高一数学集合教案
高一数学第一章《集合》教案

高一数学第一章《集合》教案高一数学第一章《集合》教案(通用6篇)作为一名辛苦耕耘的教育工作者,时常要开展教案准备工作,教案是保证教学取得成功、提高教学质量的基本条件。
那么什么样的教案才是好的呢?以下是店铺收集整理的高一数学第一章《集合》教案,欢迎大家分享。
高一数学第一章《集合》教案篇1教学目标:(1) 知识与技能:了解集合的含义,理解并掌握元素与集合的“属于”关系、集合中元素的三个特性,识记数学中一些常用的的数集及其记法,能选择自然语言、列举法和描述法表示集合。
(2) 过程与方法:从圆、线段的垂直平分线的定义引出“集合”一词,通过探讨一系列的例子形成集合的概念,举例剖析集合中元素的三个特性,探讨元素与集合的关系,比较用自然语言、列举法和描述法表示集合。
(3) 情感态度与价值观:感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯。
教学重难点:(1) 重点:了解集合的含义与表示、集合中元素的特性。
(2) 难点:区别集合与元素的概念及其相应的符号,理解集合与元素的关系,表示具体的集合时,如何从列举法与描述法中做出选择。
教学过程:【问题1】在初中我们已经学习了圆、线段的垂直平分线,大家回忆一下教材中是如何对它们进行定义的?[设计意图]引出“集合”一词。
【问题2】同学们知道什么是集合吗?请大家思考讨论课本第2页的思考题。
[设计意图]探讨并形成集合的含义。
【问题3】请同学们举出认为是集合的例子。
[设计意图]点评学生举出的例子,剖析并强调集合中元素的三大特性:确定性、互异性、无序性。
【问题4】同学们知道用什么来表示一个集合,一个元素吗?集合与元素之间有怎样的关系?[设计意图] 区别表示集合与元素的的符号,介绍集合中一些常用的的数集及其记法。
理解集合与元素的关系。
【问题5】“地球上的四大洋”组成的集合可以表示为{太平洋、大西洋、印度洋、北冰洋},“方程(x- 1)(x+2)=0的所有实数根”组成的集[设计意图]引出并介绍列举法。
《高中数学集合》教案模板

《高中数学集合》教案模板一、教学目标1.知识与技能:●理解集合的概念及其表示方法(列举法、描述法)。
●掌握集合的基本性质:确定性、无序性、互异性。
●能够运用集合的基本运算:并集、交集、补集。
2.过程与方法:●通过实例引入,让学生感受集合概念在现实生活中的应用。
●通过讨论与探索,培养学生的逻辑推理能力和抽象思维能力。
3.情感态度与价值观:●激发学生对数学学习的兴趣和好奇心。
●培养学生的团队合作精神和数学表达的自信心。
二、教学重点与难点1.教学重点:●集合的定义与表示方法。
●集合的基本运算。
2.教学难点:●对集合概念的理解及其在实际问题中的应用。
●集合运算的灵活运用。
三、教学准备•多媒体课件,包括集合的基本概念、表示方法、运算的演示。
•黑板及粉笔,用于板书重点概念和例题。
•练习题册或教学软件,用于学生课堂练习和巩固。
四、教学过程1.导入新课●通过生活中的实例(如班级学生的集合、水果种类的集合等)引出集合的概念。
●提问学生:“你们认为什么是集合?”引导学生初步思考。
2.讲授新课●讲解集合的定义和表示方法(列举法、描述法),并举例说明。
●介绍集合的基本性质,并通过实例让学生理解这些性质。
●讲解集合的基本运算(并集、交集、补集),通过图示和实例帮助学生理解运算过程。
3.互动探究●分组讨论:让学生分组讨论集合概念在实际生活中的应用,并分享讨论结果。
●教师引导:针对学生的讨论结果,教师进行点评和总结,并引导学生深入思考。
4.巩固练习●学生独立完成练习题册中的题目,教师巡视指导。
●针对学生练习中出现的问题,教师进行解答和讲解。
5.课堂小结●总结本节课的学习内容,强调集合概念和运算的重要性。
●布置课后作业,包括复习本节课知识点和完成相关练习题。
五、板书设计●集合的定义与表示方法•列举法•描述法●集合的基本性质•确定性•无序性•互异性●集合的基本运算•并集•交集•补集六、教学反思●在课后对本节课的教学效果进行反思,总结教学中的成功之处和不足。
高一数学集合教案 高一数学教案优秀13篇

高一数学集合教案高一数学教案优秀13篇高一数学集合教案篇一教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明教学过程:一、复习引入:1.简介数集的发展,复习公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家)(见附录);4.“物以类聚”,“人以群分”;5.教材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。
高一数学集合教案范文

高一数学集合教案范文在一年的数学教育工作中,作为高一数学老师的你知道怎样写高一数学集合教案范文吗?来写一篇高一数学集合教案范文吧,它会对你的教学工作起到不菲的帮助。
下面是为大家收集有关于高一数学集合教案范文,希望你喜欢。
高一数学集合教案范文1教学目标1.使学生掌握的概念,图象和性质.(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域.(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质.(3)能利用的性质比较某些幂形数的大小,会利用的图象画出形如的图象.2.通过对的概念图象性质的学习,培育学生观察,分析归纳的能力,进一步体会数形结合的思想方法.3.通过对的讨论,让学生认识到数学的应用价值,激发学生学习数学的爱好.使学生善于从现实生活中数学的发现问题,解决问题.教学建议教材分析(1)是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行讨论的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点讨论.(2)本节的教学重点是在理解定义的基础上掌握的图象和性质.难点是对底数在和时,函数值变化情况的区分.(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论讨论是学生面临的重要问题,所以从的讨论过程中得到相应的结论当然重要,但更为重要的是要了解系统讨论一类函数的方法,所以在教学中要特别让学生去体会讨论的方法,以便能将其迁移到其他函数的讨论.教法建议(1)关于的定义根据课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是.(2)对底数的限制条件的理解与认识也是认识的重要内容.如果有可能尽量让学生自己去讨论对底数,指数都有什么限制要求,老师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.关于图象的绘制,虽然是用列表描点法,但在具体教学中应避开描点前的盲目列表计算,也应避开盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.高一数学集合教案范文2一、教材分析及处理函数是高中数学的重要内容之一,函数的基础知识在数学和其他许多学科中有着广泛的应用;函数与代数式、方程、不等式等内容联系非常密切;函数是近一步学习数学的重要基础知识;函数的概念是运动变化和对立统一等观点在数学中的具体体现;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,《函数》教学设计。
2024年高一数学教案高一数学教案必修一

2024年高一数学教案必修一第一章集合与函数概念第一课时集合的含义与表示方法一、教学目标1.理解集合的含义,掌握集合的表示方法。
2.能够运用集合的语言描述生活中的现象。
3.培养学生的抽象思维能力和语言表达能力。
二、教学重难点1.重点:集合的含义与表示方法。
2.难点:集合语言的应用。
三、教学过程(一)导入新课同学们,你们听说过集合吗?其实,在我们的生活中,集合无处不在。
今天我们就来学习一下集合的含义与表示方法。
(二)新课讲解1.集合的含义(1)集合的定义:集合是一些明确且不同的对象的全体。
(2)集合的元素:构成集合的对象叫做集合的元素。
(3)集合的性质:确定性、互异性、无序性。
2.集合的表示方法(1)列举法:将集合中的元素一一列举出来,用大括号表示。
(2)描述法:用文字或符号描述集合中元素的特征。
(3)图示法:用Venn图或树状图表示集合。
(三)案例分析1.例题1:下列各式中,哪些是集合?A.{1,2,3,4,5}B.{x|x是小于10的正整数}C.{a,b,c,a}D.{x|x是方程x²3x+2=0的解}解析:A、B是集合,C不是集合(元素不互异),D不是集合(方程解不明确)。
2.例题2:用列举法表示下列集合。
A.所有小于5的正整数B.所有大于0且小于10的偶数解析:A.{1,2,3,4}B.{2,4,6,8}(四)课堂练习1.判断下列各式是否为集合,并说明理由。
A.{1,2,3,4,5}B.{x|x是大于5的正整数}C.{a,b,c,a}D.{x|x是方程x²4x+3=0的解}2.用列举法表示下列集合。
A.所有大于3且小于10的奇数B.所有小于0的整数1.本节课我们学习了集合的含义与表示方法,掌握了集合的性质。
2.能够运用集合语言描述生活中的现象,提高抽象思维能力和语言表达能力。
四、作业布置1.抄写并背诵集合的定义、性质及表示方法。
2.完成课后练习题。
第二章函数及其性质第一课时函数的概念一、教学目标1.理解函数的概念,掌握函数的表示方法。
高一数学上册《集合之间的关系》教案、教学设计

1.通过实际问题引入集合的概念,引导学生从具体实例中抽象出集合的定义,培养其从特殊到一般的归纳能力。
2.利用图形、表格等直观手段,帮助学生形象地理解集合之间的关系,提高其空间想象能力和直观感知能力。
3.通过小组讨论、合作探究的方式,引导学生自主发现集合运算的规律,培养其合作意识和团队精神。
-引导学生探索集合的其他性质,如幂集、无穷集合等,提高学生的数学素养。
-介绍集合论在数学及相关领域中的应用,增强学生的学习兴趣。
3.教学评价:
-采用多元化的评价方式,如课堂提问、课后作业、小组讨论、小测验等,全面了解学生的学习情况。
-关注学生的个体差异,鼓励学生积极参与,及时给予表扬和鼓励,提高学生的自信心。
-数学日记:要求学生以日记的形式记录自己在解决集合问题时的心得体会,促进学生对知识的内化。
4.预习作业:
-预习下一节课的内容:提前让学生预习下一节课关于集合的拓展知识,如幂集、无穷集合等,为课堂学习做好准备。
-提出疑问:鼓励学生在预习过程中提出自己的疑问,以便在课堂上进行讨论和解答。
在作业布置过程中,关注以下几点:
1.作业量适中,难度适宜,避免过度的作业压力,让学生有足够的时间消化和吸收所学知识。
2.鼓励学生主动思考和探究,培养其独立解决问题的能力。
3.注重作业反馈,及时批改和讲评,帮助学生发现并纠正错误,提高学习效果。
4.关注学生的个体差异,针对不同学生的学习情况,给予个性化的作业指导。
2.互动交流:
-各小组汇报讨论成果,分享解题方法。
-教师点评各小组的表现,给予鼓励和指导。
(四)课堂练习
在这一环节,我将设计一些具有针对性的练习题,让学生巩固所学知识。
1.练习题设计:
集合的概念教案5篇

集合的概念教案5篇教师需要了解学生的学习偏好,以确保教案包括多种教学方法,以满足不同学生的需求,教案包括教学评估的方法,用于测量学生的学习成果和教学效果,以下是作者精心为您推荐的集合的概念教案5篇,供大家参考。
集合的概念教案篇1第二教时教材:1、复习2、《课课练》及《教学与测试》中的有关内容目的:复习集合的概念;巩固已经学过的内容,并加深对集合的理解。
过程:一、复习:(结合提问)1.集合的概念含集合三要素2.集合的表示、符号、常用数集、列举法、描述法3.集合的分类:有限集、无限集、空集、单元集、二元集4.关于“属于”的概念二、例一用适当的方法表示下列集合:1.平方后仍等于原数的数集解:{x|x2=x}={0,1}2.比2大3的数的集合解:{x|x=2+3}={5}3.不等式x2-x-64.过原点的直线的集合解:{(x,y)|y=kx}5.方程4x2+9y2-4x+12y+5=0的解集解:{(x,y)| 4x2+9y2-4x+12y+5=0}={(x,y)| (2x-1)2+(3y+2)2=0}={(x,y)| (1,3)} 6.使函数y=有意义的实数x的集合解:{x|x2+x-60}={x|x2且x3,xr}三、处理苏大《教学与测试》第一课含思考题、备用题四、处理《课课练》五、作业《教学与测试》第一课练习题集合的概念教案篇2一、说教材(1)说教材的内容和地位本次说课的内容是人教版高一数学必修一第一单元第一节《集合》(第一课时)。
集合这一课里,首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。
然后,介绍了集合的常用表示方法,集合元素的特征以及常用集合的表示。
把集合的初步知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握以及使用数学语言的基础。
从知识结构上来说是为了引入函数的定义。
因此在高中数学的模块中,集合就显得格外的举足轻重了。
高一数学集合教案

1.1.1集合的概念【教学目标】1. 初步理解集合的概念;理解集合中元素的性质.2. 初步理解“属于”关系的意义;知道常用数集的概念及其记法.【教学重点】集合的基本概念,元素与集合的关系.【教学难点】正确理解集合的概念.【教学过程】环节 教学内容 师生互动 设计意图导 入 师生共同欣赏图片“中国所有的大熊猫”、“我们班的所有同学”. 师:“物以类聚”;“人以群分”;这些都给我们以集合的印象. .新 课 新 课引例:(1) 某学校数控班学生的全体;(2) 正数的全体;(3) 平行四边形的全体;(4) 数轴上所有点的坐标的全体.1. 集合的概念.(1) 一般地,把一些能够确定的对象看成一个整体,我们就说,这个整体是由这些对象的全体构成的集合(简称为集).(2) 构成集合的每个对象都叫做集合的元素.(3) 集合与元素的表示方法:一个集合,通常用大写英文字母 A,B,C,…表示,它的元素通常用小写英文字母 a,b,c,…表示.2. 元素与集合的关系.(1) 如果 a 是集合 A 的元素,就说a属于A,记作a A,读作“a属于A”.(2)如果a不是集合A的元素,就说a不属于A,记作a A.读作“a不属于A”.3. 集合中元素的特性.(1) 确定性:作为集合的元素,必须是能够确定的.这就是说,不能确定的对象,就不能构成集合.(2) 互异性:对于一个给定的集合,集合中的元素是互异的.这就是说,集合中的任何两个元素都是不同的对象.4. 集合的分类.(1) 有限集:含有有限个元素的集合叫做有限集.(2) 无限集:含有无限个元素的集合叫做无限集.5. 常用数集及其记法.(1) 自然数集:非负整数全体构成的集合,记作 N;或 N*;(2) 正整数集:非负整数集内排除0的集合,记作 N+(3) 整数集:整数全体构成的集合,记作 Z;(4) 有理数集:有理数全体构成的集合,记作 Q;(5) 实数集:实数全体构成的集合,记作 R.注意:(1)自然数集合与非负整数集合是相同的集合,也就是说自然数集包含0;(2)自然数集内排除0的集,表示成 或 ,其他数集{如整数集Z、有理数集Q、实数集R}内排除0的集,也可类似表示 , , ;(3)原教科书或根据原教科书编写的教辅用书中出现的符号如 , , …不再适用. 例1 判断下列语句能否构成一个集合,并说明理由.(1) 小于 10 的自然数的全体;(2) 某校高一(2)班所有性格开朗的男生;(3) 英文的 26 个大写字母;(4) 非常接近 1 的实数.练习1 判断下列语句是否正确:(1) 由2,2,3,3构成一个集合,此集合共有4个元素;(2) 所有三角形构成的集合是无限集;(3) 周长为20 cm 的三角形构成的集合是有限集;(4) 如果a Q,b Q,则 a+b Q.2.选择题⑴以下四种说法正确的( )(A) “实数集”可记为{R}或{实数集}(B){a,b,c,d}与{c,d,b,a}是两个不同的集合(C)“我校高一年级全体数学学得好的同学”不能组成一个集合,因为其元素不确定⑵已知2是集合M={ }中的元素,则实数为( )(A) 2 (B)0或3 (C) 3 (D)0,2,3均可例2 用符号“ ”或“ ”填空:(1) 1 N,0 N,-4 N,0.3 N;(2) 1 Z,0 Z,-4 Z,0.3 Z;(3) 1 Q,0 Q,-4 Q,0.3 Q;(4) 1 R,0 R,-4 R,0.3 R.练习2 用符号“ ”或“ ”填空:(1) -3 N;(2) 3.14 Q;(3) 13 Z ; (4) -12 R ;(5) 2 R ; (6) 0 Z .1.1.2 集合的表示方法【教学目标】1. 掌握集合的表示方法;能够按照指定的方法表示一些集合.. 【教学重点】集合的表示方法,即运用集合的列举法与描述法,正确表示一些简单的集合. 【教学难点】集合特征性质的概念,以及运用描述法表示集合. 【教学过程】 环节 教学内容师生互动设计意图导 入1. 集合、元素、有限集和无限集的概念是什么?2. 用符号“ ”与“ ”填空白:(1) 0 N ; (2) -2 Q ; (3)-2 R .这节课我们一起研究如何将集合表示出来.新 课 新 课 新 课1. 列举法.当集合元素不多时,我们常常把集合的元素列举出来,写在大括号“{}”内表示这个集合,这种表示集合的方法叫列举法.例如,由1,2,3,4,5,6这6个数组成的集合,可表示为:{1,2,3,4,5,6}.又如,中国古代四大发明构成的集合,可以表示为: {指南针,造纸术,活字印刷术,火药}.有些集合元素较多,在不发生误解的情况下,可列几个元素为代表,其他元素用省略号表示. 如:小于100的自然数的全体构成的集合,可表示为 {0,1,2,3,…,99}. 例1 用列举法表示下列集合:(1) 所有大于3且小于10的奇数构成的集合; (2) 方程 x 2-5 x +6=0的解集. 解 (1) {5,7,9};(2) {2,3}.练习1 用列举法表示下列集合:(1) 大于3小于9的自然数全体; (2) 绝对值等于1的实数全体; (3) 一年中不满31天的月份全体;(4) 大于3.5且小于12.8的整数的全体.2. 性质描述法.给定 x 的取值集合 I,如果属于集合 A 的任意元素 x 都具有性质 p(x),而不属于集合 A 的元素都不具有性质p(x),则性质 p(x)叫做集合A的一个特征性质,于是集合 A 可以用它的特征性质描述为 {x I |p(x)} ,它表示集合 A是由集合 I 中具有性质 p(x)的所有元素构成的.这种表示集合的方法,叫做性质描述法.使用特征性质描述法时要注意:(1) 特征性质明确;(2) 若元素范围为 R,“x R”可以省略不写.例2 用性质描述法表示下列集合:(1) 大于3的实数的全体构成的集合;(2) 平行四边形的全体构成的集合;(3) 平面 内到两定点 A,B 距离相等的点的全体构成的集合.解 (1){ x |x >3};(2){ x |x 是两组对边分别平行的四边形};(3) l={ P ,|PA|=|PB|,A,B 为 内两定点}.练习2 用性质描述法表示下列集合:(1) 目前你所在班级所有同学构成的集合;(2) 正奇数的全体构成的集合;(3) 绝对值等于3的实数的全体构成的集合;(4) 不等式4 x-5<3的解构成的集合;(5)所有的正方形构成的集合.2、用描述法表示下列集合①{1,4,7,10,13}②{-2,-4,-6,-8,-10}3、用列举法表示下列集合①{x∈N|x是15的约数}②{(x,y)|x∈{1,2},y∈{1,2}}?③④⑤ ?⑥①注意区别 a 与 {a}.a 是集合{a}的一个元素,而{a}表示一个集合.例如,某个代表团只有一个人,这个人本身和这个人构成的代表团是完全不同的;②用列举法表示集合时,不必考虑元素的前后顺序.集合{1,2}与{2,1}表示同一个集合吗?注:(1)在不致混淆的情况下,可以省去竖线及左边部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.1集合的概念
【教学目标】
1.初步理解集合的概念;理解集合中元素的性质.
2.初步理解“属于”关系的意义;知道常用数集的概念及其记法.
【教学重点】
集合的基本概念,元素与集合的关系.
【教学难点】
正确理解集合的概念.
【教学过程】
的集,表示成或,其他数集
的集,也可类似表示,,;
)原教科书或根据原教科书编写的教辅用书中出现的符号如,,…不再适用.M={
1.1.2集合的表示方法
【教学目标】
1.掌握集合的表示方法;能够按照指定的方法表示一些集合..
【教学重点】
集合的表示方法,即运用集合的列举法与描述法,正确表示一些简单的集合. 【教学难点】
集合特征性质的概念,以及运用描述法表示集合.
【教学过程】
1.1.3集合之间的关系(一)
【教学目标】
1.理解子集、真子集概念;掌握子集、真子集的符号及表示方法;会用它们表示集合间的关系.
2.了解空集的意义;会求已知集合的子集、真子集并会用符号及Venn图表示.
【教学重点】
子集、真子集的概念.
【教学难点】
集合间包含关系的正确表示.
【教学过程】
1.1.4集合之间的关系(二) 【教学目标】
1.理解两个集合相等概念.能判断两集合间的包含、相等关系.
2.理解掌握元素与集合、集合与集合之间关系的区别.
【教学重点】
1.理解集合间的包含、真包含、相等关系及传递关系.
2.元素与集合、集合与集合之间关系的区别.
【教学难点】
弄清元素与集合、集合与集合之间关系的区别.
【教学过程】
1.1.5集合的运算(一) 【教学目标】
1.理解交集与并集的概念与性质.
2.掌握交集和并集的表示法,会求两个集合的交集和并集.
【教学重点】
交集与并集的概念与运算.
【教学难点】
交集和并集的概念、符号之间的区别与联系.【教学过程】
A(B) A B
【教学目标】
1.了解全集的意义;理解补集的概念,掌握补集的表示法;理解集合的补集的性质;会求一个集合在全集中的补集.
【教学重点】
补集的概念与运算.
【教学难点】
全集的意义;数集的运算.
【教学方法】
【教学过程】
记作U
则U
C
∩U
∪U
则U
∩U
∪U
∪U
∩U
(3)U(U
,求U
解U
,求U
,求U
.求U;U;U∩U ∪U
U
U U
【教学目标】
1.了解全集的意义;理解补集的概念,掌握补集的表示法;理解集合的补集的性质;会求一个集合在全集中的补集.
【教学重点】
补集的概念与运算.
【教学难点】
全集的意义;数集的运算.
【教学方法】
【教学过程】
记作U
则U
C
∩U
∪U
则U ∩U ∪U ∪U ∩U (3)U (U ,求U 解U
,求U ,求U .求U ;U ;U ∩U U ∪U U U 1.2.2 子集与推出的关系
【教学目标】
1.正确理解子集和推出的关系.
2.掌握通过“推出”判断集合的关系.
【教学重点】
理解子集和推出的关系.
【教学难点】
理解通过“推出”判断集合的包含关系.
【教学过程】
集合的含义与表示
1.用符号∈或∉填空:
(1)32}11|{<x x ;
(2)3},1|{2+∈+=N n n x x ;
(3))1,1(-}|{2x y y =,)1,1(-}.|),{(2x y y x =
2.用列举法表示下列集合:
(1)},,3|),{(N y N n y x y x ∈∈=+;(2)}.,2||,1|),{(2Z x x x y y x ∈≤-=
3.可以表示方程组⎩⎨⎧-=-=+1
,3y x y x 的解集是。
(写出所有正确答案的序号)
(1)}2,1{==y x ;(2)}2,1{;(3))}2,1{(;(4)}2,1|),{(==y x y x 或;
(5)}2,1|),{(==y x y x 且;(6){⎭
⎬⎫⎩⎨⎧==2,1),(y x y x ;(7)}.0)2()1(|),{(22=-+-y x y x 4.设集合},,{},,,1{2ab a a B b a A ==,且B A =,求实数.,b a
5.已知集合}4,433,2{22-+-+-=x x x x M ,若,2M ∈求.x
集合间的基本关系
1.下列各组中的两个集合相等的有()
①}),1(2|{},,2|{Z n n x x Q Z n n x x P ∈-==∈==;
②},12|{},,12|{++∈+==∈-==N n n x x Q N n n x x P ;
③}0|{2
=-=x x x P ,}.,2)1(1|{Z n x x Q n
∈-+== A .①②③ B .①③ C .②③ D .①②
2.设集合}43,2{},,8,2{2+-==a a B a A ,且A ≠⊃B ,求a 的值。
3.(1)已知集合},03|{},3,1{=-==mx x B A 且A B ⊆,则m 的值是。
(2)已知集合}121|{},52|{-≤≤+=≤≤-=m x m x B x x A ,若A B ⊆,求实数m 的取值范围。
4.(1)以下各组中两个对象是什么关系,用适当的符号表示出来。
①0与}0{;②0与∅;③∅与}0{;④}1,0{与)}1,0{(;⑤)},{(a b 与)}.,{(b a
(2)已知}|{},1,0{A x x B A ⊆==,则A 与B 的关系正确的是()
A .
B A ⊆ B .A ≠⊂B
C .B ≠⊂A
D .B A ∈ 5.(1)同时满足:①}5,4,3,2,1{⊆M ;②M a ∈,则M a ∈-6的非空集合M 有() A .16个 B .15个 C .7个 D .6个
6.(1)已知集合X 满足}5,4,3,2,1{}2,1{⊆⊆X ,求所有满足条件的X 。
(2)设集合},01)1(2|{},04|{222R a a x a x x B x x x A ∈=-+++==+=。
若A B ⊆,求实数a 的值。