值,不可添加单项式的绝对值)后只含加减运算,然后化简,结果按降幂排列,称此为一次“绝对操作”.例如:()()222222352301234235230x x x x x x x x x x −+−≥+−+= −++−< ,称对多项式21234x x +−+一次“绝对操作”;选择这次“绝对操作”的其中一个结果,例如对多项式2235x x −+进行如上操作,称此为二次“绝对操作” 下列说法正确的个数是( )①经过两次“绝对操作”后,式子化简后的结果可能为2235x x −+; ②进行一次“绝对操作”后的式子化简结果可能有5种;③经过若干次“绝对操作”,一定存在式子化简后的结果与原式互为相反数. A .0B .1C .2D .311.关于x ,y 的二次三项式224,4x mxy x y mxy y +−+−(m 为常数),下列结论正确的有( ) ①当1m =时,若240x mxy x +−=,则4x y += ②无论x 取任何实数,等式243x mxy x x +−=都恒成立,则7x my += ③若2245,47x xy x y xy y +−=+−=,则6x y +=④满足22440x xy x y xy y +−+−−≤的正整数解(,)x y 共有25个 A .1个B .2个C .3个D .4个12.已知非负实数,,a b c 满足24,0a b a b c +=−+<,则下列结论一定正确的是( ) A .43b a >>B .2b c >>C .43b a >> D .240b ac −≤13.对整式 2a 进行如下操作:将 2a 与另一个整式 1x 相加, 使得 2a 与 1x 的和等于 ()21+a , 表示为()22111=+=+m a x a , 称为第一次操作; 将第一次操作的结果 1m 与另一个整式 1y 相减,使得 1m与1y 的差等于 21a −, 表示为 22111=−=−m m y a , 称为第二次操作; 将第二次的操作结果 2m 与另一个整式 2x 相加,使得 2m 与 2x 的和等于 ()22a +, 表示为 ()23222=+=+m m x a , 称为第三次操作;将第三次操作的结果 3m 与另一个整式 2y 相减, 使得 3m 与 2y 的差等于 222−a , 表示为224322=−=−m m y a , 称为第四次操作, 以此类推, 下列四种说法:①2613=+x a ;② 575720+−−=y y x x ;③ 2022202124045−=+x y a ;④当 n 为奇数时, 第 n 次操作结果 212+ =+ n n m a ; 当 n 为偶数时,第 n 次操作结果 222 =−n n m a : 四个结论中正确的有( ) A .1 个 B .2 个 C .3 个D .4 个14.已知多项式22A x y m =++和22B y x n =−+(m ,n 为常数),以下结论中正确的是( ) ①当2x =且1m n +=时,无论y 取何值,都有0A B +≥; ②当0m n ==时,A B ×所得的结果中不含一次项; ③当x y =时,一定有A B ≥;④若2m n +=且0A B +=,则x y =; ⑤若m n =,1−=−A B 且x ,y 为整数,则1x y +=. A .①②④B .①②⑤C .①④⑤D .③④⑤15.下列四种说法中正确的有( ) ①关于x 、y 的方程26199x y +=存在整数解. ②若两个不等实数a 、b 满足442222()()a b a b +=+,则a 、b 互为相反数.③若2()4()()0a c a b b c −−−=−,则2b a c =+. ④若222x yz y xz z xy −−−==,则x y z ==. A .①④ B .②③ C .①②④ D .②③④16.已知三个函数:2()4T x x x =−,()2G x x =−,2()x F x x+=,下列说法: ①当()()16T x F x ⋅=时,x 的值为6或4−;②对于任意的实数m ,n ,若m n +1mn =,则()()3T m T n +=−;③若()()3G x F x +=时,则2421746x x x =−+; ④若当式子()T x ax +中x 的取值为2b 与23b −时,()T x ax +的值相等,则a 的最大值为8. 以上说法中正确的个数是( ) A .1B .2C .3D .4类型三 分式的计算及其应用17.(23-24九年级下·浙江杭州)《庄子・天下》云:“一尺之捶,日取其半,万世不竭”.若设捶长为1,天数为n ,则( ) A .23111112222n +++⋅⋅⋅+<B .23111112222n +++⋅⋅⋅+=C .23111112222nn +++⋅⋅⋅+>D .23111112222nn ×+++⋅⋅⋅+=18.设n 是大于1909的正整数,且19092009n n−−是某个整数的平方数,求得所有满足条件的n 之和为( )A .1959B .7954C .82D .394819.有一组数据:()()12335721,,,,12323434512n n a a a a n n n +====××××××++ .记123n n S a a a a =++++ ,则12S =( ) A .201182B .203180C .199198D .20318420.按顺序排列的若干个数: 1x ,2x ,3x ,…,n x (n 是正整数),从第二个数2x 开始,每一个数都等于1与它前一个数的倒数之差,即:2111x x =−,3211x x =−,…,则下列说法:①若22x =,则912x =;②若13x =,则.123181922x x x x x +++++=;③若1x a =,812102x x +=,则2a =;④无论m 为何值,代数式()12012181x x m x x x ⋅+−⋅的值恒为负.其中正确的个数为( ) A .1 B .2C .3D .0210.618≈这个数叫做黄金比,优选法中的“0.618法”与黄金分割紧密相关,这种方法经著名数学家华罗庚的倡导在我国得到大规模推广,取得了很大的成果.设a =b =记111S a b =+,222222a ab b S a b ++=,()3333a b S a b +=,…依此规律,则6S 的值为( )A.B .25C.D .12522.阅读材料:在处理分数和分式的问题时,有时由于分子大于分母,或分子的次数高于分母的次数,在实际运算时难度较大,这时,我们可将分数(分式)拆分成一个整数(整式)与一个真分数(真分式)的和(差)的形式,通过对它的简单分析来解决问题,我们称这种方法为分离常数法,此法在处理分式或整除问题时颇为有效.将分式分离常数可类比假分数变形带分数的方法进行.如:()()21231223111a a a a a a a a a a a −+−+−−+−+==+=−−−a ﹣121a +−,这样,分式就拆分成一个分式2a 1−与一个整式a ﹣1的和的形式,下列说法正确的有( )个.①若x 为整数,42x x ++为负整数,则x =﹣3;②6226182x x +≤+<9;③若分式25932x x x +−+拆分成一个整式与一个真分式(分子为整数)的和(差)的形式为:5m ﹣1116n +−(整式部分对应等于5m ﹣11,真分式部分对应等于16n −),则m 2+n 2+mn 的最小值为27. A .0B .1C .2D .323.已知两个分式:1x,11x +;将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为1M ;作差,结果记为1N ; (即1111M x x =++,1111N x x =−+) 第二次操作:将1M ,1N 作和,结果记为2M :作差,结果记为2N ;(即211M M N =+,211N M N =−) 第三次操作:将2M ,2N 作和,结果记为3M ;作差,结果记为3N ;(即322M M N =+,322N M N =−)…(依此类推) 将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:.①312M M =;②当1x =时,246820M M M M +++=;③若244N M ⋅=,则1x =; ④在第n (n 为正整数)次和第1n +次操作的结果中:1nn N N +为定值: ⑤在第2n (n 为正整数)次操作的结果中:22n n M x =,221nn N x =+; 以上结论正确的个数有( )个 A .5B .4C .3D .224.对x 、y 定义一种新运算T ,规定:(),4T x y axy bx +−(其中a 、b 均为非零常数),这里等式右边是通常的四则运算,例如:()0,101044T a b =××+×−=−,若()2,12T =,()1,28T −=−,则结论正确的个数为( )(1)a =1,b =2;(2)若()(),02T m n n =≠−,则42m n =+; (3)若()(),02T m n n =≠−,m 、n 均取整数,则12m n = = 或20m n = =或41m n = =− ;(4)若()(),02T m n n =≠−,当n 取s 、t 时,m 对应的值为c 、d ,当2t s <<−时,c d <; (5)若()(),,T kx y T ky x =对任意有理数x 、y 都成立(这里T (x 、y )和T (y 、x )均有意义),则0k = A .2个B .3个C .4个D .5个题型02 方程与不等式组 类型四 一次方程(组)及其应用25.规定:()2f x x =−,()3g y y =+.例如()442f −=−−,()443g −=−+.下列结论中:①若()()0f x g y +=,则2313x y −=;②若3x <−,则()()12f x g x x +=−−;③能使()()f x g x =成立的x 的值不存在;④式子()()11f x g x −++的最小值是7.其中正确的所有结论是( ) A .①②③B .①②④C .①③④D .②③④26.(2023·浙江·A ,B 两地相距1200m ,小车从A 地出发,以8m/s 的速度向B 地行驶,中途在C 地停靠3分钟.大货车从B 地出发,以5m/s 的速度向A 地行驶,途经D 地(在A 地与C 地之间)时沿原路返回B 点取货两次,且往返两次速度都保持不变(取货时间不计),取完两批货后再出发至A 点.已知:3100m AC BC CD ==,,则直至两车都各自到达终点时,两车相遇的次数为( )A .2B .3C .4D .527.有5个正整数1a ,2a ,3a ,4a ,5a ,某数学兴趣小组的同学对5个正整数作规律探索,找出同时满足以下3个条件的数.①1a ,2a ,3a 是三个连续偶数(123a a a <<),②4a ,5a 是两个连续奇数(45a a <),③12345a a a a a ++=+.该小组成员分别得到一个结论: 甲:取26a =,5个正整数不满足上述3个条件; 乙:取212a =,5个正整数满足上述3个条件;丙:当2a 满足“2a 是4的倍数”时,5个正整数满足上述3个条件;丁:5个正整数1a ,2a ,3a ,4a ,5a 满足上述3个条件,则534a k =+(k 为正整数); 戊:5个正整数满足上述3个条件,则1a ,2a ,3a 的平均数与4a ,5a 的平均数之和是10p (p 为正整数); 以上结论正确的个数有( )个. A .2B .3C .4D .528.甲乙两车分别从A 、B 两地同时出发,甲车从A 地匀速驶向B 地,乙车从B 地匀速驶向A 地.两车之间的距离y (单位:km )与两车行驶的时间x (单位:h )之间的关系如图所示,已知甲车的速度比乙车快20km/h .下列说法错误的是( )A .A 、B 两地相距360km B .甲车的速度为100km /hC .点E 的横坐标为185D .当甲车到B 地时,甲乙两车相距280km29.(2023·黑龙江齐齐哈尔·三模)中国减贫方案和减贫成就是史无前例的人类奇迹,联合国秘书长古特雷斯表示,“精准扶贫”方略帮助贫困人口实现2030年可持续发展议程设定的宏伟目标的唯一途径,中国的经验可以为其他发展中国家提供有益借鉴,为了加大“精准扶贫”力度,某单位将19名干部分成甲、乙、丙三个小组到村屯带领50个农户脱贫,若甲组每人负责4个农户,乙组每人负责3个农户,丙组每人负责1个农户,则分组方案有( ) A .6种B .5种C .4种D .30种30.若实数x ,y 满足22227{3x y xy x y xy ++=+−=,则20222022x y +的值是( ) A .202221+B .202221−C .202221−+D .202221−−31.已知、、A B C 三地顺次在同-直线上,甲、乙两人均骑车从A 地出发,向C 地匀速行驶.甲比乙早出发5分钟;甲到达B 地并休息了2分钟后,乙追上了甲.甲、乙同时从B 地以各自原速继续向C 地行驶.当乙到达C 地后,乙立即掉头并提速为原速的54倍按原路返回A 地,而甲也立即提速为原速的二倍继续向C 地行驶,到达C 地就停止.若甲、乙间的距离y (米)与甲出发的时间t (分)之间的函数关系如图所示,则下列说法错误的是( )A .甲、乙提速前的速度分别为300米/分、400米/分.B .AC 、两地相距7200米 C .甲从A 地到C 地共用时26分钟D .当甲到达C 地时,乙距A 地6075米32.已知多项式222101,2143A x x B x x =−−=−−,其中x 为任意实数,则下列结论中正确的有( )①若4428A B x +=−,则123,4x x ==; ②若(2018)(2023)20A A −−=,则22(2018)(2023)65A A −+−=; ③若0A B ×=,则此关于x 4个互不相等的实数解; ④若分式1327A B ++的值为整数,则整数x 的值有4个. A .1个B .2个C .3个D .4个33.如图,一块正方形地砖的图案是由4个全等的五边形和1个小正方形组成的,已知小正方形的面积和五边形的面积相等,并且图中线段a 2,则这块地砖的面积为( )A .50B .40C .30D .2034.(2023·浙江杭州·二模)已知点A ,B ,C 是直线l 上互不重合的三个点,设24AB a a =++,AC na =,21BC na =+,其中n ,a 是常数,( )A .若01n <≤,则点A 在点B ,C 之间 B .若23n <≤,则点A 在点B ,C 之间 C .若01n <≤,则点C 在点A ,B 之间D .若23n <≤,则点C 在点A ,B 之间35.(2023·重庆·二模)定义一个运算()()1212121212,,,,0nn n n nx x x H x x x y y y y y y y y y +++=+++≠+++ ,下列说法正确的有( )个 ①()1,231H =;②若()()24,41,21H x H x −−−=−,则=1x −或2; ③()()()()22217511,212,413,6110,20264H H H H ++++= ;④若()()()(),,,,,,,,H a b c d H b a c d H c a b d H d a b c ===,则1c da b+=+. A .1B .2C .3D .4类型五 分式方程及其应用36.甲、乙两位同学周末相约去游玩,沿同一路线从A 地出发前往B 地,甲、乙分别以不同的速度匀速前行乙比甲晚05h .出发,并且在中途停留1h 后,按原来速度的一半继续前进.此过程中,甲、乙两人离A 地的路程s (km )与甲出发的时间t (h )之间的关系如图.下列说法:①A ,B 两地相距24km ;②甲比乙晚到B 地1h ;③乙从A 地刚出发时的速度为72km/h ;④乙出发17h 14与甲第三次相遇.其中正确的有( )A .1个B .2个C .3个D .4个37.若整数a 使得关于x 的不等式组()533213x x x a x ++<−≥−解集为1x >,使得关于y 的分式方程1a y −=51y y −−+2的解为正数,则所有满足条件的整数a 的和为( ) A .﹣21B .﹣20C .﹣17D .﹣1638.若关于x 的不等式组()32212x a x x −≤−>+ 至少有两个正整数解,且关于x 的分式方程(1)5155a x x x −+=−−−有正整数解,则符合条件的所有整数a 的和为( ) A .15B .16C .18D .1939.若关于x 的一元一次不等式组()151131212x x a x x−−≤− + >+ 的解集恰好有3个负整数解,且关于y 的分式方程232111y a y y y −−−=−−有非负整数解,则符合条件的所有整数a 的和为( ) A .6B .9C .1−D .240.从7−,5−,1−,0,4,3这六个数中,随机抽一个数,记为m ,若数m 使关于x 的不等式组()x m02x 43x 2− >−<− 的解集为x 1>,且关于x 的分式方程1x m32x x 2−+=−−有非负整数解,则符合条件的m 的值的个数是( ) A .1个B .2个C .3个D .4个类型六 不等式与不等式组41.已知两个非负实数a b ,满足23a b +=,30a b c +−=,则下列式子正确的是( ) A .3a c −=B .29b c −=C .02a ≤≤D .3 4.5c ≤≤42.(2023·河北保定·一模)已知实数a ,b ,c 满足23a b c +=,则下列结论不.正确的是( ) A .()3a b c b −=− B .2a cc b −=− C .若a b >,则a c b >>D .若a c >,则2c ab a −−>43.已知关于x 的不等式组320230a x a x −≥ +>恰有3个整数解,则a 的取值范围是( )A .2332a ≤≤B .4332a ≤≤ C .4332a <≤ D .4332a ≤< 44.关于x 的不等式组1132x a x − ≤−< 恰好只有四个整数解,则a 的取值范围是( )A .23a ≤<B .23a ≤≤C .3a <D .23a <<45.喜迎二十大,学校准备举行诗词大赛.小颖积极报名并认真准备,她想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第1组有a 首、第2组有b 首、第3组有c 首、第4组有d 首;②对于第()1,2,3,4i i =组诗词,第i 天背诵第一遍,第()1i +天背诵第二遍,第()3i +天背诵第三遍,三遍后完成背诵,其它天无需背诵;③每天最多背诵14首,最少背诵4首. 7天后,小颖背诵的诗词最多为( )首. A .21B .22C .23D .2446.已知三个实数a 、b 、c ,满足325a b c ++=,231a b c +−=,且0a ≥、0b ≥、0c ≥,则37+−a b c 的最小值是( ) A .111−B .57−C .37D .711题型03 函数及其应用 类型七 动点问题的函数图象47.(2024·河南·Rt ABC 中,90ACB ∠=°,2AB BC =,定长线段DE 的端点D ,E 分别是边AC ,BC 上的动点,P 是DE 的中点,连接AP .设CD x =,AP y =,y 与x 之间的函数关系的部分图象如图2所示,已知DE BC =,则图象最低点的纵坐标m 为( )A1 B .1 C .2− D .3−48.(2024·安徽合肥·一模)如图,在ABC 中,90C ∠=°,AC BC =.AB 与矩形DEFG 的一边EF 都在直线l 上,其中4AB =、1DE =、3EF =,且点B 位于点E 处.将ABC 沿直线,向右平移,直到点A 与点E 重合为止.记点B 平移的距离为x ,ABC 与矩形DEFG 重叠区域面积为y ,则y 关于x 的函数图象大致为( )A .B .49.(2024·浙江嘉兴·一模)如图1,在矩形ABCD 中,点E 在BC 上,连接AE ,过点D 作DF AE ⊥于点F .设AE x DF y ==,,已知x ,y 满足反比例函数()00ky k x x=>>,,其图像如图2所示,则矩形ABCD 的面积为( ).A .B .9C .10D .50.如图,在矩形ABCD 中,AB =4BC =,E 为BC 的中点,连接AE ,DE ,P ,Q 分别是AE ,DE 上的点,且PE DQ =.设EPQ △的面积为y ,PE 的长为x ,则y 关于x 的函数关系式的图象大致是( )A .B .C .D .51.(2023·辽宁盘锦·二模)如图,在菱形ABCD 中,AC 与BD 交于点O ,4AC =,2BD =,点N 为CD 中点,点P 从点A 出发沿路径A O B C −−−运动,过P 作PQ AC ⊥交菱形的边于Q 点在点P 上方,连接PN ,QN ,当点Q 与点N 重合时停止运动,设PQN 的面积为y ,点P 的运动距离为x ,则能大致反映y 与x 函数关系的图象是( )A .B .C .D .52.(2023·辽宁·二模)如图,在Rt ABC △中,90A ∠=°,60C ∠=°,2AC =DEFG 从点B 出发,沿射线BC 运动.当点G 与点C 重合时,运动停止.设BD x =,正方形DEFG 与ABC 的重叠面积为S ,S 关于x 的图象如图所示.下列结论:①m 3n =,4p =,3q =4r =+3x ≤时,S x =;③在运动过程中,S 的最大值为1438+.其中正确的是( )A .①②B .①③C .①②③D .②③53.(2023·山东聊城·三模)如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P ,Q 同时从点B 出发,点P 沿折线BE ED DC −−运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒,设P ,Q 同时出发t 秒时,BPQ 的面积为2cm y .已知y 与t 的函数关系图像如图(2)(曲线OM 为抛物线的一部分),则下列结论不正确的是( )A .:4:5AB AD = B .当 2.5t =秒时,PQ =C .当294t =时,53BQ PQ = D .当BPQ 的面积为24cm 时,t 475秒 54.如图1,点Q 为菱形ABCD 的边BC 上一点,将菱形 ABCD 沿直线AQ 翻折,点B 的对应点P 落在BC 的延长线上.已知动点M 从点B 出发,在射线 BC 上以每秒1个单位长度运动.设点M 运动的时间为x ,△APM 的面积为y .图2为y 关于x 的函数图象,则菱形 ABCD 的面积为( )A .12B .24C .10D .20类型八 一次函数及其应用55.(2023·河南周口·三模)如图,在平面直角坐标系xOy 中,直线113–33y x =+分别与x 轴、y 轴交于点P ,Q ,在Rt OPQ 中从左向右依次作正方形1112A B C C ,2223A B C C ,3334A B C C …,1n n n n A B C C +,点123nA A A A …,,,在x 轴上,点1B 在y 轴上,点1231nC C C C +…,,,在直线PQ 上;再将每个正方形分割成四个全等的直角三角形和一个小正方形,其中每个小正方形的边都与坐标轴平行,从左至右的小正方形(阴影部分)的面积分别记为123n S S S S …,,,,则n S 可表示为( )A .1134n n ++B .212234n n −−C .1134n n −−D .222334n n −− 56.(2023·江苏宿迁·二模)点(),A m n 在直线1:22L y x =−上,将直线1L 绕点A 旋转45°得到直线2L :22y kx k =−+,则m n k ++=( )A .1B .133C .1或0D .1或13357.(2023·江苏连云港·二模)如图,在平面直角坐标系中,点()E ,点B 是线段OE 上任意一点,在射线OA 上取一点C ,使OB BC =,在射线BC 上取一点D ,使BD BE =.OA 所在直线的关系式为12y x =,点F 、G 分别为线段OC DE 、的中点,则FG 的最小值是( )A B C .D .4.858.(2023·福建·一模)如图,ABC 的顶点(8,0)A −,(2,8)B −,点C 在y 轴的正半轴上,AB AC =,将ABC 向右平移得到A B C ′′′ ,若A B ′′经过点C ,则点C ′的坐标为( )A .7,64B .(3,6)C .7,62D .(4,6)59.如图,直线1y x =−+与x 轴交于点A ,直线m 是过点A 、()3,0B −的抛物线2y ax bx c ++的对称轴,直线1y x =−+与直线m 交于点C ,已知点(),5D n 在直线1y x =−+上,作线段CD 关于直线m 对称的线段CE ,若抛物线与折线DCE 有两个交点,则a 的取值范围为( )A .1a ≥B .01a <≤C .102a −<<或01a << D .1a ≥或12a <−60.如图,已知直线AB :yx 轴、y 轴于点B A 、两点,(3,0)C ,D E 、分别为线段AO 和线段AC 上一动点,BE 交y 轴于点H ,且AD CE =.当BD BE +的值最小时,则H 点的坐标为( )A .B .(0,5)C .(0,4)D .61.如图,正方形ABCD 的顶点A ,D 分别在x 轴,y 轴上,点()3,1B 在直线l :4y kx =+上,直线l 分别交x 轴,y 轴于点E ,F .将正方形ABCD 沿y 轴向下平移m 个单位长度后,点C 恰好落在直线l 上.则m 的值为( )A .0.5B .1C .1.5D .262.(2022·浙江宁波·一模)已知a ,b ,c 分别是Rt ABC △的三条边长,c 为斜边长,90C ∠=°,我们把关于x 的形如a by x c c =+的一次函数称为“勾股一次函数”,若点P − 在“勾股一次函数”的图象上,且Rt ABC △的面积是4,则c 的值是( )A .B .24C .D .1263.为了缅怀先烈.继承遗志,某中学初二年级同学于4月初进行“清明雁栖湖,忆先烈功垂不朽”的定向越野活动.每个小组需要在点A 出发,跑步到点B 打卡(每小组打卡时间为1分钟),然后跑步到C 点,……,最后到达终点(假设点A ,点B ,点C 在一条直线上,且在行进过程中,每个小组跑步速度是不变的),“函数组”最先出发.过了一段时间后,“方程组”开始出发,两个小组恰好同时到达点C .若“方程组”出发的时间为x (单位:分钟),在点A 与点C 之间的行进过程中,“函数组”和“方程组”之间的距离为y (单位:米),它们的函数图像如图所示,则下面判断不正确的有( )个.(1)当2x =时,“函数组”恰好到达B 点;(2)“函数组”的速度为150米/分钟,“方程组”的速度为200米/分钟; (3)两个小组从A 点出发的时间间隔为1分钟;(4)图中M 点表示“方程组”在B 点打卡结束,开始向C 点出发;(5)出发点A 到打卡点B 的距离是600米,打卡点B 到点C 的距离是800米; A .1B .2C .3D .464.如图,在平面直角坐标系中,若折线21y x =−−+与直线交2y kx k =+(0k >)有且仅有一个交点,则k 的取值范围是( )A .01k <<或14k =B .1k >或14k =C .02k <<或14k =D .2k >或14k =65.如图,在平面直角坐标系中,四边形11112222333,,OA B C A A B C A A B C ,…都是菱形,点123,,A A A …都在x 轴上,点123,,C C C ,…都在直线y =11212323160,1C OA C A A C A A OA ∠=∠=∠==°= ,则点n C 的横坐标是( )A .2321n −×−B .2321n −×+C .1321n −×−D .1321n −×+类型九 二次函数及其应用66.(2024·天津红桥·一模)已知开口向下的抛物线 ²y ax bx c =++(a ,b ,c 为常数, 0)a ≠与x 轴的一个交点的坐标为()60,,对称轴为直线x 2=. 有下列结论:① 0a b c −+>; ②方程²0cx bx a ++=的两个根为 121126x x =−=,;③抛物线上有两点()11P x y ,和()22Q x y ,,若2x x <<₁₁且 4x x +>₁₁,则y y >₁₁.其中正确结论的个数是( ) A .0B .1C .2D .367.(2024·安徽合肥·一模)如图,P 是线段AB 上一动点,四边形APEF 和四边形PBGH 是位于直线AB 同侧的两个正方形,点C ,D 分别是,GH EF 的中点,若4AB =,则下列结论错误的是( )A .DPC ∠为定值B .当1AP =时,CD 的值为C .PCD 周长的最小值为2D .PCD 面积的最大值为268.(2024·陕西西安·二模)把抛物线()2230y ax ax a =−+>沿直线112y x =+点仍在原抛物线上,则a 是( ) A .2B .15C .14D .2569.(2023·山东济南·一模)在平面直角坐标系xOy 中,若点P 的横坐标和纵坐标相等,则称点P 为雅系点.已知二次函数()240y ax x c a =−+≠的图象上有且只有一个雅系点55,22 −−,且当0m x ≤≤时,函数()21404y ax x c a =−++≠的最小值为6−,最大值为2−,则m 的取值范围是( ) A .10m −≤≤ B .722m −<≤− C .42m −≤≤− D .7924m −≤<− 70.定义:在平面直角坐标系中,若点A 满足横,纵坐标都为整数,则把点A 叫做“整点”,如:()5,0B ,()2,3C −都是“整点”.抛物线2443y mx mx m =−++(m 是常数,且0m <)与x 轴交于点P ,Q 两点,若该抛物线在P ,Q 之间的部分与线段PQ 所围成的区域(包括边界)恰有6个“整点”,则m 的取值范围为( ) A .334m −<≤−B .32m −<≤−C .334m −≤<−D .32m −≤<−71.已知二次函数22(2)2y x m x m =+−−+的图象与x 轴最多有一个公共点,若223y m tm =−−的最小值为3,则t 的值为( ) A .12−B .32或32−C .52−或32−D .52−72.已知二次函数()()212y x ax b x x x x =++=−−(12,,,a b x x 为常数),若1213x x <<<,记=+t a b ,则( )A .30t −<<B .10t −<<C .13t −<<D .03t <<73.抛物线22y ax ax c =−+(a c ,是常数且00a c ≠>,)经过点A (3,0).下列四个结论:①该抛物线一定经过()10B −,; ②20a c +>;③点()()112220222023P t y P t y ++,,,,在抛物线上,且12y y >,则2021t >−; ④若()m n m n <,是方程22ax ax c p ++=的两个根,其中0p >,则31m n −<<<. 其中正确的个数有( ) A .1个B .2个C .3个D .4个74.如图,已知二次函数()20y ax bx c a ++≠的图象与x 轴交于点()1,0A −,与y 轴的交点B 在()0,2−和()0,1−之间(不包括这两点),对称轴为直线1x =.下列结论:①0abc >;②420a b c ++>;③244ac b a −<−;④1233a <<;⑤bc >.其中正确结论有( )A .①②⑤B .①④⑤C .①③④⑤D .①②③④⑤类型十 反比例函数及其应用75.(2023·四川达州·模拟预测)如图,O 是坐标原点,等腰直角三角形11OA B ,122A A B ,233A A B △,…,1n n n A A B − 的斜边均在x 轴正半轴上,直角顶点1B ,2B ,3B ,…,n B 均在反比例函数()10y x x=>的图象上,则点2023B 的横坐标为( )ABC .D76.(2023·江苏南通·模拟预测)如图,在平面直角坐标系中,点A 、B 分别落在双曲线()0ky k x=>第一和第三象限的两支上,连接AB ,线段AB 恰好经过原点O ,以AB 为腰作等腰三角形ABC ,AB AC =,点C 落在第四象限中,且BC x ∥轴,过点C 作CD AB ∥交x 轴于E 点,交双曲线第一象限一支于D 点,若ACD的面积为4,则k 的值为( )A .2B .3C .4D .77.(2023·福建泉州·模拟预测)如图,在平面直角坐标系xOy 中,直线AB 与反比例函数()0ky x x=>的图象相交于A 、()3,1B 两点,直线OC AB ⊥,AC BC =.过点C 作x 轴的垂线于点D .若点(),P m n 在直线OC 上,且APB ADB ∠=∠,则m n +的值为( ).A .4+或2B .3或32C .2或6D .3378.如图1,矩形的一条边长为x ,周长的一半为y .定义(),x y 为这个矩形的坐标.如图2,在平面直角坐标系中,直线1x =,3y =将第一象限划分成4个区域.已知矩形1的坐标的对应点A 落在如图所示的双曲线上,矩形2的坐标的对应点落在区域④中.则下面叙述中正确的是( )A .点A 的横坐标有可能大于3B .矩形1是正方形时,点A 位于区域②C .当点A 沿双曲线向上移动时,矩形1的面积减小D .当点A 位于区域①时,矩形1可能和矩形2全等79.(2023·安徽合肥·模拟预测)如图,Rt ABC △中,90ACB ∠=°,边BC x ∥轴,顶点A ,B 均落在反比例函数(0,0)ky x y x=>>的图象上,延长AB 交x 轴于点F ,过点C 作DE AF ∥,分别交OA ,OF 于点D 、E ,若2OD AD =,则ACDBCEFS S 四边形为( )A .1:4B .1:5C .1:6D1080.(2023九年级下·浙江宁波)如图,点A ,B 分别在y 轴正半轴、x 轴正半轴上,以AB 为边构造正方形ABCD ,点C ,D 恰好都落在反比例函数()0ky k x=≠的图象上,点E 在BC 延长线上,CE BC =,EF BE ⊥,交x 轴于点F ,边EF 交反比例函数()0ky k x =≠的图象于点P ,记BEF △的面积为S ,若122k S =+,则CEP △的面积是( )A.2 B.2− C2 D2−类型十一 双函数的综合问题81.(2023·贵州铜仁·三模)将抛物线2(1)y x =+的图象位于直线9y =以上的部分向下翻折,得到如图图象,若直线y x m =+与此图象有四个交点,则m 的取值范围是( )。
陕西中考数学压轴题(2020年7月整理).pdf

陕西中考数学历年压轴题1、(15)如图,在每一个四边形ABCD 中,均有AD//BC,CD ⊥BC, ∠ABC=60°,AD=8,BC=12.(1)如图①,点M 是四边形ABCD 边AD 上的一点,则△BMC 的面积为__________; (2)如图②,点N 是四边形ABCD 边AD 上的任意一点,请你求出△BNC 周长的最小值;(3)如图③,在四边形ABCD 的边AD 上,是否存在一点P,使得cos ∠BPC 的值最小?若存在,求出此时cos ∠BPC 的值;若不存在,请说明理由。
2、(14)问题探究(1)如图①,在矩形ABCD 中,AB=3,BC=4,如果BC 边上存在点P,使△APD 为等腰三角形,那么请画出满足条件的一个等腰△APD ,并求出此时BP 的长;(2)如图②,在△ABC 中,∠ABC=60°,BC=12,AD 是BC 边上的高,E,F 分别为边AB 、AC 的中点,当AD=6时,BC 边上存在一点Q ,使∠EQF=90°。
求此时BQ 的长; 问题解决(3)有一山庄,它的平面为③的五边形ABCDE ,山庄保卫人员想在线段CD 上选一点M 安装监控装置,用来监视边AB ,现只要使∠AMB 大约为60°,就可以让监控装置的效果达到最佳。
已知∠A=∠E=∠D=90°。
AB=270m 。
AE=400m ,ED=285m,CD=340m,问在线段CD 上是否存在点M ,使∠AMB=60°?若存在,请求出符合条件的DM 的长;若不存在,请说明理由。
┓ ② ③C A AB C F ED CAA B E D A3、(13)问题探究(1) 请在图①中作出两条直线,使它们将圆面四等分;(2) 如图②,M 是正方形ABCD 内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M ),使它们将正方形ABCD 的面积四等分,并说明理由.问题解决(3)如图③,在四边形ABCD 中,AB ∥CD ,AB+CD=BC ,点P 是AD 的中点.如果AB=a ,CD=b ,且b >a ,那么在边BC 上是否存在一点Q ,使PQ 所在直线将四边形ABCD 的面积分成相等的两部分?若存在,求出BQ 的长;若不存在,说明理由.4、(12)如图,正三角形ABC的边长为.(1)如图①,正方形EFPN 的顶点E F 、在边AB 上,顶点N 在边AC 上.在正三角形ABC 及其内部,以A 为位似中心,作正方形EFPN 的位似正方形''''E F P N ,且使正方形''''E F P N 的面积最大(不要求写作法);(2)求(1)中作出的正方形''''E F P N 的边长;(3)如图②,在正三角形ABC 中放入正方形DEMN 和正方形EFPH ,使得DE EF 、在边AB 上,点P N 、分别在边CB CA 、上,求这两个正方形面积和的最大值及最小值,并说明理由. 5、(2011)如图①,在矩形ABCD 中,将矩形折叠,使B 落在边AD (含端点)上,落点记为E ,这时折痕与边BC 或者边CD (含端点)交于F ,然后展开铺平,则以B 、E 、F 为顶点的三角形△BEF 称为矩形ABCD 的“折痕三角形”(1)由“折痕三角形”的定义可知,矩形ABCD 的任意一个“折痕△BEF”是一个 等腰 三角形(2)如图②、在矩形ABCD 中,AB=2,BC=4,,当它的“折痕△BEF”的顶点E 位于AD 的(第25题图) ① ② ③中点时,画出这个“折痕△BEF”,并求出点F的坐标;(3)如图③,在矩形ABCD中,AB=2,BC=4,该矩形是否存在面积最大的“折痕△BEF”?若存在,说明理由,并求出此时点E的坐标?若不存在,为什么?6、(2010)问题探究(1)请你在图①中做一条..直线,使它将矩形ABCD分成面积相等的两部分;(2)如图②点M是矩形ABCD内一点,请你在图②中过点M作一条直线,使它将矩形ABCD分成面积相等的两部分。
中考压轴题-二次函数综合(八大题型+解题方法)——冲刺2024年中考数学考点押题(全国通用)(解析)

中考压轴题-二次函数综合 (八大题型+解题方法)1、求证“两线段相等”的问题:借助于函数解析式,先把动点坐标用一个字母表示出来;然后看两线段的长度是什么距离即是“点点”距离,还是“点轴距离”,还是“点线距离”,再运用两点之间的距离公式或点到x 轴y 轴的距离公式或点到直线的距离公式,分别把两条线段的长度表示出来,分别把它们进行化简,即可证得两线段相等;2、“平行于y 轴的动线段长度的最大值”的问题:由于平行于y 轴的线段上各个点的横坐标相等常设为t,借助于两个端点所在的函数图象解析式,把两个端点的纵坐标分别用含有字母t 的代数式表示出来,再由两个端点的高低情况,运用平行于y 轴的线段长度计算公式-y y 下上,把动线段的长度就表示成为一个自变量为t,且开口向下的二次函数解析式,利用二次函数的性质,即可求得动线段长度的最大值及端点坐标;3、求一个已知点关于一条已知直线的对称点的坐标问题:先用点斜式或称K ,且与已知直线垂直的直线解析式,再求出两直线的交点坐标,最后用中点坐标公式即可;4、“抛物线上是否存在一点,使之到定直线的距离最大”的问题:方法1先求出定直线的斜率,由此可设出与定直线平行且与抛物线相切的直线的解析式注意该直线与定直线的斜率相等,因为平行直线斜率k 相等,再由该直线与抛物线的解析式组成方程组,用代入法把字母y 消掉,得到一个关于x 的的一元二次方程,由题有△=2b -4ac=0因为该直线与抛物线相切,只有一个交点,所以2b -4ac=0从而就可求出该切线的解析式,再把该切线解析式与抛物线的解析式组成方程组,求出x 、y 的值,即为切点坐标,然后再利用点到直线的距离公式,计算该切点到定直线的距离,即为最大距离; 方法2该问题等价于相应动三角形的面积最大问题,从而可先求出该三角形取得最大面积时,动点的坐标,再用点到直线的距离公式,求出其最大距离;方法3先把抛物线的方程对自变量求导,运用导数的几何意义,当该导数等于定直线的斜率时,求出的点的坐标即为符合题意的点,其最大距离运用点到直线的距离公式可以轻松求出;5、常数问题:1点到直线的距离中的常数问题:“抛物线上是否存在一点,使之到定直线的距离等于一个 固定常数”的问题:先借助于抛物线的解析式,把动点坐标用一个字母表示出来,再利用点到直线的距离公式建立一个方程,解此方程,即可求出动点的横坐标,进而利用抛物线解析式,求出动点的纵坐标,从而抛物线上的动点坐标就求出来了;2三角形面积中的常数问题:“抛物线上是否存在一点,使之与定线段构成的动三角形的面积等于一个定常数”的问题:先求出定线段的长度,再表示出动点其坐标需用一个字母表示到定直线的距离,再运用三角形的面积公式建立方程,解此方程,即可求出动点的横坐标,再利用抛物线的解析式,可求出动点纵坐标,从而抛物线上的动点坐标就求出来了;3几条线段的齐次幂的商为常数的问题:用K 点法设出直线方程,求出与抛物线或其它直线的交点坐标,再运用两点间的距离公式和根与系数的关系,把问题中的所有线段表示出来,并化解即可;6、“在定直线常为抛物线的对称轴,或x 轴或y 轴或其它的定直线上是否存在一点,使之到两定点的距离之和最小”的问题:先求出两个定点中的任一个定点关于定直线的对称点的坐标,再把该对称点和另一个定点连结得到一条线段,该线段的长度〈应用两点间的距离公式计算〉即为符合题中要求的最小距离,而该线段与定直线的交点就是符合距离之和最小的点,其坐标很易求出利用求交点坐标的方法;7、三角形周长的“最值最大值或最小值”问题:① “在定直线上是否存在一点,使之和两个定点构成的三角形周长最小”的问题简称“一边固定两边动的问题:由于有两个定点,所以该三角形有一定边其长度可利用两点间距离公式计算,只需另两边的和最小即可;② “在抛物线上是否存在一点,使之到定直线的垂线,与y 轴的平行线和定直线,这三线构成的动直角三角形的周长最大”的问题简称“三边均动的问题:在图中寻找一个和动直角三角形相似的定直角三角形,在动点坐标一母示后,运用=C C 动动定定斜边斜边,把动三角形的周长转化为一个开口向下的抛物线来破解;8、三角形面积的最大值问题:① “抛物线上是否存在一点,使之和一条定线段构成的三角形面积最大”的问题简称“一边固定两边动的问题”:方法1:先利用两点间的距离公式求出定线段的长度;然后再利用上面3的方法,求出抛物线上的动点到该定直线的最大距离;最后利用三角形的面积公式= 12底×高;即可求出该三角形面积的最大值,同时在求解过程中,切点即为符合题意要求的点;方法2:过动点向y 轴作平行线找到与定线段或所在直线的交点,从而把动三角形分割成两个基本模型的三角形,动点坐标一母示后,进一步可得到)()(左(定)右(定)下(动)上(动)动三角形x x y y 21−⋅−=S ,转化为一个开口向下的二次函数问题来求出最大值;②“三边均动的动三角形面积最大”的问题简称“三边均动”的问题:先把动三角形分割成两个基本模型的三角形有一边在x 轴或y 轴上的三角形,或者有一边平行于x 轴或y 轴的三角形,称为基本模型的三角形面积之差,设出动点在x 轴或y 轴上的点的坐标,而此类题型,题中一定含有一组平行线,从而可以得出分割后的一个三角形与图中另一个三角形相似常为图中最大的那一个三角形;利用相似三角形的性质对应边的比等于对应高的比可表示出分割后的一个三角形的高;从而可以表示出动三角形的面积的一个开口向下的二次函数关系式,相应问题也就轻松解决了;9、“一抛物线上是否存在一点,使之和另外三个定点构成的四边形面积最大的问题”:由于该四边形有三个定点,,即可得到一个定三角形的面积之和,所以只需动三角形的面积最大,就会使动四边形的面积最大,而动三角形面积最大值的求法及抛物线上动点坐标求法与7相同;10、“定四边形面积的求解”问题: 有两种常见解决的方案:方案一:连接一条对角线,分成两个三角形面积之和;方案二:过不在x 轴或y 轴上的四边形的一个顶点,向x 轴或y 轴作垂线,或者把该点与原点连结起来,分割成一个梯形常为直角梯形和一些三角形的面积之和或差,或几个基本模型的三角形面积的和差11、“两个三角形相似”的问题: 两个定三角形是否相似:(1)已知有一个角相等的情形:运用两点间的距离公式求出已知角的两条夹边,看看是否成比例 若成比例,则相似;否则不相似;(2)不知道是否有一个角相等的情形:运用两点间的距离公式求出两个三角形各边的长,看看是否成比例若成比例,则相似;否则不相似;一个定三角形和动三角形相似:(1)已知有一个角相等的情形:先借助于相应的函数关系式,把动点坐标表示出来一母示,然后把两个目标三角形题中要相似的那两个三角形中相等的那个已知角作为夹角,分别计算或表示出夹角的两边,让形成相等的夹角的那两边对应成比例要注意是否有两种情况,列出方程,解此方程即可求出动点的横坐标,进而求出纵坐标,注意去掉不合题意的点;2不知道是否有一个角相等的情形:这种情形在相似性中属于高端问题,破解方法是,在定三角形中,由各个顶点坐标求出定三角形三边的长度,用观察法得出某一个角可能是特殊角,再为该角寻找一个直角三角形,用三角函数的方法得出特殊角的度数,在动点坐标“一母示”后,分析在动三角形中哪个角可以和定三角形中的那个特殊角相等,借助于特殊角,为动点寻找一个直角三角形,求出动点坐标,从而转化为已知有一个角相等的两个定三角形是否相似的问题了,只需再验证已知角的两边是否成比例若成比例,则所求动点坐标符合题意,否则这样的点不存在;简称“找特角,求动点标,再验证”;或称为“一找角,二求标,三验证”;12、“某函数图象上是否存在一点,使之与另两个定点构成等腰三角形”的问题:首先弄清题中是否规定了哪个点为等腰三角形的顶点;若某边底,则只有一种情况;若某边为腰,有两种情况;若只说该三点构成等腰三角形则有三种情况;先借助于动点所在图象的解析式,表示出动点的坐标一母示,按分类的情况,分别利用相应类别下两腰相等,使用两点间的距离公式,建立方程;解出此方程,即可求出动点的横坐标,再借助动点所在图象的函数关系式,可求出动点纵坐标,注意去掉不合题意的点就是不能构成三角形这个题意;13、“某图象上是否存在一点,使之与另外三个点构成平行四边形”问题:这类问题,在题中的四个点中,至少有两个定点,用动点坐标“一母示”分别设出余下所有动点的坐标若有两个动点,显然每个动点应各选用一个参数字母来“一母示”出动点坐标,任选一个已知点作为对角线的起点,列出所有可能的对角线显然最多有3条,此时与之对应的另一条对角线也就确定了,然后运用中点坐标公式,求出每一种情况两条对角线的中点坐标,由平行四边形的判定定理可知,两中点重合,其坐标对应相等,列出两个方程,求解即可;进一步有:①若是否存在这样的动点构成矩形呢先让动点构成平行四边形,再验证两条对角线相等否若相等,则所求动点能构成矩形,否则这样的动点不存在;②若是否存在这样的动点构成棱形呢先让动点构成平行四边形,再验证任意一组邻边相等否若相等,则所求动点能构成棱形,否则这样的动点不存在;③若是否存在这样的动点构成正方形呢先让动点构成平行四边形,再验证任意一组邻边是否相等和两条对角线是否相等若都相等,则所求动点能构成正方形,否则这样的动点不存在;14、“抛物线上是否存在一点,使两个图形的面积之间存在和差倍分关系”的问题:此为“单动问题”〈即定解析式和动图形相结合的问题〉,后面的19实为本类型的特殊情形;先用动点坐标“一母示”的方法设出直接动点坐标,分别表示如果图形是动图形就只能表示出其面积或计算如果图形是定图形就计算出它的具体面积,然后由题意建立两个图形面积关系的一个方程,解之即可;注意去掉不合题意的点,如果问题中求的是间接动点坐标,那么在求出直接动点坐标后,再往下继续求解即可;15、“某图形〈直线或抛物线〉上是否存在一点,使之与另两定点构成直角三角形”的问题:若夹直角的两边与y轴都不平行:先设出动点坐标一母示,视题目分类的情况,分别用斜率公式算出夹直角的两边的斜率,再运用两直线没有与y轴平行的直线垂直的斜率结论两直线的斜率相乘等于-1,得到一个方程,解之即可;若夹直角的两边中有一边与y 轴平行,此时不能使用斜率公式;补救措施是:过余下的那一个点没在平行于y轴的那条直线上的点直接向平行于y的直线作垂线或过直角点作平行于y轴的直线的垂线与另一相关图象相交,则相关点的坐标可轻松搞定;16、“某图象上是否存在一点,使之与另两定点构成等腰直角三角形”的问题;①若定点为直角顶点,先用k点法求出另一直角边所在直线的解析式如斜率不存在,根据定直角点,可以直接写出另一直角边所在直线的方程,利用该解析式与所求点所在的图象的解析式组成方程组,求出交点坐标,再用两点间的距离公式计算出两条直角边等否若等,该交点合题,反之不合题,舍去;②若动点为直角顶点:先利用k点法求出定线段的中垂线的解析式,再把该解析式与所求点所在图象的解析式组成方程组,求出交点坐标,再分别计算出该点与两定点所在的两条直线的斜率,把这两个斜率相乘,看其结果是否为-1 若为-1,则就说明所求交点合题;反之,舍去;17、“题中含有两角相等,求相关点的坐标或线段长度”等的问题:题中含有两角相等,则意味着应该运用三角形相似来解决,此时寻找三角形相似中的基本模型“A”或“X”是关键和突破口;18、“在相关函数的解析式已知或易求出的情况下,题中又含有某动图形常为动三角形或动四边形的面积为定常数,求相关点的坐标或线段长”的问题:此为“单动问题”〈即定解析式和动图形相结合的问题〉,本类型实际上是前面14的特殊情形;先把动图形化为一些直角梯形或基本模型的三角形有一边在x 轴或y轴上,或者有一边平行于x 轴或y 轴面积的和或差,设出相关点的坐标一母示,按化分后的图形建立一个面积关系的方程,解之即可;一句话,该问题简称“单动问题”,解题方法是“设点动点标,图形转化分割,列出面积方程”;19、“在相关函数解析式不确定系数中还含有某一个参数字母的情况下,题中又含有动图形常为动三角形或动四边形的面积为定常数,求相关点的坐标或参数的值”的问题:此为“双动问题”即动解析式和动图形相结合的问题;如果动图形不是基本模型,就先把动图形的面积进行转化或分割转化或分割后的图形须为基本模型,设出动点坐标一母示,利用转化或分割后的图形建立面积关系的方程或方程组;解此方程,求出相应点的横坐标,再利用该点所在函数图象的解析式,表示出该点的纵坐标注意,此时,一定不能把该点坐标再代入对应函数图象的解析式,这样会把所有字母消掉;再注意图中另一个点与该点的位置关系或其它关系,方法是常由已知或利用2问的结论,从几何知识的角度进行判断,表示出另一个点的坐标,最后把刚表示出来的这个点的坐标再代入相应解析式,得到仅含一个字母的方程,解之即可;如果动图形是基本模型,就无须分割或转化了,直接先设出动点坐标一母式,然后列出面积方程,往下操作方式就与不是基本模型的情况完全相同;一句话,该问题简称“双动问题”,解题方法是“转化分割,设点标,建方程,再代入,得结论”;常用公式或结论:1横线段的长 = 横标之差的绝对值 =-x x 大小=-x x 右左纵线段的长=纵标之差的绝对值=-y y 大小=-y y 下上 2点轴距离:点P 0x ,0y 到X 轴的距离为0y ,到Y 轴的距离为o x ; 3两点间的距离公式:若A 11,x y ,B 2,2x y , 则AB=目录:题型1:存在性问题 题型2:最值问题 题型3:定值问题 题型4:定点问题题型5:动点问题综合 题型6:对称问题 题型7:新定义题 题型8:二次函数与圆题型1:存在性问题1.(2024·四川广安·二模)如图,抛物线2y x bx c =−++交x 轴于()4,0A −,B 两点,交y 轴于点()0,4C .(1)求抛物线的函数解析式.(2)点D 在线段OA 上运动,过点D 作x 轴的垂线,与AC 交于点Q ,与抛物线交于点P ,连接AP 、CP ,求四边形AOCP 的面积的最大值.(3)在抛物线的对称轴上是否存在点M ,使得以点A 、C 、M 为顶点的三角形是直角三角形?若存在,请求出点M【答案】(1)234y x x =−−+;(2)四边形AOCP 的面积最大为16;(3)点M 的坐标为35,22⎛⎫−− ⎪⎝⎭或311,22⎛⎫− ⎪⎝⎭.【分析】本题主要考查了二次函数综合,熟练掌握用待定系数法求解函数解析式的方法和步骤,以及二次函数的图象和性质,是解题的关键. (1)把()4,0A −,()0,4C 代入2y x bx c =−++,求出b 和c 的值,即可得出函数解析式; (2)易得182AOCSOA OC =⋅=,设()2,34P t t t −−+,则(),4Q t t +,求出24PQ t t =−−,则()()212282ACP C A S PQ x x t =⋅−=−++,根据四边形AOCP 的面积()22216ACP AOCS St =+=−++,结合二次函数的增减性,即可解答;(3)设3,2M m ⎛⎫− ⎪⎝⎭,根据两点之间距离公式得出232AC =,22254AM m =+,229(4)4CM m =+−,然后分情况根据勾股定理列出方程求解即可.【解析】(1)解:把()4,0A −,()0,4C 代入2y x bx c =−++得:01644b c c =−−+⎧⎨=⎩,解得:34b c =−⎧⎨=⎩,∴该二次函数的解析式234y x x =−−+;(2)解:∵()4,0A −,()0,4C ,∴4,4OA OC ==,∴1144822AOC S OA OC =⋅=⨯⨯=△,设直线AC 的解析式为4y kx =+, 代入()4,0A −得,044k =−+,解得1k =,∴直线AC 的解析式为4y x =+, 设()2,34P t t t −−+,则(),4Q t t +,∴()223444PQ t t t t t=−−+−+=−−∴()()()22114422822ACPC A SPQ x x t t t =⋅−=−−⨯=−++,∴四边形AOCP 的面积()22216ACP AOCSSt =+=−++,∵20−<,∴当2t =−时,四边形AOCP 的面积最大为16; (3)解:设3,2M m ⎛⎫− ⎪⎝⎭,∵()4,0A −,()0,4C ,∴2224432AC =+=,2222325424AM m m ⎛⎫=−++=+ ⎪⎝⎭,()()2222394424CM m m ⎛⎫=−+−=+− ⎪⎝⎭,当斜边为AC 时,AM CM AC 222+=,即()2225943244m m +++−=,整理得:24150m m ++=,无解;当斜边为AM 时,222AC CM AM +=,即2292532(4)44m m ++−=+,解得:112m =;∴311,22M ⎛⎫− ⎪⎝⎭当斜边为CM 时,222AC AM CM +=,即2225932(4)44m m ++=+−, 解得:52m =−;∴35,22M ⎛⎫−− ⎪⎝⎭综上:点M 的坐标为35,22⎛⎫−− ⎪⎝⎭或311,22⎛⎫− ⎪⎝⎭.2.(2024·内蒙古乌海·模拟预测)如图(1),在平面直角坐标系中,抛物线()240y ax bx a =+−≠与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,点A 的坐标为()1,0−,且OC OB =,点D 和点C 关于抛物线的对称轴对称.(1)分别求出a ,b 的值和直线AD 的解析式;(2)直线AD 下方的抛物线上有一点P ,过点P 作PH AD ⊥于点H ,作PM 平行于y 轴交直线AD 于点M ,交x 轴于点E ,求PHM 的周长的最大值;(3)在(2)的条件下,如图2,在直线EP 的右侧、x 轴下方的抛物线上是否存在点N ,过点N 作NG x ⊥轴交x 轴于点G ,使得以点E 、N 、G 为顶点的三角形与AOC 相似?如果存在,请直接写出点G 的坐标;如果不存在,请说明理由.【答案】(1)1a =,3b =−,=1y x −−(2)4+(3)存在,点G的坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭【分析】本题主要考查的是二次函数的综合应用,掌握二次函数的交点式、配方法求二次函数的最值、相似三角形的判定、等腰直角三角形的判定、一元二次方程的求根公式,列出PM 的长与a 的函数关系式是解题的关键.(1)先求得C 的坐标,从而得到点B 的坐标,设抛物线的解析式为()()14y a x x =+−,将点C 的坐标代入求解即可;先求得抛物线的对称轴,从而得到点()3,4D −,然后可求得直线AD 的解析式=1y x −−;(2)求得45BAD ∠=︒,接下来证明PMD △为等腰直角三角形,所当PM 有最大值时三角形的周长最大,设()2,34P a a a −−,()1M a −−,则223PM aa =−++,然后利用配方可求得PM 的最大值,最后根据MPH△的周长(1PM=求解即可;(3)当90EGN ∠=︒时,如果OA EG OC GN = 或OA GNOC EN =时,则AOC ∽EGN △,设点G 的坐标为(),0a ,则()2,34N a a a −−,则1EG a =−,234NG aa =−++,然后根据题意列方程求解即可.【解析】(1)点A 的坐标为()1,0−,1OA ∴=.令0x =,则4y =−,()0,4C ∴−,4OC =,OC OB =Q , 4OB ∴=,()4,0B ∴,设抛物线的解析式为()()14y a x x =+−,将0x =,4y =−代入得:44a −=−,解得1a =,∴抛物线的解析式为234y x x =−−;1a ∴=,3b =−; 抛物线的对称轴为33212x −=−=⨯,()0,4C −,点D 和点C 关于抛物线的对称轴对称,()3,4D ∴−;设直线AD 的解析式为y kx b =+.将()1,0A −、()3,4D −代入得:034k b k b −+=⎧⎨+=−⎩,解得1k =−,1b =-,∴直线AD 的解析式=1y x −−;(2)直线AD 的解析式=1y x −−,∴直线AD 的一次项系数1k =−,45BAD ∴∠=︒. PM 平行于y 轴,90AEP ∴∠=︒,45PMH AME ∴∠=∠=︒.MPH ∴的周长(122PM MH PH PM MP PM PM =++=++=. 设()2,34P a a a −−,则(),1M a a −−, 则()22213423(1)4PM a a a a a a =−−−−−=−++=−−+.∴当1a =时,PM 有最大值,最大值为4.MPH ∴的周长的最大值(414=⨯=+(3)在直线EP 的右侧、x 轴下方的抛物线上存在点N ,过点N 作NG x ⊥轴交x 轴于点G ,使得以点E 、N 、G 为顶点的三角形与AOC 相似;理由如下:设点G 的坐标为(),0a ,则()2,34N a a a −−①如图2.1,若OA EG OC GN = 时,AOC ∽EGN △. 则 211344a a a −=−++,整理得:280a a +−=.得:a =负值舍去),∴点G为⎫⎪⎪⎝⎭; ②如图2.2,若OA GN OC EN =时,AOC ∽NGE ,则21434a a a −=−++,整理得:2411170a a −−=,得:a =负值舍去),∴点G为⎫⎪⎪⎝⎭, 综上所述,点G的坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭. 3.(2024·重庆·一模)如图,在平面直角坐标系中,抛物线2y ax bx =+x 轴交于点()1,0A −,()5,0B ,与y 轴交于点C ,连接BC ,AC .(1)求抛物线的表达式;(2)P 为直线BC 上方抛物线上一点,过点P 作PD BC ⊥于点D ,过点P 作PE x 轴交抛物线于点E,求4+PD PE 的最大值及此时点P 的坐标; (3)点C 关于抛物线对称轴对称的点为Q ,将抛物线沿射线CAy ',新抛物线y '与y 轴交于点M ,新抛物线y '的对称轴与x 轴交于点N ,连接AM ,MN ,点R 在直线BC 上,连接QR .当QR 与AMN 一边平行时,直接写出点R 的坐标,并写出其中一种符合条件的解答过程.【答案】(1)2y x x =++(2)当154t =时,PE的最大值,15,416P ⎛ ⎝⎭, (3)R点的坐标为⎛ ⎝⎭或6,⎛ ⎝⎭或(.【分析】(1)利用待定系数法求抛物线解析式即可;(2)先求得2y x =2x =,过点P 作PG x ⊥轴交BC 于点F ,利用勾股定理求得BC ==DPF OBC ∽,得PF DP BC OB =即PF PD=,从而得PF =,求出设直线BC的解析式后,设2,P t ⎛+ ⎝,则,F t ⎛+ ⎝,从而2PF =+,当点P在E 点右侧时()424PE t t t =−−=−,从而得2154t ⎫=−⎪⎝⎭,利用二次函数的性质即可求解;当点P 在E 点左侧时:442PE t t t =−−=−时,同理可求.然后比较4+PE 的最大值即可得出答案. (3)先求得1OA=,OC AC =设抛物线2y =H ⎛ ⎝⎭平移后为P ,过点P 作PW ⊥直线2x =,则AOC PWH ∽,得1OA OC AC WP HW PH ====,进而得平移后的抛物线2y x +'=,从而求得()1,0N,M ⎛ ⎝⎭,然后分QR AM ∥,QR MN ∥,QR AN ∥三种情况,利用二次函数的性质及一次函数的与二元一次方程的关系求解即可得解.【解析】(1)解:∵抛物线2y ax bx =+x 轴交于点()1,0A −,()5,0B 两点,代入坐标得:02550a b a b ⎧−=⎪⎨+=⎪⎩,解得:a b ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线的函数表达式为255y x x =−++(2)解:∵)2225555y x x x =−+=−−+,∴2y x =2x=,顶点为⎛ ⎝⎭ 过点P 作PG x ⊥轴交BC 于点F ,当0x =时,200y =∴(C ∵()5,0B ∴BC ==∵PG x ⊥轴,PD BC ⊥,x 轴y ⊥轴,∴909090CBO BFG DPF PFD PDF BOC ∠∠∠∠∠∠+=︒+=︒==︒,,∵PFD BFG ∠∠=∴DPF CBO ∠∠=∴DPF OBC ∽,∴PF DP BC OB =即PF PD =,∴PF PD =∴44+PD PE =PF +PE ,设直线BC :y kx b =+,把(C ,()5,0B 代入得:05k b b =+⎧⎪=,解得5k b ⎧=−⎪⎨⎪=⎩, ∴直线BC:y =设2,P t ⎛ ⎝,则,F t ⎛+ ⎝,∴22PF ⎛⎛=−+=+ ⎝⎝,∵2y x =2x =,PE x 轴,∴24,E t ⎛−+ ⎝当点P 在E 点右侧时:()424PE t t t =−−=−,当24PE t =−时:∴+PD PE =PF +()221524545416t t ⎛⎫=−+−=−−+ ⎪⎝⎭ ∴当154t =时,的最大值∴2151544⎛⎫= ⎪⎝⎭,∴154P ⎛ ⎝⎭; 当点P 在E 点左侧时:442PE t t t =−−=−时,∴+PD PE =PF +()225424t t ⎫=−=−⎪⎝⎭, ∴当54t =时,的最大值.2,55P t ⎛−+ ⎝∴25544⎛⎫ ⎪⎝⎭∴5,416P ⎛ ⎝⎭,∵> 综上所诉,当点P 在E 点右侧时:即154t =时,的最大值,154P ⎛ ⎝⎭, (3)解:设直线AC :y mx n =+,把()1,0A −,(C , ∴1OA =,OC =∴AC ==设抛物线2y x =H ⎛ ⎝⎭平移后为P , 过点P 作PW ⊥直线2x =,则AOC PWH ∽,∴1OA OC AC WP HW PH ====∴1PW =,HW=∴21,5P ⎛−⎝即1,5P ⎛ ⎝⎭,∴平移后的抛物线)22155555y x x x =−−+=−++', ∴()1,0N令0x =,y '=,∴M ⎛ ⎝⎭ 如图,当QR AM ∥时,设直线AM 的解析式为:y px q =+,把M ⎛ ⎝⎭,()1,0A −代入得:0p q q =−+⎧=解得p q ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线AM的解析式为:y =, ∴设直线QR的解析式为:y x n =∵(C ,Q 和C 关于2x =对称,∴(Q把(Q代入5y x n =+45n +,解得n =,∴直线QR的解析式为:y = 联立直线QR的解析式y =与直线BC:y x =+55y x y x ⎧=−⎪⎪⎨⎪=⎪⎩,解得3x y =⎧⎪⎨=⎪⎩,∴R ⎛ ⎝⎭ 同理可得:当QR MN ∥时,6,5R ⎛− ⎝⎭ 当QR AN ∥时,(R所有符合条件的R点的坐标为⎛ ⎝⎭或6,⎛ ⎝⎭或(. 【点睛】本题考查待定系数法求抛物线解析式,勾股定理,抛物线的性质,抛物线平移,一次函数的平移,相似三角形的判定及性质,图形与坐标,掌握待定系数法求抛物线解析式,抛物线的性质,抛物线平移,相似三角形的判定及性质,图形与坐标,利用辅助线画出准确图形是解题关键.题型2:最值问题4.(2024·安徽合肥·二模)在平面直角坐标系中,O 为坐标原点,抛物线23y ax bx =+−与x 轴交于()1,0A −,()3,0B 两点,与y 轴交于点C ,连接BC .(1)求a ,b 的值;(2)点M 为线段BC 上一动点(不与B ,C 重合),过点M 作MP x ⊥轴于点P ,交抛物线于点N . (ⅰ)如图1,当3PA PB=时,求线段MN 的长; (ⅱ)如图2,在抛物线上找一点Q ,连接AM ,QN ,QP ,使得PQN V 与APM △的面积相等,当线段NQ 的长度最小时,求点M 的横坐标m 的值.【答案】(1)1a =,2b =−(2)(ⅰ)2MN =;(ⅱ)m 的值为32或12【分析】本题考查诶粗函数的图象和性质,掌握待定系数法和利用函数性质求面积是解题的关键.(1)运用待定系数法求函数解析式即可;(2)(ⅰ)先计算BC 的解析式,然后设(),3M m m −,则3PM PB m ==−,1PA m =+,根据题意得到方程133m m +=−求出m 值,即可求出MN 的长;(ⅱ)作QR PN ⊥于点R ,由(ⅰ)可得1PA m =+,3PB PM m =−−,223PN m m =−++,然后分为点Q 在PN 的左侧和点Q 在PN 的右侧两种情况,根据勾股定理解题即可.【解析】(1)由题意得309330a b a b −−=⎧⎨+−=⎩,解得12a b =⎧⎨=−⎩;(2)(ⅰ)当0x =时,3y =−,∴()0,3C −,设直线BC 为3y kx =−,∵点()3,0B ,∴330k −=,解得1k =,∴直线BC 为3y x =−,设(),3M m m −,则3PM PB m ==−,1PA m =+, ∵3PA PB =, ∴133m m +=−,解得2m =,经检验2m =符合题意,当2m =时,222233y =−⨯−=−, ∴3PN =,31PM PB m ==−=,∴2MN =;(ⅱ)作QR PN ⊥于点R ,由(ⅰ)可得1PA m =+,3PB PM m =−−,223PN m m =−++,PQN V 的面积为()21232m m QR −++⋅,APM △的面积为()()1312m m −+,∴()()()211233122m m QR m m −++⋅=−+,解得1QR =;当点Q 在PN 的左侧时,如图1,Q 点的横坐标为1m QR m −=−,纵坐标为()()2212134m m m m −−⨯−−=−,∴R 点的坐标为()2,4m mm−,∵N 点坐标为()2,23m mm −−,∴32RN m =−,∴()22231NQ m =−+,∴当32m =时,NQ 取最小值;当点Q 在PN 的右侧时,如图2,Q 点的横坐标为1m QR m +=+,纵坐标为()()2212134m m m +−⨯+−=−,∴R 点的坐标为()2,4m m−,∵N 点的坐标为()2,23m mm −−,∴21RN m =−, ∴()222211NQ m =−+,∴当12m =时,NQ 取最小值.综上,m 的值为32或12.。
2020年数学中考复习,几何代数综合压轴题解析(三)

2020年数学中考复习,几代综合压轴题解析(三)1.(2019.眉山)如图,在平面直角坐标系中,抛物线y=-94x 2+bx+c 经过点A(-5,0)和点B (1,0).(1)求抛物线的解析式及顶点D 的坐标;(2)点P 是抛物线上A 、D 之间的一点,过点P 作PE ⊥x 轴于点F ,当矩形PEFG 的周长最大时,求点P 的横坐标;(3)如图连接AD 、BD ,点M 在线段AB 上(不与A 、B 重合),作∠DMN=∠DBA ,MN 交线段AD 于点N ,是否存在这样点M ,使得△DMN 为等腰三角形?若存在,求AN 的长;若不存在,请说明理由。
解析:(1)将A(-5,0)和点B (1,0)代入y=-94x 2+bx+c ,可得b=-916,c=920∴抛物线的解析式:y=-94x 2-916x+920,D (-2,4).(2)设P (m,-94m 2-916m+920),根据对称性可得GP=-4-2m 。
矩形PEFG 的周长=2(PE+PG )=2(-94m 2-916m+920-4-2m )=-98(m+417)2+18225 当m=-417时,矩形PEFG 的周长有最大值,即P 的点的横坐标为m=-417。
(3)由A(-5,0)和点B (1,0),D (-2,4)可求得AB=6,AD=DB=5。
①当MD=MN 时,由∠DBA=∠MAB,∠BDM=∠AMN.可证得△MBD ≌△NAM, ∴AN=MB.又∠DMN=∠DBA=∠DAB ,∠MDN=∠ADM,∴∠DNM=∠AMD ∴△ADM 是等腰三角形,即AM=AD=5,∴AN=MB=6-5=1②当ND=MN 时,∠NDM=∠DMN=∠DBA,又∠DAM 是公共角, ∴△ADM ∽△ABD ,∴AD 2=AM ·AB,可求得AM=625,BM=611 又△ANM ∽△BMD,∴DBAM=MB AN , 可得AN=3655。
③当ND=MD 时,可得∠DNM=∠DMN,又知∠DMN=∠DBA=∠DAB ,而发生了∠PNM=∠PAM,显然 这种情况不成立。
2024年中考数学二轮复习:代数式(附答案解析)

2024年中考数学二轮复习:代数式一.选择题(共10小题)1.为了求1+2+22+23+…+22011+22012的值,可令S=1+2+22+23+…+22011+22012,则2S=2+22+23+24+…+22012+22013,因此2S﹣S=22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是()A.52013﹣1B.52013+1C.52013−44D.52013−142.如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是()A.m=2,n=2B.m=﹣1,n=2C.m=﹣2,n=2D.m=2,n=﹣1 3.已知x﹣2y=3,则代数式6﹣2x+4y的值为()A.0B.﹣1C.﹣3D.3 4.某商店举办促销活动,促销的方法是将原价x元的衣服以(45x﹣10)元出售,则下列说法中,能正确表达该商店促销方法的是()A.原价减去10元后再打8折B.原价打8折后再减去10元C.原价减去10元后再打2折D.原价打2折后再减去10元5.若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是()A.2B.0C.﹣1D.1 6.当x=1时,代数式12ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A.7B.3C.1D.﹣77.若a是有理数,那么在①a+1,②|a+1|,③|a|+1,④a2+1中,一定是正数的有()A.1个B.2个C.3个D.4个8.下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b﹣3ba2=0D.5a2﹣4a2=19.下列各式由等号左边变到右边变错的有()①a﹣(b﹣c)=a﹣b﹣c②(x2+y)﹣2(x﹣y2)=x2+y﹣2x+y2第1页(共14页)。
初三数学综合题压轴题100题(含答案解析)

初三数学综合题压轴题100题(含答案解析)一、中考压轴题1.某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.【分析】(1)这是一个分段函数,分别求出其函数关系式;(2)①当2≤x<8时及当x≥8时,分别求出w关于x的表达式.注意w=销售总收入﹣经营总成本=w A+w B﹣3×20;②若该公司获得了30万元毛利润,将30万元代入①中求得的表达式,求出A类杨梅的数量;(3)本问是方案设计问题,总投入为132万元,这笔132万元包括购买杨梅的费用+A类杨梅加工成本+B类杨梅加工成本.共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,分别求出当2≤x<8时及当x≥8时w关于x的表达式,并分别求出其最大值.【解答】解:(1)①当2≤x<8时,如图,设直线AB解析式为:y=kx+b,将A(2,12)、B(8,6)代入得:,解得,∴y=﹣x+14;②当x≥8时,y=6.所以A类杨梅平均销售价格y与销售量x之间的函数关系式为:y=;(2)设销售A类杨梅x吨,则销售B类杨梅(20﹣x)吨.①当2≤x<8时,w A=x(﹣x+14)﹣x=﹣x2+13x;w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=w A+w B﹣3×20=(﹣x2+13x)+(108﹣6x)﹣60=﹣x2+7x+48;当x≥8时,w A=6x﹣x=5x;w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=w A+w B﹣3×20=(5x)+(108﹣6x)﹣60=﹣x+48.∴w关于x的函数关系式为:w=.②当2≤x<8时,﹣x2+7x+48=30,解得x1=9,x2=﹣2,均不合题意;当x≥8时,﹣x+48=30,解得x=18.∴当毛利润达到30万元时,直接销售的A类杨梅有18吨.(3)设该公司用132万元共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,则购买费用为3m万元,A类杨梅加工成本为x万元,B类杨梅加工成本为[12+3(m﹣x)]万元,∴3m+x+[12+3(m﹣x)]=132,化简得:x=3m﹣60.①当2≤x<8时,w A=x(﹣x+14)﹣x=﹣x2+13x;w B=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=w A+w B﹣3×m=(﹣x2+13x)+(6m﹣6x﹣12)﹣3m=﹣x2+7x+3m﹣12.将3m=x+60代入得:w=﹣x2+8x+48=﹣(x﹣4)2+64∴当x=4时,有最大毛利润64万元,此时m=,m﹣x=;②当x≥8时,w A=6x﹣x=5x;w B=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=w A+w B﹣3×m=(5x)+(6m﹣6x﹣12)﹣3m=﹣x+3m﹣12.将3m=x+60代入得:w=48∴当x>8时,有最大毛利润48万元.综上所述,购买杨梅共吨,其中A类杨梅4吨,B类吨,公司能够获得最大毛利润,最大毛利润为64万元.【点评】本题是二次函数、一次函数的综合应用题,难度较大.解题关键是理清售价、成本、利润三者之间的关系.涉及到分段函数时,注意要分类讨论.2.如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.(1)当PQ∥AD时,求x的值;(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围.【分析】(1)根据已知条件,证明四边形APQD是矩形,再根据矩形的性质和AP=CQ 求x即可;(2)连接EP、EQ,则EP=EQ,设BE=y,列出等式(8﹣x)2+y2=(6﹣y)2+x2然后根据函数的性质来求x的取值范围;(3)由图形的等量关系列出方程,再根据函数的性质来求最值.【解答】解:(1)当PQ∥AD时,则∠A=∠APQ=90°,∠D=∠DQP=90°,又∵AB∥CD,∴四边形APQD是矩形,∴AP=QD,∵AP=CQ,AP=CD=,∴x=4.(2)如图,连接EP、EQ,则EP=EQ,设BE=y.∴(8﹣x)2+y2=(6﹣y)2+x2,∴y=.∵0≤y≤6,∴0≤≤6,∴≤x≤.(3)S△BPE=•BE•BP=••(8﹣x)=,S△ECQ==•(6﹣)•x=,∵AP=CQ,∴S BPQC=,∴S=S BPQC﹣S△BPE﹣S△ECQ=24﹣﹣,整理得:S==(x﹣4)2+12(),∴当x=4时,S有最小值12,当x=或x=时,S有最大值.∴12≤S≤.【点评】解答本题时,涉及到了矩形的判定、矩形的性质、勾股定理以及二次函数的最值等知识点,这是一道综合性比较强的题目,所以在解答题目时,一定要把各个知识点融会贯通,这样解题时才会少走弯路.3.(1)已知一元二次方程x2+px+q=0(p2﹣4q≥0)的两根为x1、x2;求证:x1+x2=﹣p,x1•x2=q.(2)已知抛物线y=x2+px+q与x轴交于A、B两点,且过点(﹣1,﹣1),设线段AB的长为d,当p为何值时,d2取得最小值,并求出最小值.【分析】(1)先根据求根公式得出x1、x2的值,再求出两根的和与积即可;(2)把点(﹣1,﹣1)代入抛物线的解析式,再由d=|x1﹣x2|可知d2=(x1﹣x2)2=(x1+x2)2﹣4 x1•x2=p2,再由(1)中x1+x2=﹣p,x1•x2=q即可得出结论.【解答】证明:(1)∵a=1,b=p,c=q∴△=p2﹣4q∴x=即x1=,x2=∴x1+x2=+=﹣p,x1•x2=•=q;(2)把(﹣1,﹣1)代入y=x2+px+q得1﹣p+q=﹣1,所以,q=p﹣2,设抛物线y=x2+px+q与x轴交于A、B的坐标分别为(x1,0)、(x2,0)∵d=|x1﹣x2|,∴d2=(x1﹣x2)2=(x1+x2)2﹣4x1•x2=p2﹣4q=p2﹣4p+8=(p﹣2)2+4当p=2时,d2的最小值是4.【点评】本题考查的是抛物线与x轴的交点及根与系数的关系,熟知x1,x2是方程x2+px+q =0的两根时,x1+x2=﹣p,x1x2=q是解答此题的关键.4.已知:y关于x的函数y=(k﹣1)x2﹣2kx+k+2的图象与x轴有交点.(1)求k的取值范围;(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k﹣1)x12+2kx2+k+2=4x1x2.①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值.【分析】(1)分两种情况讨论,当k=1时,可求出函数为一次函数,必与x轴有一交点;当k≠1时,函数为二次函数,若与x轴有交点,则△≥0.(2)①根据(k﹣1)x12+2kx2+k+2=4x1x2及根与系数的关系,建立关于k的方程,求出k 的值;②充分利用图象,直接得出y的最大值和最小值.【解答】解:(1)当k=1时,函数为一次函数y=﹣2x+3,其图象与x轴有一个交点.当k≠1时,函数为二次函数,其图象与x轴有一个或两个交点,令y=0得(k﹣1)x2﹣2kx+k+2=0.△=(﹣2k)2﹣4(k﹣1)(k+2)≥0,解得k≤2.即k≤2且k≠1.综上所述,k的取值范围是k≤2.(2)①∵x1≠x2,由(1)知k<2且k≠1,函数图象与x轴两个交点,∴k<2,且k≠1.由题意得(k﹣1)x12+(k+2)=2kx1①,将①代入(k﹣1)x12+2kx2+k+2=4x1x2中得:2k(x1+x2)=4x1x2.又∵x1+x2=,x1x2=,∴2k•=4•.解得:k1=﹣1,k2=2(不合题意,舍去).∴所求k值为﹣1.②如图,∵k1=﹣1,y=﹣2x2+2x+1=﹣2(x﹣)2+.且﹣1≤x≤1.由图象知:当x=﹣1时,y最小=﹣3;当x=时,y最大=.∴y的最大值为,最小值为﹣3.【点评】本题考查了抛物线与x轴的交点、一次函数的定义、二次函数的最值,充分利用图象是解题的关键.5.如果将点P绕定点M旋转180°后与点Q重合,那么称点P与点Q关于点M对称,定点M叫做对称中心.此时,M是线段PQ的中点.如图,在直角坐标系中,△ABO的顶点A,B,O的坐标分别为(1,0),(0,1),(0,0).点列P1,P2,P3,…中的相邻两点都关于△ABO的一个顶点对称:点P1与点P2关于点A对称,点P2与点P3关于点B对称,点P3与点P4关于点O对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于点O对称…对称中心分别是A,B,O,A,B,O,…,且这些对称中心依次循环.已知点P1的坐标是(1,1),试求出点P2,P7,P100的坐标.【分析】通过作图可知6个点一个循环,那么P7的坐标和P1的坐标相同,P100的坐标与P4的坐标一样,通过图中的点可很快求出.【解答】解:P2的坐标是(1,﹣1),P7的坐标是(1,1),P100的坐标是(1,﹣3).理由:作P1关于A点的对称点,即可得到P2(1,﹣1),分析题意,知6个点一个循环,故P7的坐标与P1的坐标一样,P100的坐标与P4的坐标一样,所以P7的坐标等同于P1的坐标为(1,1),P100的坐标等同于P4的坐标为(1,﹣3).【点评】解决本题的关键是读懂题意,画出图形,仔细观察,分析,得到相应的规律.6.用两种方法解答:已知m、n是关于x的方程x2+(p﹣2)x+1=0两个实数根,求代数式(m2+mp+1)(n2+np+1)的值.【分析】本题主要是利用韦达定理来计算.已知m、n是关于x的方程x2+(p﹣2)x+1=0两个实数根,有四个等式可供使用:m+n=2﹣p①,mn=1②,m2+(p﹣2)m+1=0③,n2+(p﹣2)n+1=0④.通过变形方法,合理地选择解题方法.【解答】解:∵m、n是x2+(p﹣2)x+1=0的根,∴m+n=2﹣p,mn=1.方法一:m2+(p﹣2)m+1=0,n2+(p﹣2)n+1=0.即m2+pm+1=2m,n2+pn+1=2n.原式=2m×2n=4mn=4.方法二:(m2+mp+1)(n2+np+1)=(m2+mp)(n2+np)+m2+mp+n2+np+1=m2n2+m2np+mpn2+mnp2+m2+mp+n2+np+1=1+mp+np+p2+m2+n2+mp+np+1=2+p2+m2+n2+2(m+n)p=2+p2+m2+n2+2(2﹣p)p=2+p2+m2+n2+4p﹣2p2=2+(m+n)2﹣2mn+4p﹣2p2+p2=2+(2﹣p)2﹣2+4p﹣2p2+p2=4﹣4p+p2+4p﹣p2=4.【点评】本题主要是通过根与系数的关系来求值.注意把所求的代数式转化成m+n=2﹣p,mn=1的形式,正确对所求式子进行变形是解题的关键.7.我国年人均用纸量约为28公斤,每个初中毕业生离校时大约有10公斤废纸;用1吨废纸造出的再生好纸,所能节约的造纸木材相当于18棵大树,而平均每亩森林只有50至80棵这样的大树.(1)若我市2005年4万名初中毕业生能把自己离校时的全部废纸送到回收站使之制造为再生好纸,那么最少可使多少亩森林免遭砍伐?(2)我市从2000年初开始实施天然林保护工程,大力倡导废纸回收再生,如今成效显著,森林面积大约由2003年初的50万亩增加到2005年初的60.5万亩.假设我市年用纸量的20%可以作为废纸回收、森林面积年均增长率保持不变,请你按全市总人口约为1000万计算:在从2005年初到2006年初这一年度内,我市因回收废纸所能保护的最大森林面积相当于新增加的森林面积的百分之几?(精确到1%)【分析】(1)因为每个初中毕业生离校时大约有10公斤废纸,用1吨废纸造出的再生好纸,所能节约的造纸木材相当于18棵大树,而平均每亩森林只有50至80棵这样的大树,所以有40000×10÷1000×18÷80,计算出即可求出答案;(2)森林面积大约由2003年初的50万亩增加到2005年初的60.5万亩,可先求出森林面积年均增长率,进而求出2005到2006年新增加的森林面积,而因回收废纸所能保护的最大森林面积=1000×10000×28×20%÷1000×18÷50,然后进行简单的计算即可求出答案.【解答】解:(1)4×104×10÷1000×18÷80=90(亩).答:若我市2005年4万名初中毕业生能把自己离校时的全部废纸送到回收站使之制造为再生好纸,那么最少可使90亩森林免遭砍伐.(2)设我市森林面积年平均增长率为x,依题意列方程得50(1+x)2=60.5,解得x1=10%,x2=﹣2.1(不合题意,舍去),1000×104×28×20%÷1000×18÷50=20160,20160÷(605000×10%)≈33%.答:在从2005年初到2006年初这一年度内,我市因回收废纸所能保护的最大森林面积相当于新增加的森林面积的33%.【点评】本题以保护环境为主题,考查了增长率问题,阅读理解题意,并从题目中提炼出平均增长率的数学模型并解答的能力;解答时需仔细分析题意,利用方程即可解决问题.8.如图,反比例函数的图象经过点A(4,b),过点A作AB⊥x轴于点B,△AOB的面积为2.(1)求k和b的值;(2)若一次函数y=ax﹣3的图象经过点A,求这个一次函数的解析式.【分析】(1)由△AOB的面积为2,根据反比例函数的比例系数k的几何意义,可知k的值,得出反比例函数的解析式,然后把x=4代入,即可求出b的值;(2)把点A的坐标代入y=ax﹣3,即可求出这个一次函数的解析式.【解答】解:(1)∵反比例函数的图象经过点A,AB⊥x轴于点B,△AOB的面积为2,A(4,b),∴OB×AB=2,×4×b=2,∴AB=b=1,∴A(4,1),∴k=xy=4,∴反比例函数的解析式为y=,即k=4,b=1.(2)∵A(4,1)在一次函数y=ax﹣3的图象上,∴1=4a﹣3,∴a=1.∴这个一次函数的解析式为y=x﹣3.【点评】本题主要考查了待定系数法求一次函数的解析式和反比例函数中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.9.我们学习了利用函数图象求方程的近似解,例如:把方程2x﹣1=3﹣x的解看成函数y=2x﹣1的图象与函数y=3﹣x的图象交点的横坐标.如图,已画出反比例函数y=在第一象限内的图象,请你按照上述方法,利用此图象求方程x2﹣x﹣1=0的正数解.(要求画出相应函数的图象;求出的解精确到0.1)【分析】根据题意可知,方程x2﹣x﹣1=0的解可看做是函数y=和y=x﹣1的交点坐标,所以根据图象可知方程x2﹣x﹣1=0的正数解约为1.1.【解答】解:∵x≠0,∴将x2﹣x﹣1=0两边同时除以x,得x﹣1﹣=0,即=x﹣1,把x2﹣x﹣1=0的正根视为由函数y=与函数y=x﹣1的图象在第一象限交点的横坐标.如图:∴正数解约为1.1.【点评】主要考查了反比例函数和一元二次方程之间的关系.一元二次方程的解都可化为一个反比例函数和一次函数的交点问题求解.10.九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,求旗杆AB的高度.【分析】利用三角形相似中的比例关系,首先由题目和图形可看出,求AB的长度分成了2个部分,AH和HB部分,其中HB=EF=1.6m,剩下的问题就是求AH的长度,利用△CGE∽△AHE,得出,把相关条件代入即可求得AH=11.9,所以AB=AH+HB=AH+EF=13.5m.【解答】解:∵CD⊥FB,AB⊥FB,∴CD∥AB∴△CGE∽△AHE∴即:∴∴AH=11.9∴AB=AH+HB=AH+EF=11.9+1.6=13.5(m).【点评】主要用到的解题思想是把梯形问题转化成三角形问题,利用三角形相似比列方程来求未知线段的长度.11.如图,已知△BEC是等边三角形,∠AEB=∠DEC=90°,AE=DE,AC,BD的交点为O.(1)求证:△AEC≌△DEB;(2)若∠ABC=∠DCB=90°,AB=2 cm,求图中阴影部分的面积.【分析】(1)在△AEC和△DEB中,已知AE=DE,BE=CE,且夹角相等,根据边角边可证全等.(2)由图可知,在连接EO并延长EO交BC于点F,连接AD之后,整个图形是一个以EF所在直线对称的图形.即△AEO和△DEO面积相等,只要求出其中一个即可,而三角形AEO面积=•OE•FB,所以解题中心即为求出OE和FB,有(1)中结论和已知条件即可求解.【解答】(1)证明:∵∠AEB=∠DEC=90°,∴∠AEB+∠BEC=∠DEC+∠BEC,即∠AEC=∠DEB,∵△BEC是等边三角形,∴CE=BE,又AE=DE,∴△AEC≌△DEB.(2)解:连接EO并延长EO交BC于点F,连接AD.由(1)知AC=BD.∵∠ABC=∠DCB=90°,∴∠ABC+∠DCB=180°,∴AB∥DC,AB==CD,∴四边形ABCD为平行四边形且是矩形,∴OA=OB=OC=OD,又∵BE=CE,∴OE所在直线垂直平分线段BC,∴BF=FC,∠EFB=90°.∴OF=AB=×2=1,∵△BEC是等边三角形,∴∠EBC=60°.在Rt△AEB中,∠AEB=90°,∠ABE=∠ABC﹣∠EBC=90°﹣60°=30°,∴BE=AB•cos30°=,在Rt△BFE中,∠BFE=90°,∠EBF=60°,∴BF=BE•cos60°=,EF=BE•sin60°=,∴OE=EF﹣OF==,∵AE=ED,OE=OE,AO=DO,∴△AOE≌△DOE.∴S△AOE=S△DOE∴S阴影=2S△AOE=2וEO•BF=2×××=(cm2).【点评】考查综合应用等边三角形、等腰三角形、解直角三角形、直角三角形性质,进行逻辑推理能力和运算能力.12.如图,已知直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,连接PC 并延长PC交y轴于点D(0,3).(1)求证:△POD≌△ABO;(2)若直线l:y=kx+b经过圆心P和D,求直线l的解析式.【分析】(1)首先连接PB,由直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,可求得∠APB=∠DPO=60°,∠ABO=∠POD=90°,即可得△P AB是等边三角形,可得AB=OP,然后由ASA,即可判定:△POD≌△ABO;(2)易求得∠PDO=30°,由OP=OD•tan30°,即可求得点P的坐标,然后利用待定系数法,即可求得直线l的解析式.【解答】(1)证明:连接PB,∵直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,∴∠APB=∠DPO=×180°=60°,∠ABO=∠POD=90°,∵P A=PB,∴△P AB是等边三角形,∴AB=P A,∠BAO=60°,∴AB=OP,∠BAO=∠OPD,在△POD和△ABO中,∴△POD≌△ABO(ASA);(2)解:由(1)得△POD≌△ABO,∴∠PDO=∠AOB,∵∠AOB=∠APB=×60°=30°,∴∠PDO=30°,∴OP=OD•tan30°=3×=,∴点P的坐标为:(﹣,0)∴,解得:,∴直线l的解析式为:y=x+3.【点评】此题考查了圆周角定理、全等三角形的判定与性质、直角三角形的性质、等边三角形的判定与性质以及待定系数法求一次函数的解析式.此题综合性较强,难度适中,注意准确作出辅助线,注意数形结合思想的应用.13.如图,有一直径MN=4的半圆形纸片,其圆心为点P,从初始位置Ⅰ开始,在无滑动的情况下沿数轴向右翻滚至位置Ⅴ,其中,位置Ⅰ中的MN平行于数轴,且半⊙P与数轴相切于原点O;位置Ⅱ和位置Ⅳ中的MN垂直于数轴;位置Ⅲ中的MN在数轴上;位置Ⅴ中的点N到数轴的距离为3,且半⊙P与数轴相切于点A.解答下列问题:(1)位置Ⅰ中的MN与数轴之间的距离为2;位置Ⅱ中的半⊙P与数轴的位置关系是相切;(2)求位置Ⅲ中的圆心P在数轴上表示的数;(3)纸片半⊙P从位置Ⅲ翻滚到位置Ⅳ时,求点N所经过路径长及该纸片所扫过图形的面积;(4)求OA的长.[(2),(3),(4)中的结果保留π].【分析】(1)先求出圆的半径,再根据切线的性质进行解答;(2)根据位置Ⅰ中的长与数轴上线段ON相等求出的长,再根据弧长公式求出的长,进而可得出结论;(3)作NC垂直数轴于点C,作PH⊥NC于点H,连接P A,则四边形PHCA为矩形,在Rt△NPH中,根据sin∠NPH==即可∠NPH、∠MP A的度数,进而可得出的长,【解答】解:(1)∵⊙P的直径=4,∴⊙P的半径=2,∵⊙P与直线有一个交点,∴位置Ⅰ中的MN与数轴之间的距离为2;位置Ⅱ中的半⊙P与数轴的位置关系是相切;故答案为:2,相切;(2)位置Ⅰ中的长与数轴上线段ON相等,∵的长为=π,NP=2,∴位置Ⅲ中的圆心P在数轴上表示的数为π+2.(3)点N所经过路径长为=2π,S半圆==2π,S扇形==4π,半⊙P所扫过图形的面积为2π+4π=6π.(4)如图,作NC垂直数轴于点C,作PH⊥NC于点H,连接P A,则四边形PHCA为矩形.在Rt△NPH中,PN=2,NH=NC﹣HC=NC﹣P A=1,于是sin∠NPH==,∴∠NPH=30°.∴∠MP A=60°.从而的长为=,于是OA的长为π+4+π=π+4.【点评】本题考查的是直线与圆的关系、弧长的计算、扇形的面积公式,在解答此题时要注意Ⅰ中的长与数轴上线段ON相等的数量关系.14.已知⊙O1与⊙O2相交于A、B两点,点O1在⊙O2上,C为⊙O2上一点(不与A,B,O1重合),直线CB与⊙O1交于另一点D.(1)如图(1),若AD是⊙O1的直径,AC是⊙O2的直径,求证:AC=CD;(2)如图(2),若C是⊙O1外一点,求证:O1C丄AD;(3)如图(3),若C是⊙O1内的一点,判断(2)中的结论是否成立?【分析】(1)连接C01,利用直径所对圆周角等于90度,以及垂直平分线的性质得出即可;(2)根据已知得出四边形AEDB内接于⊙O1,得出∠ABC=∠E,再利用=,得出∠E=∠AO1C,进而得出CO1∥ED即可求出;(3)根据已知得出∠B=∠EO1C,又∠E=∠B,即可得出∠EO1C=∠E,得出CO1∥ED,即可求出.【解答】(1)证明:连接C01∵AC为⊙O2直径∴∠AO1C=90°即CO1⊥AD,∵AO1=DO1∴DC=AC(垂直平分线的性质);(2)证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵四边形AEDB内接于⊙O1,∴∠E+∠ABD=180°,∵∠ABC+∠ABD=180°,∴∠ABC=∠E,又∵=,∴∠ABC=∠AO1C,∴∠E=∠AO1C,∴CO1∥ED,又AE为⊙O1的直径,∴ED⊥AD,∴O1C⊥AD,(3)(2)中的结论仍然成立.证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵∠B+∠AO1C=180°,∠EO1C+∠AO1C═180°,∴∠B=∠EO1C,又∵∠E=∠B,∴∠EO1C=∠E,∴CO1∥ED,又ED⊥AD,∴CO1⊥AD.【点评】此题主要考查了圆周角定理以及相交两圆的性质和圆内接四边形的性质,根据圆内接四边形的性质得出对应角之间的关系是解决问题的关键.15.⊙O1与⊙O2相交于A、B两点,如图(1),连接O2O1并延长交⊙O1于P点,连接P A、PB并分别延长交⊙O2于C、D两点,连接CO2并延长交⊙O2于E点.已知⊙O2的半径为R,设∠CAD=α.(1)求CD的长(用含R、α的式子表示);(2)试判断CD与PO1的位置关系,并说明理由;(3)设点P’为⊙O1上(⊙O2外)的动点,连接P’A、P’B并分别延长交⊙O2于C’、D’,请你探究∠C’AD’是否等于α?C’D’与P’O1的位置关系如何?并说明理由.(注:图(2)与图(3)中⊙O1和⊙O2的大小及位置关系与图(1)完全相同,若你感到继续在图(1)中探究问题(3),图形太复杂,不便于观察,可以选择图(2)或图(3)中的一图说明理由).【分析】(1)作⊙O2的直径CE,连接DE.根据圆周角定理的推论,得∠E=∠CAD=α,再利用解直角三角形的知识求解;(2)连接AB,延长PO1与⊙O1相交于点E,连接AE.根据圆内接四边形的性质,得∠ABP′=∠C′,根据圆周角定理的推论,得∠ABP′=∠E,∠EAP′=90°,从而证明∠AP′E+∠C′=90°,则CD与PO1的位置关系是互相垂直;(3)根据同弧所对的圆周角相等,则说明∠C’AD’等于α;根据(2)中的证明过程,则可以证明C’D’与P’O1的位置关系是互相垂直.【解答】解:(1)连接DE.根据圆周角定理的推论,得∠E=∠CAD=α.∵CE是直径,∴∠CDE=90°.∴CD=CE•sin E=2R sinα;(2)CD与PO1的位置关系是互相垂直.理由如下:连接AB,延长PO1与⊙O1相交于点E,连接AE.∵四边形BAC′D′是圆内接四边形,∴∠ABP′=∠C′.∵P′E是直径,∴∠EAP′=90°,∴∠AP′E+∠E=90°.又∠ABP′=∠E,∴∠AP′E+∠C′=90°,即CD与PO1的位置关系是互相垂直;(3)根据同弧所对的圆周角相等,则说明∠C’AD’等于α;根据(2)中的证明过程,则可以证明C’D’与P’O1的位置关系是互相垂直.【点评】此题综合运用了圆周角定理及其推论、直角三角形的性质、圆内接四边形的性质.注意:连接两圆的公共弦、构造直径所对的圆周角都是圆中常见的辅助线.16.一个不透明的口袋里有红、黄、绿三种颜色的球(除颜色外其余都相同),其中红球有2个,黄球有1个,任意摸出一个黄球的概率为.(1)试求口袋里绿球的个数;(2)若第一次从口袋中任意摸出一球(不放回),第二次任意摸出一球,请你用树状图或列表法,求出两次都摸到红球的概率.【分析】(1)根据概率的求解方法,利用方程求得绿球个数;(2)此题需要两步完成,所以采用树状图法或者列表法都比较简单,解题时要注意是放回实验还是不放回实验,此题为不放回实验.【解答】解:(1)设口袋里绿球有x个,则,解得x=1.故口袋里绿球有1个.(2)红一红二黄绿红一红二,红一黄,红一绿,红一红二红一,红二黄,红一绿,红二黄红一,黄红二,黄绿,黄绿红一,绿红二,绿黄,绿故,P(两次都摸到红球)=.【点评】(1)解题时要注意应用方程思想;(2)列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.【分析】(1)当20≤x≤220时,设车流速度v与车流密度x的函数关系式为v=kx+b,根据题意的数量关系建立方程组求出其解即可;(2)由(1)的解析式建立不等式组求出其解即可;(3)设车流量y与x之间的关系式为y=vx,当x<20和20≤x≤220时分别表示出函数关系由函数的性质就可以求出结论.【解答】解:(1)设车流速度v与车流密度x的函数关系式为v=kx+b,由题意,得,解得:,∴当20≤x≤220时,v=﹣x+88,当x=100时,v=﹣×100+88=48(千米/小时);(2)由题意,得,解得:70<x<120.∴应控制大桥上的车流密度在70<x<120范围内;(3)设车流量y与x之间的关系式为y=vx,当0≤x≤20时y=80x,∴k=80>0,∴y随x的增大而增大,∴x=20时,y最大=1600;当20≤x≤220时y=(﹣x+88)x=﹣(x﹣110)2+4840,∴当x=110时,y最大=4840.∵4840>1600,∴当车流密度是110辆/千米,车流量y取得最大值是每小时4840辆.【点评】本题考查了车流量=车流速度×车流密度的运用,一次函数的解析式的运用,一元一次不等式组的运用,二次函数的性质的运用,解答时求出函数的解析式是关键.18.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2;③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.【分析】(1)将三角形的各顶点,向x轴作垂线并延长相同长度得到三点的对应点,顺次连接;(2)将三角形的各顶点,绕原点O按逆时针旋转90°得到三点的对应点.顺次连接各对应点得△A2B2C2;(3)从图中可发现成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,做它的垂直平分线;(4)成中心对称图形,画出两条对应点的连线,交点就是对称中心.【解答】解:如下图所示:(3)成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,作它的垂直平分线,或连接A1C1,A2C2的中点的连线为对称轴.(4)成中心对称,对称中心为线段BB2的中点P,坐标是(,).【点评】本题综合考查了图形的变换,在图形的变换中,关键是找到图形的对应点.19.下框中是小明对一道题目的解答以及老师的批改.题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1,在温室内,沿前侧内墙保留3m的空地,其他三侧内墙各保留1m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288m2?解:设矩形蔬菜种植区域的宽为xm,则长为2xm,根据题意,得x•2x=288.解这个方程,得x1=﹣12(不合题意,舍去),x2=12所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)答:当温室的长为28m,宽为14m时,矩形蔬菜种植区域的面积是288m2.我的结果也正确!小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程:变化一下会怎样…(2)如图,矩形A′B′C′D′在矩形ABCD的内部,AB∥A′B′,AD∥A′D′,且AD:AB=2:1,设AB与A′B′、BC与B′C′、CD与C′D′、DA与D′A′之间的距离分别为a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d应满足什么条件?请说明理由.【分析】(1)根据题意可得小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由,所以应设矩形蔬菜种植区域的宽为xm,则长为2xm,然后由题意得,矩形蔬菜种植区域的长与宽之比为2:1,再利用小明的解法求解即可;(2)由使矩形A′B′C′D′∽矩形ABCD,利用相似多边形的性质,可得,即,然后利用比例的性质,即可求得答案.【解答】解:(1)小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由.在“设矩形蔬菜种植区域的宽为xm,则长为2xm.”前补充以下过程:设温室的宽为xm,则长为2xm.则矩形蔬菜种植区域的宽为(x﹣1﹣1)m,长为(2x﹣3﹣1)m.∵,∴矩形蔬菜种植区域的长与宽之比为2:1;(2)要使矩形A′B′C′D′∽矩形ABCD,就要,即,即,即2AB﹣2(b+d)=2AB﹣(a+c),∴a+c=2(b+d),即.【点评】此题考查了相似多边形的性质.此题属于阅读性题目,注意理解题意,读懂题目是解此题的关键.20.如图,AD是⊙O的直径.(1)如图①,垂直于AD的两条弦B1C1,B2C2把圆周4等分,则∠B1的度数是22.5°,∠B2的度数是67.5°;(2)如图②,垂直于AD的三条弦B1C1,B2C2,B3C3把圆周6等分,分别求∠B1,∠B2,∠B3的度数;(3)如图③,垂直于AD的n条弦B1C1,B2C2,B3C3,…,B n∁n把圆周2n等分,请你用含n的代数式表示∠B n的度数(只需直接写出答案).【分析】根据条件可以先求出圆的各段弧的度数,根据圆周角等于所对弧的度数的一半,就可以求出圆周角的度数.【解答】解:(1)垂直于AD的两条弦B1C1,B2C2把圆周4等分,则是圆的,因而度数是45°,因而∠B1的度数是22.5°,同理的度数是135度,因而,∠B2的度数是67.5°;(2)∵圆周被6等分∴===360°÷6=60°∵直径AD⊥B1C1∴==30°,∴∠B1==15°∠B2==×(30°+60°)=45°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.如图,已知A (﹣4,n ),B (2,﹣4)是一次函数y=kx+b 和反比例函数y=的图象的两个交点.
x m
(1)求一次函数和反比例函数的解析式;
(2)观察图象,直接写出方程kx+b ﹣=0的解;
x m
(3)求△AOB 的面积;
(4)观察图象,直接写出不等式kx+b ﹣<0的解集.
x m
解:(1)∵B (2,﹣4)在y=上,
∴m=﹣8.
∴反比例函数的解析式为y=﹣.
∵点A (﹣4,n )在y=﹣上,
∴n=2.
∴A (﹣4,2).
∵y=kx+b 经过A (﹣4,2),B (2,﹣4),
∴.解得:.
∴一次函数的解析式为y=﹣x ﹣2.
(2):∵A (﹣4,n ),B (2,﹣4)是一次函数y=kx+b 的图象和反比例函数
y=的图象的两个交点,
x m ∴方程kx+b ﹣=0的解是x 1=﹣4,x 2=2.
x m
(3)∵当x=0时,y=﹣2.
∴点C (0,﹣2).
∴OC=2.
∴S △AOB =S △ACO +S △BCO =×2×4+×2×2=6;
(4)不等式kx+b ﹣<0的解集为﹣4<x <0或x >2.x m
2.如图,反比例函数y =的图象与一次函数
y =kx+b 的图象交于A ,B 两点,点A 的坐标为(2,6),点B 的坐标为m x
(n ,1).(1)求反比例函数与一次函数的表达式;
(2)点E 为y 轴上一个动点,若S △AEB =10,求点E 的坐标.
解:(1)把点A(2,6)代入y =,得m =12,则y =.
m
x 12
x 把点B(n ,1)代入y =,得n =12,则点B 的坐标为(12,1).
12
x 由直线y =kx+b 过点A(2,6),点B(12,1)得,解得,
26
121k b k b 1
27k b 则所求一次函数的表达式为y =x+7.
1
2(2)如图,直线AB 与y 轴的交点为P ,设点E 的坐标为(0,m),连接AE ,BE ,
则点P 的坐标为(0,7).∴PE =|m -7|.
∵S △AEB =S △BEP -S △AEP =10,∴×|m -7|×(12-2)=10.
1
2∴|m -7|=2.∴m 1=5,m 2=9.
∴点E 的坐标为(0,5)或(0,9).
3.如图,在平面直角坐标系中,O 为坐标原点,△ABO 的边AB 垂直与x 轴,垂足为点B ,反比例函数y=(
x >0)的图象经过AO 的中点C ,且与AB 相交于点D ,OB=4,AD=3,
(1)求反比例函数y=的解析式;
(2)求cos ∠OAB 的值;
(3)求经过C 、D 两点的一次函数解析式.
解:(1)设点D 的坐标为(4,m )(m >0),则点A 的坐标为(4,
3+m ),
∵点C 为线段AO 的中点,
∴点C 的坐标为(2,).
∵点C、点D均在反比例函数y=的函数图象上,
∴,解得:.
∴反比例函数的解析式为y=.
(2)∵m=1,
∴点A的坐标为(4,4),
∴OB=4,AB=4.
在Rt△ABO中,OB=4,AB=4,∠ABO=90°,
∴OA==4,cos∠OAB===.
(3))∵m=1,
∴点C的坐标为(2,2),点D的坐标为(4,1).
设经过点C、D的一次函数的解析式为y=ax+b,
则有,解得:.
∴经过C、D两点的一次函数解析式为y=﹣x+3.
4.在平面直角坐标系中,一次函数y=ax+b(a≠0)的图形与反比例函数y=(k≠0)的图象交于第二、四象限内的
A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,﹣2).
(1)求△AHO的周长;
(2)求该反比例函数和一次函数的解析式.
解:(1)由OH=3,tan∠AOH=,得
AH=4.即A(﹣4,3).
由勾股定理,得
AO==5,
△AHO的周长=AO+AH+OH=3+4+5=12;
(2)将A点坐标代入y=(k≠0),得
k=﹣4×3=﹣12,。